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Abstract— A common hypothesis in human motor control
is that human movement is generated by optimizing with
respect to a certain criterion and is task dependent. In this
paper, a method to segment human movement by detecting
changes to the optimization criterion being used via inverse
optimal control is proposed. The control strategy employed
by the motor system is hypothesized to be a weighted sum
of basis cost functions, with the basis weights changing with
changes to the motion objective(s). Continuous time series data
of movement is processed using a sliding fixed width window,
estimating the basis weights of each cost function for each
window by minimizing the Karush-Kuhn-Tucker optimality
conditions. The quality of the cost function recovery is verified
by evaluating the residual. The successfully estimated basis
weights are averaged together to create a set of time varying
basis weights that describe the changing control strategy of the
motion and can be used to segment the movement with simple
thresholds. The proposed algorithm is first demonstrated on
simulation data and then demonstrated on a dataset of human
subjects performing a series of squatting tasks. The proposed
approach reliably identifies the squatting movements, achieving
a segmentation accuracy of 84%.

I. INTRODUCTION

The central nervous system, as the controller of the body,
can choose from an unlimited number of joint trajectories in
order to carry out an action. However, literature in human
motor control over the last three decades has shown that
the joint trajectory variance is limited to a much smaller
subset, likely a minimization of a cost function [1]. Studies
in biomechanics and human motion analysis have proposed
many possible cost functions, such as minimizing time, joint
velocity, or acceleration [2]. Given a human motion trajectory
and a set of cost function hypotheses, the cost function used
to generate the motion can be estimated via the use of inverse
optimal control (IOC) [3]. Previous studies [4] show that
different cost functions are used for different movements.
Existing works typically segment continuous movement into
discrete motion primitives and assume that the cost function
does not change over the duration of a single primitive.

However, a continuous movement sequence may consist
of multiple motion primitives, and each primitive may not
necessarily share a common control strategy. This paper
proposes that if the control strategy can be estimated as a
function of the motion data, then a change in strategy may
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be used as an indication that the motion primitive being
performed has changed, and be used to segment the motion.
To achieve this, a sliding window over the trajectory data is
used to determine the basis weights of the cost function using
IOC. The basis weights are averaged together to form a time
varying feature of the motion trajectory. A threshold can be
applied to this feature to perform motion segmentation.

Motion segmentation is the process of extracting motions
of interest from continuous observation of motion data [5]. It
has numerous applications, including imitation learning [6],
human-robot interaction [7], rehabilitation [8], and activity
recognition [9]. Existing approaches for human motion seg-
mentation have primarily relied on kinematic data, such as
joint angles [10], [11], Cartesian data [12], [13], and inertial
measurement data [14], [15]. It is difficult to generalize
from one participant to another using these features as
they are dependent on participant stature, fitness, and data
collection methods, and require substantial normalization and
post-processing. This is especially a problem in health and
rehabilitation applications, where methods developed using
data collected from healthy participants typically do not
generalize to injured or rehabilitating participants [5].

The use of IOC for human motion analysis has recently
received increasing attention in biomechanics and robotics
[16], [17], [18]. Previous work typically formulates the cost
function being optimized by the central nervous system as
a weighted sum of basis cost functions, so that the IOC
problem can be solved by finding the basis function weights.
Two primary methods have been proposed to solve the
resultant optimization. The first is the bi-level optimization
approach, where the basis weights are found by minimizing
the root-mean-square error (RMSE) between the optimal
path generated from the estimated weights and the observed
data. Two layers of optimization are employed; one to
generate the optimal trajectory given the weights and the task
constraints, and the other to generate weights that minimize
the RMSE given the trajectory. This method has been used in
locomotion [3], [19], [17], reaching [20], [21], and overhead
assembly [22] tasks. The bi-level optimization approach is
flexible as it does not require the optimization gradient in
analytical form, but is computationally demanding as it must
both optimize the weights and minimize the RMSE [22].

The other technique formulates the IOC problem using the
inverse Karush-Kuhn-Tucker (KKT) [23] optimality criteria,
which is a set of criteria that are satisfied at the optimal
solution. This transforms the initial optimization problem,
which can be a constrained non-linear problem, into an



unconstrained problem. This method has found application in
locomotion [24], [25], [16], [18] and box moving [26] tasks.
KKT-based methods are faster than the bi-level optimization
methods as they are only solving for the basis weights
and the reconstructed trajectory is only calculated once to
quantify the RMSE. However, the gradient must be modelled
explicitly, which is not trivial [26].

This paper hypothesizes that the human motion control
objective can be represented as a weighted sum of basis func-
tions and applies IOC to a sliding window over observation
data to recover the weights of the windowed trajectory. The
weight vector at a given timestep is calculated as the average
of all the windows that include that timestep and also have
sufficiently low KKT error residual. Motion segmentation is
performed on the recovered weights to segment the contin-
uous time series trajectory into discrete actions.

II. PROPOSED APPROACH

In this paper, the cost function J(x) that is minimized to
generate a given motion is modelled as a weighted sum of
basis cost functions Jbf (x):

J(x) =

nbf∑
i=0

ciJbf,i(x) (1)

where x is the variable that is manipulated to minimize the
cost. The KKT approach [16], [26] is used to determine
the basis weights c of the observed trajectory, velocity,
and acceleration, which are collectively denoted as Qobs =
[qobs; q̇obs; q̈obs]. Previous studies assume that the motion
trajectory is segmented [21], [22] or that the motion consists
of a single motion primitive or cost function [3], [24]. To
the authors’ knowledge, this paper is the first to remove the
above assumptions. Instead, IOC is performed sequentially
over sliding windows over the time series data. A change
in the basis function weights is used to determine when the
motion objective has changed, indicating a segment point.
The approximate IOC method proposed in [16] is adapted
to allow for changing basis weights by handling windows of
arbitrary length and rejecting degenerate estimates.

This section describes two components of the optimal
control process: direct optimal control (DOC), where c is
known and Qobs is to be generated, and IOC, where Qobs
is known, and c is to be estimated. The IOC estimates the
basis weights ĉ based on Qobs, or parts of Qobs, while
the DOC is used to generate simulation data and determine
goodness-of-fit by comparing Qobs to its estimate q̂obs as
generated by ĉ.

A. Trajectory Representation

The trajectories in this paper are represented as piecewise
5th order polynomials, where each individual polynomial is
a spline of the form qp = p5t

5+p4t
4+p3t

3+p2t
2+p1t+p0.

The spline is used to reduce the problem dimensionality
by allowing modelling to occur on the spline control knots
instead of the full trajectory, and to avoid bias in estimation
[16]. It also allows for the trajectory derivatives to be
estimated analytically.

Given the set of splining control knot locations tck,
joint angles qck = q(tck), velocities q̇ck = q̇(tck), and
accelerations q̈ck = q̈(tck), a polynomial is constructed
between each pair of knots. The coefficients for the 5th order
polynomial between control knot tck,k and tck,k+1 are found
by constructing a variation of the Vandermonde matrix V
[27]:

V =


t5k t4k t3k t2k t1k 1
5t4k 4t3k 3t2k 2t1k 1 0
20t3k 12t2k 6t1k 2 0 0
t5k+1 t4k+1 t3k+1 t2k+1 t1k+1 1
5t4k+1 4t3k+1 3t2k+1 2t1k+1 1 0
20t3k+1 12t2k+1 6t1k+1 2 0 0


qc =

[
qk q̇k q̈k qk+1 q̇k+1 q̈k+1

]
p = V q−1

c (2)

where p are the coefficients of the polynomial and the control
knot subscript was removed for brevity (i.e. tk = tck,k). The
number of control knots is a fixed value, and the control
knots are evenly distributed in the window.

B. Direct Optimal Control

Given c and tck, the goal of DOC is to generate the
qck, q̇ck, and q̈ck that minimize J(x). These control knots,
when optimized (denoted as q∗ck), are used to generate a
spline that approximates the optimal trajectory Qobs =
spline(q∗ck, q̇

∗
ck, q̈

∗
ck). The general form of the constrained

optimization problem is as follows:

min
x
J(x) ∈ h(x) = 0, g(x) ≤ 0 (3)

where h(x) are the equality constraints, and g(x) are the
inequality constraints. The DOC problem is obtained by
modifying Equation 3 into:

min
x=qck,q̇ck,q̈ck

J(x) =

nbf∑
i=0

ciJbf,i(Qobs) (4)

∈ h(x) =


q(tconst,q)− qconst = 0

q̇(tconst,dq)− q̇const = 0

q̈(tconst,ddq)− q̈const = 0

where qconst, q̇const, and q̈const denote the joint posi-
tion, velocity, and acceleration constraints, respectively, and
tconst,q , tconst,dq , tconst,ddq refer to their corresponding
time points. These constraints form the equality constraints
h(x) of the system. This paper does not include any inequal-
ity constraints g(x), but potential inequality constraints can
include joint and torque limits.

To solve the DOC problem, the trust region optimization
method is used [28]. An initial trajectory is created by a
5th order polynomial, constrained for starting and ending q,
q̇, and q̈. The joint angles at tck are extracted from this
trajectory and used to initialize q(tck). At each optimization
step, qck, q̇ck, and q̈ck are used to create the spline, then
all the features needed to calculate Jbf are determined. The
features are normalized before Jbf calculations.



A0 =
[
∇xJbf,1 ∇xJbf,2 · · · ∇xh1 ∇xh2 · · ·

]

=



∂(Jbf,1)
∂(qd=1,ck=1)

∂(Jbf,2)
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· · · ∂(h1)
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z0 =

[
ĉ1 ĉ2 · · · λ1 λ2 · · ·

]T
Fig. 1. Formulation of the least squares problem for the IOC. A0 denotes the gradient, differentiated against the kth control knot point and dth DOF,
before the array is split and the pivot basis function is extracted. z0 denotes the variables to recover.

C. Inverse Optimal Control

In the IOC problem, qck is known, and c must be
estimated. To achieve this, the IOC is formulated as an
inverse KKT problem [29], [24], [16], [26]. By minimizing
the residuals of the KKT equations, the system can achieve a
near-optimal state. Given the problem formulation in Equa-
tion 4, the KKT Lagrangian L(x = qck, q̇ck, q̈ck) and its
gradient ∇xL(x) are defined as:

L(x) =

nbf∑
i=0

ĉiJbf,i(Qobs) +

nh∑
j=0

λjhj(Qobs)

∇xL(x) =

nbf∑
i=0

ĉi∇xJbf,i(Qobs) +

nh∑
j=0

λj∇xhj(Qobs)

where the partial differential of the gradient ∇x is calculated
with respect to the state variables qck, q̇ck, and q̈ck, λ are
the Lagrangian multipliers on h(x), and Qobs is constructed
from the spline representation of the trajectory. The condition
that must be met to ensure optimality is:

∇xL(Qobs) = 0 (5)

If it is assumed that the system is not strictly optimal, but
rather only approximately optimal [29], then Equation 6 is
minimized but is not strictly zero:

min
ĉ,λ

∇xL(Qobs) (6)

∈ ĉ ≥ 0

Since the KKT equations are linear with respect to the
unknown variables ĉ and λ, Equation 6 can be written as
a least square problem in the form of Az, as shown in
Figure 1, and solved computationally efficiently. To solve
this constrained linear least squares problem, the active set
method is used [30]. The gradient is calculated numerically.

In order to prevent trivial solutions, one of the values of
ĉ must be set to a non-zero value. This term, denoted as

the pivot, may be selected with some prior knowledge of
the nature of the cost functions [31]. In this paper, no prior
knowledge is assumed, so all basis functions will be used as
the pivot, and the best fit will be selected by selecting the
entry with the smallest KKT error residual. To construct the
pivot bi, the ith column of A0, ci is constrained to be 1.

The IOC process is applied on a sliding window of arbi-
trary length over the Qobs to recover the ĉ of the trajectory
over that window. Depending on the size and location of the
window in the time series data stream, it may not be possible
to recover the weights, leading to a degenerate solution.
In these cases, the error residual from Equation 6 is very
high, and typically corresponds to a negative ĉ if the c ≥ 0
optimization constraint in Equation 6 is relaxed. To detect
these degenerate solutions, the residual norm ||Aizi + bi||22
can be checked as an indicator of the quality of the ĉ
estimates. Once the pivot has been selected, the trajectory
q̂obs corresponding to ĉ can be generated via DOC.

In simulation, degenerate cases can also be detected by
comparing the estimated ĉ against the ground truth c used
to generate the test trajectory. For human data, there is no
way to determine the ground truth c to verify ĉ. Therefore,
the thresholds for detecting degenerate cases were estimated
from simulations and are reported in Table I. The basis func-
tions used to determine the thresholds are Jddq , Jddx, and
Jtau. Windows that are below the residual norm threshold
are considered sufficiently optimal.

TABLE I
RESIDUAL NORM THRESHOLD VALUES DETERMINED BY SIMULATION

FOR THE SQUAT MOTION.

Window length [s] 0.6 0.8 1.0 1.2 1.4 1.6
Threshold [×10−3] 5.0 6.4 4.5 3.5 3.0 2.5

The optimal windows are then aggregated into a single
trajectory or value, denoted as the blended metric, which is
obtained by extracting all the windows that contain t and



averaging the metric over all of the extracted windows. For
example, the blended c̄t at time t is calculated by selecting
all the windows ω that overlap with t, and calculating the
average ĉ over the nw selected windows:

c̄t =
∑ ĉ

nw
∀ t ∈ ω

The blended q̄obs at time t is calculated similarly, by
selecting all the windows that overlap with t, and averaging
all the q̂obs values of the selected windows. The blended
RMSE is then calculated between input trajectory Qobs and
the estimated blended q̄obs.

III. SOURCES OF DATA

Fig. 2. Generation of the simulation squat DOC. The first and third set
of h(x) constraints denote the standing position, where the q are set to
simulate a standing person, and the second set of h(x) constraints denote
the squatting position. All h(x) constraints corresponding to the q̇ and q̈
are zero, denoting a stationary person at the key poses.

The proposed approach was tested in two sets of ex-
periments. The first set of experiments simulated squats
and hip extension motions, while the second set examined
human squat data. Squats and hip extensions were chosen for
this experiment as they are common, well-known full-body
exercises used in both athletics and rehabilitation [32].

A. Simulation Data

In the first experiment, DOC was used to generate a set of
Qobs with a known set of c values, which can be used as the
ground truth for algorithm validation. Multiple repetitions of
a squat or hip extension task were simulated by minimizing
Jddq , Jddx, and Jtau (Table I), or a weighted sum of all three
criteria. Each repetition had 9 h(x) constraints, correspond-
ing to the position, velocity, and acceleration constraints
for 3 key poses during the task: standing, squatting or hip
extension, then standing again, placed at the start, middle,
and end of the DOC trajectory (Figure 2). Each repetition
had a duration of 2 s. Qobs was modelled as 3 degrees of
freedom (DOFs) system, corresponding to the ankle qankle,
knee qknee, and hip qhip.

TABLE II
BASIS FUNCTIONS USED [21], SUMMED OVER ALL nd DOFS AND T

TIME. M DENOTES THE INERTIAL MATRIX.

Angular acceleration (ddq) Jddq =

nd∑
d

T∑
t

q̈2d,t

Angular jerk (dddq) Jdddq =

nd∑
d

T∑
t

...
q 2
d,t

Cartesian acceleration (ddx) Jddx =
T∑
t

ẍ2nd,t

Cartesian jerk (dddx) Jdddx =
T∑
t

...
x2
nd,t

Torque (tau) Jtau =

nd∑
d

T∑
t

τ2d,t

Torque change (dtau) Jdtau =

nd∑
d

T∑
t

τ̇2d,t

Torque effort (ddtau) Jddtau =

nd∑
d

T∑
t

τ̈2d,t

Kinetic energy (en) Jen =

nd∑
d

T∑
t

q̇d,tM(q)q̇d,t

Power Jpower =

nd∑
d

T∑
t

(q̇d,tτd,t)
2

B. Human Data

In the second experiment, segmentation was performed
on an experimental dataset. An 8-subject dataset [33] of
healthy participants with an average age of 30 ± 5 years old
performing an average of 10 squats each were collected using
a VICON motion capture system. A 10 marker model was
used, providing joint Cartesian position data. Joint angles
were calculated from the cross products between markers,
using a 3 DOF planar kinematic model, corresponding to
qankle, qknee, and qhip.

IV. EXPERIMENTAL RESULTS

A. IOC Reconstruction

For IOC reconstruction, nck was set to 5 points every
1 s, evenly distributed over Qobs. A sliding window, in-
crementing by 0.2 s, was passed over the trajectory. h(x)
constraints were set so that the joint position, velocity, and
acceleration constraints were placed at the start, middle, and
end of the IOC window. The IOC pivot that resulted in the
smallest residual was selected as the most suitable pivot. Any
window that led to a reconstruction that has a residual norm
that exceeds the tuned threshold in Table I was rejected.

The basis functions considered in this paper, motivated by
[21], can be found in Table II. All features were calculated
from the joint angle measurements. Angular acceleration q̈
and jerk

...
q values were calculated from the derivatives of

the joint angle spline. The Cartesian acceleration ẍ values
were calculated via forward kinematics, while the Cartesian
jerk

...
x values were calculated from numerical differentiation

of the Cartesian acceleration. Torque τ values were calcu-
lated using anthropometric table [34] data for the dynamic



TABLE III
THE EFFECTS OF VARYING WINDOW LENGTH ON THE DATAPOINTS THAT

ARE BELOW THE RESIDUAL NORM THRESHOLD AND THE MEAN

BLENDED RMSE. BOLD DENOTES THE WINDOW SIZE WITH THE MOST

POINTS PASSING THE RESIDUAL NORM THRESHOLD.

Length [s] Residual Pass [%] Blended RMSE [×10−3 rad]
0.6 78.68 0.0
0.8 66.9 0.0
1.0 50.8 0.0
1.2 40.6 0.0
1.4 32.9 0.0
1.6 25.1 0.0

parameters and inverse dynamics through Symoro [35]:

τ =M(q)q̈ + C(q, q̇) +G(q)

where M(q) is the inertia matrix, C(q, q̇) is the Coriolis
matrix, and G(q) is the gravity vector. Torque change τ̇ and
effort τ̈ values were obtained from numerical differentiation.
All calculations were done in MATLAB 8.0.

B. Simulation

Experiments with the simulation data show that degenerate
situations can occur in two different cases. The first case
is if the basis functions hypothesized during IOC do not
correspond to the cost function used to generate the motion.
This leads to an A0 matrix that does not provide the correct
basis functions that can sufficiently minimize Equation 6 and
leads to a high residual norm value. These cases can be
rejected by the residual norm threshold test if properly tuned.
See Figure 3 for examples of the simulation reconstruction.

The second case is if the windowed part of the trajectory
does not provide sufficient information for the IOC model.
This could happen if the window is insufficiently long, or if
there are the same or more h(x) constraints than knot points
(i.e. nh ≥ nck) in the IOC window. In this case, the residual
norm test will be inaccurate, especially if there are enough
h(x) constraints to satisfy the least squares without the basis
function columns in the A0 matrix, which will result in a
low residual norm value but a degenerate case. This can be
avoided by ensuring that all IOC windows have more control
knots than h(x) constraints.

C. Human Data

Table III shows the impact of varying window size,
indicating that a window width of 0.6 s provided the highest
percentage of windows that are below the residual norm
threshold. Testing showed that window length smaller than
0.6 s fell into the second case described in Section IV-B and
were not considered. Given that the average squat motion is
approximately 2 s to 2.5 s long, a window of 0.6 s represents
about a quarter of the motion of interest. The remaining
21.3% that was rejected by the residual norm threshold may
be a result of poor cost function modelling, i.e., that the
true cost functions required to model these specific parts of
the trajectory are not included into the model. The larger
the window, the worse the performance, implying that good

recovery is not possible when the cost function is in the
process of changing or that more complex cost functions may
be required to capture longer sequences of the observed data.

Fig. 4. Percentage of ĉ over 8 subjects. This plot was generated by
calculating the mean ĉ over the full trajectory of each subject, resulting
in 8 sets of ĉ. The mean and standard deviation in this graph shows the
mean and variation between participants. The IOC recovery suggests that
cpower and cddx contribute a significant amount of the basis weights for
the squat motion.

Figure 5 shows the weight recovery of two different
subjects, where Figure 5b has a high number of residual norm
test passes, while Figure 5c has a low number of residual
norm passes. These two figures show that the proposed
method clearly delineates between the squat motion and
its high cddx weight (blue), and the resting periods and its
high cpower weight (red), and can be used for segmentation.
Figure 4 shows that this distribution of the basis function
weights is common for all participants examined. While the
percentage allocated to minimizing Jpower and Jddx may
change, as indicated from the large standard deviations on
these two basis weights, they are much higher than all other
basis functions, indicating that they are more important in
the squatting movement strategy. This finding is similar to
previous findings, where acceleration [3] and power [21]
have been found to be important basis functions.

Figure 5 also shows that the trajectory in motion has
a higher tendency to be rejected due to higher residuals,
as denoted by the indicators at the bottom of the joint
angle plots, where red dots denote no windows passed the
residual test at that timestep, yellow dots denote that only 1
window passed the residual test, while green dots denote
that more than 1 window passed the residual test. This
is also reflected in the gaps in the ĉ plot, as no basis
weights are available for timesteps that did not have any
successful estimate. This suggests that, at least for the motion
in Figure 5c, either that the current set of basis functions
may not be sufficient to model the motion at its turning
points, or that the cost function is changing too rapidly and
may benefit from a smaller window. Table IV shows that
raising the residual threshold allows more windows to pass.



(a) Squat data with the residual norm threshold at 5× 10−3. The simulated
cost vectors are [1; 0; 0], [0; 1; 0], and [1; 1; 1].

(b) Hip extension data with the residual norm threshold at 1 × 10−3. The
simulated cost vectors are [0.8; 0.1; 0.1], [0.6; 0.2; 0.2], [0.1 0.8 0.1], [0.2
0.6 0.2], [0.1 0.1 0.8], and [0.2 0.2 0.6].

Fig. 3. Simulation data, illustrating Qobs (top), the recovered blended ĉ (middle), and the original c (bottom). The data was created using three basis
functions, Jddx (blue), Jddq (green) and Jtau (red), and varying the cost weights. The jagged components in the ĉ plot are caused by window averaging
when a given window overlaps two different basis functions.

TABLE IV
THE EFFECTS OF RESIDUAL THRESHOLD (THRES, [×10−3]) ON SQUAT DATA ON RESIDUAL PASS RATE, RMSE, AND SEGMENTATION BALANCED

ACCURACY OVER THE 8 SUBJECTS. BLENDED RMSE IS THE RESULT OF THE BLENDED q̄obs OF ALL THE IOC WINDOWS THAT PASSED THE

THRESHOLD COMPARED AGAINST Qobs , WHILE WINDOWED RMSE IS THE RESULT OF EACH IOC WINDOW AGAINST ITS WINDOWED Qobs .

Subject Residual Pass [%] Blended RMSE [×10−3 rad] Windowed RMSE [×10−3 rad] Segmentation [%]
Thres 5 10 50 5 10 50 5 10 50 5 10 50

1 91.8 98.2 100.0 3.1 3.2 3.3 1.9 ± 3.9 2.1 ± 4.1 2.3 ± 4.2 90.9 90.5 90.5
2 68.8 73.5 84.9 3.2 4.0 5.2 1.4 ± 2.7 1.8 ± 4.0 2.7 ± 5.5 81.4 83.6 83.5
3 89.5 96.3 100.0 3.5 3.9 4.1 2.5 ± 3.9 2.9 ± 4.6 3.1 ± 4.8 90.6 90.9 90.9
4 91.5 98.8 100.0 4.3 5.0 6.2 2.9 ± 5.1 3.4 ± 5.9 4.1 ± 7.4 85.7 85.8 85.3
5 54.3 63.0 86.5 4.8 5.0 7.8 3.6 ± 4.9 3.8 ± 5.1 5.8 ± 8.1 81.9 82.7 83.7
6 91.7 97.3 100.0 3.8 4.8 4.8 2.4 ± 4.4 2.8 ± 5.4 2.9 ± 5.4 84.6 83.6 83.4
7 81.0 91.5 98.4 4.2 4.4 5.5 2.6 ± 4.2 3.3 ± 5.0 4.2 ± 6.1 86.1 87.7 87.8
8 56.2 66.7 95.4 3.4 5.9 9.6 2.0 ± 3.4 2.9 ± 7.2 5.0 ± 12.1 88.4 87.9 89.2

Increasing the threshold had the effect of increasing both
the blended and windowed RMSE, as more windows that
are less optimally solved are now being included.

Table IV also shows the accuracy of a threshold based
segmentation approach. The trajectory is separated into two
classes, where periods of motion are considered as true
positives (TP), periods of rest are considered as true negatives
(TN), false motion as false positives (FP), and false rest is
false negative (FN). The values in Table IV were obtained
by thresholding the most influential basis weight, ĉpower,
and selecting the threshold (ĉpower = 0.55) that resulted in
the best accuracy rating. The accuracy metric utilized is the
balanced accuracy (0.5 · ( TP

TP+FN + TN
TN+FP )).

V. CONCLUSION

This paper proposes a method for human motion seg-
mentation based on inverse optimal control. The approach
accepts arbitrary lengths of trajectories and estimates the
underlying basis function weights for successive windows
of that trajectory using inverse optimal control. A method to

reject low-quality weight estimates by examining the residual
norm is proposed, and the algorithm is demonstrated in both
simulation and with real data. The basis weights of a set of
squat tasks suggests that humans optimize for power and
Cartesian acceleration during rest and movement, respec-
tively, and that this choice of cost functions is consistent
across the 8 healthy subjects in the dataset. It was also shown
that a threshold-based segmentation method on the power
basis weight achieved 84% in balanced accuracy.

For future work, online recovery of weights for online seg-
mentation will be explored. In imitation learning or rehabil-
itation applications, immediate user feedback is desirable so
that the users can adjust erroneous movements quickly; this
requires fast and robust segmentation algorithms. Additional
basis functions and datasets will also be explored.
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