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Abstract— Movement primitive segmentation enables long
sequences of human movement observation data to be seg-
mented into smaller components, termed movement primitives,
to facilitate movement identification, modelling, and learning.
It has been applied to exercise monitoring, gesture recognition,
human-machine interaction, and robot imitation learning. This
paper proposes a segmentation framework to categorize and
compare different segmentation algorithms considering segment
definitions, data sources, application specific requirements, al-
gorithm mechanics, and validation techniques. The framework
is applied to human motion segmentation methods by grouping
them into online, semi-online and offline approaches. Among
the online approaches, distance based methods provide the best
performance, while stochastic dynamic models work best in the
semi-online and offline settings. However, most algorithms to
date are tested with small datasets, and algorithm generalization
across participants and to movement changes remains largely
untested.

I. INTRODUCTION

Motion segmentation is the process of identifying the tem-
poral extents of movements of interest, breaking a continuous
sequence of movement data into smaller components, termed
movement primitives [1], and identifying the segment points,
the starting and ending time instants of each movement
primitive. If more than one type of movement is performed,
identification, or labelling, of each segment with the appro-
priate movement type may also be required.

Movement primitive segmentation is used in many ap-
plications. In imitation learning, segmentation is used to
isolate movement primitives from demonstrations provided to
robots in order to teach them to perform complex tasks [2],
[3], [4]. In exercise and physical rehabilitation, movement
segments are used to isolate exercise repetitions to provide
feedback on the quality of the exercise [5], [6]. For activity
tracking, accurately identifying the type and amount of
activity performed is of interest [7], [8].

Time-series segmentation is a difficult task. One difficulty
in performing accurate segmentation is the large number
of degrees of freedom (DOF) in the movement data. In
addition, segmentation is made more difficult due to the
variability observed in human movement. Motions can vary
between individuals due to differing kinematic or dynamic
characteristics and within a single individual over time [9],
due to short term factors such as fatigue, or long term
factors such as physiotherapy recovery or disease progression
[10]. The participant may also start a subsequent movement
before fully completing the previous one (co-articulation)
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[11], leading to hybrid or blended motion primitives. These
factors introduce both spatial and temporal variability, which
a robust segmentation algorithm must be able to handle.
Lastly, some segmentation algorithms require labelled data
for training, which can be time-consuming to generate.

Depending on the target application, different types of
segmentation may be required. Gesture [12] or activity
recognition [13], [14] refers to segmentation where multiple
repetitions of the same motion type are considered to be one
activity (label), and thus segments are declared when the
label transitions from one activity to another. The focus of
this paper is on primitive segmentation. Motion primitive seg-
mentation is differentiated from activity recognition, as the
algorithms are designed to provide more granular temporal
detail by segmenting both repetitions of the same motion, as
well as transitions between different motion types. Previous
surveys have focused on activity recognition [12], [13], [14],
primitive modelling [15], or action recognition and modelling
applied to robotics [1]. Others elaborate on computer vision
approaches for human movement recognition [16], [1], [17],
[18], [19], [20].

This paper proposes a novel framework for segmentation
algorithm analysis. The proposed framework provides a
structure for considering the factors that must be incorpo-
rated when constructing a segmentation and identification
algorithm. The lack of such a framework makes it difficult
to compare different segmentation algorithms systematically,
since different algorithms tend to be assessed against dif-
ferent criteria and with different procedures. The proposed
framework provides the means to examine the impact of each
algorithm component and allows for a systematic approach
to determine the best algorithm for a given situation.

II. FRAMEWORK

The proposed framework identifies five components that
comprise any complete segmentation algorithm (Figure 1):
(1) Segment definition (Section III): There is no common
agreed-upon definition of a segment, and thus the segment
definition must be clarified for each application; (2) Data
collection (Section IV): Factors such as how the data are col-
lected, as well as the availability of exemplar data or ground
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Fig. 1. Overview of the segmentation framework. The bold labels denote major sections, while italicised labels denote subsections.

truth data for algorithm training and verification, should be
determined; (3) Application specific requirements (Section
V): Once the source of data and the segment definition have
been established, any application specific requirements on
inter-subject or inter-primitive generalization, computational
cost constraints and scalability requirements need to be
defined; (4) Algorithm design (Section VI): Once the above
factors are determined, the specific segmentation mechanism
can be designed. The segmentation algorithm can be divided
into four components: filtering and outlier rejection, feature
space transformation, segmentation mechanism, and identi-
fication mechanism; (5) Verification (Section VII): Different
validation schemes can serve to emphasize or obscure the
performance of a given algorithm, and must be selected
carefully.

This proposed framework supports a systematic way to
construct a segmentation algorithm by ensuring critical de-
tails, such as the segment definitions and data sources, are
determined early in the design process. The proposed frame-
work also facilitates algorithm comparison and verification.

III. SEGMENT DEFINITION

Segment definitions refer to how the segment boundaries
are characterized, to allow a human or algorithmic observer
to identify the segment boundaries from the measured data.
These definitions are often subjective, algorithm-dependent,
application-driven, and tend to fall into three categories:

Physical boundaries: For movement applications, the def-
inition of a segment typically refers to physical changes

that occur when the movement starts or ends. These nat-
ural physical boundaries can be defined by joint movement
direction changes [21], or contact changes such as at heel
strike [22] or during object pickup [23]. These domain
knowledge characteristics may be specific to a particular
movement (e.g., heel strike during gait) or may generalize to
multiple motions (e.g., joint movement direction changes).
Relying only on contact changes limits the segmentation
approach to movements that involve these types of physical
interactions. For joint direction changes, it can be unclear
which joint should be used, or how to segment if multiple
joints are changing directions. Segments defined using joint
angle direction changes can separate flexion and extension,
or include both in a single primitive (Figure 2).

Derived metrics boundaries: The segment can also be
defined by a change in a metric or derived signal. Seg-
ment boundaries can be signalled by changes in variance

Fig. 2. The location of the segment edge region (red) and the within-
primitive region (blue), based on the segment primitive definition used
(green), illustrated on a joint angle time series. This image shows two
alternate segment definitions: a segment definition with extension and
flexion combined (top), and a segment definition where extension and flexion
are considered separately (bottom).



[24], at metric thresholds [25], [26], or at hidden Markov
model (HMM) state transitions, as determined by the Viterbi
algorithm [27] (see Section VI-B.1 for details). Segments
can then be determined by either unsupervised [24], [25] or
supervised [27] algorithms. Unsupervised algorithms reduce
the need for manual data labelling, and can identify segments
similar to those denoted by domain experts [21], [28].
However, unsupervised segment identification may be less
suitable for rehabilitation applications, where the segments
of interest may be clinically defined and may not coincide
with the derived metric.

Template boundaries: Segments can be defined based on
a user-provided template. Template-based algorithms include
template matching [29], dynamic time warping (DTW) [30],
or classifiers [31], [32]. Defining the primitive by a template
allows for maximum flexibility, allowing the user to define
the template to suit requirements. This approach requires
preparation time to generate the templates and generally
requires more computationally intensive algorithms to handle
the segmentation process.

IV. DATA SOURCES

This section summarizes the main approaches for data
collection and discusses feature space dimensionality.

A. Data Collection

Common sensory systems for human motion analysis
utilize motion capture systems [33], [34], ambulatory sensors
such as inertial measurement units (IMUs) [35], [36], or
cameras [16], [37]. Other modalities such as electroen-
cephalography (EEG) [38], [39] or electromyogram (EMG)
have been used to study motion in kinesiology and biome-
chanics studies [40] but have only rarely been utilized for
segmentation purposes.

Motion capture: Motion capture systems are considered
the gold standard in biomechanics research; they rely on
infrared cameras to determine the absolute positions of
reflective markers placed on the body. These multi-camera
systems are accurate for collecting gross movement but can
suffer from marker swapping and marker occlusions [41],
[42]. They tend to be expensive, require large amounts of
space, and are time-consuming to set up, limiting their use
to the laboratory. Algorithms applied to motion capture data
appear in [25], [30], [43], [44], [45].

Cameras: Video and depth cameras have found widespread
usage due to their price and size. Pose detection [16] and
skeleton tracking algorithms [46] can be used to estimate
joint angle data. Similar to the motion capture system,
cameras require clear line-of-sight which limits applications
to environments where occlusions are not a concern. Algo-
rithms that rely on cameras include [47], [48], [49], [8].

Inertial measurement units: IMUs, consisting of
accelerometers, gyroscopes, and magnetometers, are
lightweight and inexpensive, and measure linear acceleration,
angular velocity and orientation, respectively. The measured
data can be used directly for segmentation, or converted
to joint angles via the Composite [50] or Kalman filter

[51], [52]. An IMU-based measurement system makes
minimal assumptions about the deployment environment
and does not require line-of-sight. However, IMUs suffer
from integrational drift, leading to accuracy issues over
time. Magnetometers are also ineffective indoors, where
metallic objects, such as steel framing in walls, interfere
with the sensors. Techniques that have been applied to raw
IMU data include [31], [53], [8], [54], while techniques
utilizing post-processed IMU data include [29], [32].

B. Manual Segment Data

Manually segmented data is required for training labels or
as ground truth for algorithm verification. Various techniques
have been employed to obtain ground truth, manual segment,
or labelled data.

Video playback: In this approach, the ground truth is
generated by having a human observer generate labels by
observing video playback of the recorded data. The video
can be collected simultaneously with data collection [44],
[25] or by playback via regeneration from measurement
data, such as animating motion capture markers [29]. An
analyst observing the video indicates when segments begin
and end, thus introducing subjectivity. Disadvantages of this
approach are inaccuracies in the segment points caused by
the expert’s reaction speed, limitations in the viewing angle
while displaying the movement, and effort.

Annotation: The manual segments can be generated by
reviewing the collected data as a time-series graph and an-
notating directly the regions that contain motions of interest
[53], [8]. It takes less time to generate the manual segments
than with video playback, but this approach relies on an
expert rater that can interpret the time-series data to extract
the motions of interest [55].

Proxy sensors: Ground truth can be generated by a
secondary data source. For example, gait cycles can be
segmented by locating the impact acceleration [22] or when
an accelerometer determines that the lower leg posture is
parallel to gravity [56].

Counting primitive occurrences: It is possible to only
identify the number of primitives that occur, either by
collecting this information during data collection, or by video
playback [54]. This is the fastest method to provide ground
truth but also provides no information about the temporal
segmentation accuracy of the algorithm.

C. Public Databases

Several movement databases exist for algorithm training
and verification. The use of public databases reduces the
effort needed for data collection and allows different algo-
rithms to be compared using the same data. The following
databases contain both temporal identification labels, and
movement data from multiple participants performing multi-
ple actions: (1) The Carnegie Mellon University (CMU) Mul-
timodal Activity Database [57] contains temporally synchro-
nized video, audio, motion capture and IMU data from 26
subjects cooking 5 different recipes in a kitchen. This dataset
consists of common activities of daily living (ADL), with



significant variations in how each primitive performed. How-
ever, the participants were heavily instrumented, which may
have impeded natural motion; (2) The Technische Universität
München (TUM) Kitchen Data Set [58] contains video and
motion capture data of 4 subjects performing kitchen tasks.
The TUM dataset aimed to provide data that contained less
intra-primitive variabilities than the CMU database [58]; (3)
The University of Tokyo Full-body Movement Data Set
[44] provides video and motion capture data of 1 subject
performing 49 different types of full body motions for a
total of 751 segments. This dataset provides well-defined
full-body movements, but only contains data from 1 subject;
and (4) the Yale Human Grasping Dataset [59] contains video
data of 4 subjects performing housekeeping and machining
tasks over 27 hours of hand movement tasks.

Other movement databases do not provide temporal seg-
mentation data: the University of California [60], [61], the
CMU Graphics Lab [62], the Hochschule der Medien [63],
and the Kungliga Tekniska Högskolan [64]. A review of
databases for computer vision can be found in [65].

V. APPLICATION SPECIFIC REQUIREMENTS

The algorithm requirements for the specific application,
such as template generalizability, scalability, and computa-
tional effort constraints, are considered in this section.

A. Generalizability

Generalizability refers to an algorithm’s ability perform
on data different from the training set. Two types of gener-
alizability can be considered: (1) subject variability, subdi-
vided into intra-1 and inter-subject variability2, and (2) inter-
primitive variability.

Subject variability: [27], [29] and [32] have examined
intra-subject and inter-subject variability. Stochastic tech-
niques, such as the HMM [29], model the variability between
exemplar motions inherently. Deterministic techniques, such
as the support vector machine (SVM) [32], can be con-
structed with the exemplar data from multiple participants to
improve generalizability. Aggregator techniques have been
used for activity recognitions applications [7], [67], which
can reduce the impact of overfitting from training data, but
have only seen limited success in segmentation applications
[32]. To date, few techniques successfully generalize between
subjects that have very different motion characteristics while
performing the same type of motion, such as training on
healthy subjects and segmenting on rehabilitation subjects.
This is a difficult task due to the differences between the
two populations [29].

Inter-primitive variability: Inter-primitive variability con-
siders when the training data are obtained from one set of
movement primitives, while the test-set consists of a second
set of unseen primitives. Algorithms built to segment based

1Data from the same participant but at different instances. Variability is
due to effects such as random muscle recruitment and fatigue [66].

2Data from a different set of participants not observed during training.
In addition to the intra-personal effects, variability is due to effects such as
stature and physiological differences [66].

on domain knowledge features, such as segments that are
defined via velocity characteristics [21], [22], or contact
condition changes [23], can be robust against inter-primitive
variability, as they define segment edge points share common
characteristics across all primitives of interest. To reduce the
reliance on domain expertise, learning approaches can be
utilized to determine these common characteristics [32].

B. Computational Effort and Causality

Another important consideration is whether the algorithm
is capable of running online. This will be influenced by the
computational complexity and runtime of the algorithm.

Runtime constraints come from two sources: (1) compu-
tational effort for online operation, or (2) the algorithm is
non-causal and requires the full observation sequence to be
available. The training component of many algorithms tends
to be computationally expensive, such as the Baum-Welch
algorithm for the HMM [68], [29], or the backpropagation
method for the artificial neural network (ANN) [69]. For
the observation component, DTW [48], [30] and the Viterbi
algorithm (see Section VI-B.1 for details) [27], [64], [70] are
two common techniques that require a large computational
effort. However, it is difficult to assess computational effort
accurately if it is not explicitly reported, since it is a factor
of algorithm design and implementation methodology.

Non-causal algorithms can only run offline as they require
the full observation sequence before algorithmic processing
can begin. Examples of non-causal algorithms applied to
motion segmentation include the Viterbi algorithm [27], [64],
[70], regression modelling techniques [53], or dimensionality
reduction tools [71], [72]. Although the Viterbi algorithm is
a non-causal technique, some applications run the algorithm
against shorter segments of the observation data instead of
requiring the full dataset, or run a truncated version [73],
[74], allowing the Viterbi algorithm to be operated online.

Considering computational effort and causality, segmenta-
tion algorithms can be separated into three broad categories:

Fully online approaches: Algorithms that fall into this cat-
egory may or may not consist of a training phase. If training
and template generation is required, it is computationally fast
enough to be performed online. The segmentation component
is also performed online.

Semi-online approaches: Algorithms that fall into this
category are trained offline, either because the training com-
putational effort is expensive, or full sequences of the training
data are required. Once trained, the segmentation algorithm
can be performed online.

Offline approaches: Algorithms that fall into this category
may or may not consist of a training phase. If training is
required, then the training is performed offline. Once trained,
the segmentation is also performed offline, due to computa-
tional runtime requirements, or causality requirements.

A related concern to computational effort is scalability. For
many algorithms, the computation time does not scale well
with increasing feature set dimensionality or the number of
templates in the motion library. Data streams used for full-
body human modelling can consist of 20-30 DOFs [75]. Al-
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gorithms that iterate or rely on dynamic programming, such
as HMM or ANN, can become computationally intractable
when the feature space is too large, or if there are too many
motion types.

VI. ALGORITHMS

The method for performing the segmentation can be
designed after the various constraints in the previous sec-
tions have been considered. This section examines different
components of the segmentation algorithm, such as any pre-
processing or feature space transformations, as well as key
algorithm design criteria, such as windowing and algorithm
supervision (Figure 3, Table I). The subsequent sections
also review the various segmentation algorithms, separating
online, semi-online, and offline approaches.

A. Pre-processing

1) Filtering and Outlier Rejection: Pre-processing of the
data is often required to remove additive sensor noise from
the raw data, due to varying sensor characteristics and limi-
tations in the digitization process [40]. A common procedure
is to pre-process the observation data with a properly tuned
low-pass [49], [64], [29], [8], [67], or median [64], [67] filter
to remove high-frequency noise. High-pass [67] filters have
also been employed to reduce drift impact. Low-pass filters
with a cutoff frequency (fc) of 0.1-4.0 Hz [67], [54], [29],
[22] have been applied to IMU and joint angle data. Fast
moving signals may require low-pass filters up to the 4th

order and a fc of 6.0 Hz to sufficiently remove noise [40].
For high-pass filters, filters with a fc of 0.1 Hz have also
been applied to accelerometer data [67]. Normalization of
the data [82], [49] may also be necessary.

2) Feature Space: The feature space to be used by the
segmentation algorithm is dependent on the type of data
available from the data collection phase. The measurement
data can be processed to extract proxy features or statistics,
or projected into some latent space, to allow for easier
processing when compared to the original observation space.

Different feature space manipulation techniques have been
used for these purposes, but generally fall into four cat-
egories: (1) no transformation, (2) transformation without
dimensionality reduction, (3) transformation with dimension-
ality reduction, and (4) kernel methods. These methods can

be characterized by the resultant DOFs versus the complexity
of the mapping algorithm (Figure 4).

No transformation: The segmentation is performed di-
rectly on the input space. Techniques that use this approach
typically rely on data directly from sensors, such as ac-
celerometer signals [54]. This technique requires no pre-
processing but can suffer from scaling issues, as it is difficult
to perform segmentation on high dimensional data due to
high computational cost and the existence of correlated and
uninformative dimensions.

Transformation without dimensionality reduction: A trans-
formation of the original features is used as the new repre-
sentative feature space. The representation retains approx-
imately the same dimensionality as the original feature
space. Common techniques include differentiation [21], or
the calculation of joint angle data from motion capture [44]
and IMUs [52]. Statistical and spectral features, such as
mean, or entropy, can be extracted from the data.

Transformation with dimensionality reduction: The obser-
vation data are mapped to a lower dimensional space where
segmentation may be easier to perform. This can be achieved
using dimensionality reduction tools like principal compo-
nent analysis (PCA) [49], feature selection [29], coefficients
of frequency transforms [83], [54], or distance metrics [39].

Transformation with dimensionality increase: Kernel
methods map data to an implicit higher-dimensional feature
space [73], [74], [84] via the kernel trick, where the higher
dimension is obtained by taking the inner product between
all pairs of data in the feature space. This is computationally
cheaper than explicitly determining the higher dimensional
coordinate space. This is common in algorithms that employ
SVM [85], to generate a higher dimensional space where
the data are better separable. Higher-dimensional embedding
[86], [44] is also a way to increase the dimensionality.

3) Windowing: Rather than considering raw measured
data, some algorithms instead use summary statistics com-
puted over windows of measured data. The two main
variables for windowing are the size of window, and the
amount of overlap between adjacent windows. Fixed window
algorithms use a sliding fixed-length window, while variable
length window algorithms employ windows that change their
length dynamically to fit the incoming data. Fixed window

Computational

Complexity

DOF

Fig. 4. Feature space mapping can be conceptualized as a two dimensional
space of dimensionality and computational complexity. The origin denotes
the original number of DOFs with no transformation (green, ∅). Transforma-
tion methods without dimensionality reduction (blue, δq/δt), methods with
dimensionality reduction (purple, UΣWT ), and kernel methods (yellow,
〈ϕ(x), ϕ(x′)〉) require increasing computational complexity.
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algorithm performance tends to be sensitive to window length
and the amount of overlap between subsequent windows
[24], [86]. Overlap between the current window and the
subsequent window ranges from 0-50% [77], [29], [67],
[32]. A special case of the fixed window approach is a
window with the length of one data point [87], [21]. Variable
length window algorithms tend to be more computationally
expensive as additional computation is required to determine
window size. However, the window size is more targeted
to the underlying movement which potentially improves the
segmentation quality. Typically, variable length windows do
not overlap with each other [29], [31].

4) A Priori Knowledge Requirements: The need for la-
belled data, and the amount of effort required to generate
such labels, separates segmentation algorithms into three
distinct groupings:

Unsupervised: No labelled data are provided to the algo-
rithm and no pre-trained models are generated a priori [44],
[8]. Unsupervised approaches tend to identify the segment
edge points directly by relying on domain knowledge [21]
or changes in features [24]. They tend to be computationally
faster than supervised algorithms.

Supervised: Labelled data are provided a priori to the al-
gorithm, leading to supervised model training [29], [53]. The
key characteristics that describe a segment are determined
automatically by the algorithm based on the training data.

Adaptive: Adaptive solutions update the model online as
new data are observed, which allows existing models to
be contextualized to the observation data, and potentially
increasing segmentation accuracy. Two possible methods to
achieve adaptive modelling are: (1) template modification,
where an existing primitive model is modified by new
observation data [44], and (2) template insertion, where new
templates are created from the observations and added to the
primitive library [44].

B. Online Segmentation Approaches

Online algorithms refer to methods that train and segment
in an online fashion. These approaches tend to be com-
putationally light, and do not require the full observation
sequence to be available before performing segmentation.

1) Segment Point Modelling: Algorithms are designed
to identify segment points, as opposed to recognizing the
motion being performed. They tend to be simple, but some
prior knowledge of the nature of the motion is required.
These algorithms do not require template training, and thus
are considered unsupervised.

Thresholding on Feature Vectors: Many algorithms declare
a segment point when observed features cross a threshold.
This method of segment point declaration is simple when
only small feature sets are examined. It becomes more
difficult with larger feature sets as it becomes more difficult
to determine which feature set to threshold on. A common
method of segmentation by thresholding is segmentation by
zero crossings [87], [21], [88]. Local maxima and minima
can also be thought of as an instance of zero-crossings, since

local maxima in one dimension are crossings in the derivative
of that dimension.

Many motion-based segmentation algorithms rely on
velocity-based features. These methods assume that a change
in body link direction denotes a natural segment point. These
direction changes are accompanied by local turning points
in the joint angle space, resulting in zero-velocity crossings
(ZVC). Pomplun and Matarić [87] apply the ZVC concept
to motion segmentation to study the effects of rehearsal in
motion imitation in humans. The algorithm assumes that
motions have clear velocity-crossings to denote the start/end
points. To reduce over-segmentation, minimum segment time
lengths are enforced. Fod et al. [21] segment when the sum
of all velocities is lower than some threshold. Lieberman and
Breazeal [88] replace the static threshold for ZVCs with a
dynamic one, which allows the algorithm to adjust to mean
velocity changes and to movements that do not cross zero in
joint space.

The velocity crossings concept has been applied in other
motion-based applications [28], [89]. Other feature crossings
examined are joint acceleration [89], [90], linear acceleration
[54], and angular jerk [91]. For movement data, these cross-
ings represent a pause in the movement, and thus serve as a
logical segment point.

Despite their popularity, thresholds and zero-crossing ap-
proaches suffer from various shortfalls. They have a tendency
to over-segment, particularly with noisy data or with an
increasing number of DOFs [21]. It is difficult to determine
which crossing points are actual segment points, or spuri-
ous crossings. The threshold value requires tuning, which
becomes more difficult as the number of DOFs increases.
Additional algorithms such as HMMs [28], [49] or stochastic
context-free grammar (SCFG) [91], [89] must be used to
provide movement labels following segmentation. Lastly,
using thresholds assumes that primitives have well-defined
thresholds and crossings in the input space. This is not true
in all cases. For example, a circle being traced repeatedly
would not exhibit crossings [21].

Thresholding on Distance Metrics: Derived metrics can be
used to denote the degree of separation or difference between
two sets of data. When the derived metric reports a value
above some threshold between two sequential windows of
data, or between a window of data and standard templates,
a segment is declared. Common metrics are the Euclidean
distance [39], [92], Mahalanobis distance [25], calculated by
normalizing the Euclidean distance by the signal variance,
and the Kullback-Leibler (KL) divergence [86], [44], a
measure of the difference between two probability distribu-
tions. Other distance metrics can be employed, including the
generalized likelihood ratio (GLR) [49], and signal variance
[24], [86].

Vögele et al. [78] segment by creating a self-similarity
matrix, where the distance between the current frame and all
future frames is calculated. The main diagonal of this matrix
is removed, since a given frame will always be the most
similar to itself. Segments are declared by finding isolated
regions, suggesting that the movement in one region is very



different from the next. Similar activities can be clustered
for identification.

Bashir et al. [49] apply the GLR [93] as a distance metric
for curvature data segmentation. The GLR is a statistical test
used for hypothesis testing. The null hypothesis is that two
different segments were generated from the same model. If
the ratio is above some threshold, then the null hypothesis is
rejected, and thus a segment should be declared. This method
has been applied to ADL accelerometer data [83].

Using signal variance as a distance metric is also a
common technique. When a feature set suddenly exhibits a
large change and the variance becomes very high, it indicates
that the underlying motion may have changed to another
motion; thus a segment point should be declared. Using
variance for movement data segmentation was first proposed
by Koenig and Matarić [24].

Instead of calculating the variance directly, different rep-
resentations of the signal variance can be used. Barbič et al.
[25] apply PCA to a window of the observation data and
retain the top r PCs. They apply this truncated PCA trans-
formation matrix to the subsequent frames of the observation
data. The reconstruction error between the pre-transformed
data and the post-transformed data is calculated. If the
underlying motion changed at time t, the PCA-projected data
will differ from the pre-transformed data, causing a spike in
the reconstruction error at time t when compared to the error
at previous timesteps, and a segment is declared. However,
this method is sensitive to the r and error threshold used.

Another alternative to calculating the variance directly is to
segment based on changes exhibited by a signal’s probability
density function (PDF), typically via the HMM and the
Viterbi algorithm. The HMM [94] is a modelling technique
where the movement data is represented by a stochastic
dynamic model. The motion is represented by an evolving
unobservable state that obeys the Markov property. Given an
HMM, the Viterbi algorithm finds the best state sequence
for a given observation sequence. It does so by iteratively
calculating the highest probability δt+1(j) at time t, which
accounts for the first t observations, ending in the jth state.

Kohlmorgen and Lemm [86] use the HMM and an online
version of the Viterbi algorithm [94] to perform segmenta-
tion. A sliding window is used to calculate the PDF of the
windowed data. The PDFs are used to train a HMM. The
online Viterbi algorithm is applied to determine the state
transitions of the HMM, thus producing segment bounds for
a given observation set. This algorithm has been applied
to human joint angle data [95]. Kulić et al. [44] extended
Kohlmorgen and Lemm’s algorithm [86] by clustering previ-
ously segmented sequences to generate new templates in real-
time. Once a new primitive has been identified, the primitive
is modelled as a HMM. The novelty of the primitive is
determined by its KL distance from existing HMMs. Novel
primitives are added into the movement library, whereas
non-novel observations are clustered into existing HMMs.
A hierarchical HMM can also be employed, where a higher-
level HMM contains each primitive as a state to determine
the transition between primitive types [45]. This method has

also been applied to IMU data [96].
Distance metrics allow segmentation to be performed on

a wider range of feature vectors and do not require a priori
knowledge. Using variance as a distance metric allows these
particular algorithms to scale to higher DOFs. Distance-
based segmentation shares many of the same weaknesses
as the direct feature thresholding approaches. They do not
have mechanisms to reject false segments and do not provide
segment labels. Tuning is required to determine threshold
values [97], [98], [99], [25], [24], [100], [8], or the algorithm
is sensitive to the width of the sliding window, or cost
function.

2) Regression: The algorithms examined in Section VI-
B.1 model the segment point explicitly. Online regression
approaches consider a different conceptual model by mod-
elling the primitive itself.

Keogh et al. [26] assume that the observation data can
be described by piecewise linear fitting. A large sliding
window, sufficient to fit 5-6 segments, is used to window
the observation data. This sliding window is divided into
small sub-windows and separate linear regression models are
calculated from the start of the sliding window to the end
of each of the sub-windows. The error for each sub-window
is defined as the error between the regression line and the
underlying data with a cost function that penalizes long sub-
windows, to keep each segment small. The window edge
that results in a model with the smallest error that exceeds a
defined error threshold is declared a segment. The sliding
window is advanced to the end of this segment and this
process is repeated. Keogh’s algorithm [26] has been applied
to segment for gesture recognition, with an HMM for motion
identification [77].

Lu and Ferrier [82] use an auto-regressive (AR) model to
represent the data over a two-timestep sliding window. When
the model from the previous window to the current one is
sufficiently different, which is determined by the Frobenius
norm, a segment is declared. To reduce over-segmentation,
segment points that are close together are removed.

The regression algorithms described above are suitable for
segmenting both repetitions of the same primitive, as well as
separating different motion primitives. However, these algo-
rithms are very sensitive to parameter tuning, such as the cost
function or window size [26]. The resultant regression func-
tions can overfit and do not generate high quality segments.
Similar to variance-based approaches, these algorithms do
not include methods to reject trivial motions such as tremors
and other noise.

C. Semi-online Segmentation Approaches

Semi-online approaches encompass methods that require
an offline training component but can segment online fol-
lowing the training phase.

1) Template Matching: Performing segmentation on a
single feature’s zero-crossings or threshold levels as proposed
in Fod et al. [21] is often too simplistic and leads to over-
segmentation. A sequence of such features can be used as
patterns to identify in the observation data. Requiring a



sequence of feature thresholds to be matched in a specific
pattern reduces over-segmentation in comparison to single
threshold approaches.

Kang and Ikeuchi [101] use curve fitting to the volume
swept out by a polygon formed by fingertip Cartesian co-
ordinates and hand velocity thresholds to segment grasping
tasks. Lin and Kulić [29] propose using sequences of velocity
and acceleration crossing points to coarsely locate segment
points. HMMs are employed in a fine-tuning step to further
reduce over-segmentation. Feature sequence templates and
the HMM templates are trained a priori from labelled data.
Zhang et al. [22] use sequences of velocity features to denote
heel strikes during gait.

Ormoneit et al. [102] examine the signal-to-noise (SNR)
ratio of the observation data where the signal is denoted as
data amplitude and the noise is the variance. The SNR is used
to determine the optimal window for segment searching, and
this window length is used to perform curve fitting to pre-
made templates.

Feature matching may be robust to small movement vari-
ability but may not generalize sufficiently to large inter-
personal variability. For example, when healthy templates
are used to segment patient templates, the performance is
noticeably worse, suggesting generalizability issues [29].

2) Segmentation by Classification: In many of the al-
gorithms examined so far, a segment bound is declared
when the signal passes a threshold, either considering the
signal directly, or some distance metric computed from the
signal. A separate labelling algorithm is required to classify
the motion segments found between each pair of identified
segment points. An alternative approach is to label the obser-
vation data based on the patterns in the observation vectors,
thus transforming the time-series segmentation problem to
a multi-class classification problem. This method can be
performed by employing sliding windows and pre-trained
classifiers [103] and is commonly used in activity recognition
contexts [67], [7], [104], [105], [106] where each data point
is labelled as a primitive type by the classifier. It has also
been applied for primitive segmentation [32], [31], [79].

Instead of assigning each data point a primitive label, Lin
and Kulić [32] use classifiers to label each data point as
either a segment point or a non-segment point, in order
to automatically learn segment point features of multiple
primitives without explicit domain knowledge. Joint angle
and velocity data are used in order to incorporate temporal
information into the classifiers.

Berlin and van Laerhoven [31] monitor psychiatric patients
using accelerometers on a wrist watch and apply piecewise
linear approximation [26]. The slope of the linear segments is
converted to angles and binned. The degree of discretization
was determined a priori, via tuning. Symbols are assigned
to sequential pairs of bins, creating motifs. The motifs are
generated by inserting training data into a suffix tree, and
common chains are used as the motif templates. Segmenta-
tion and identification are performed simultaneously by using
a bag-of-words classifier.

Zhao et al. [79] cluster n-DOF manually segmented data

together to create a template dictionary. Each dictionary
entry only contains one DOF from the data, resulting in
n times more models but less overall computational cost.
A time-warping distance feature set is calculated between
the training data and each entry in the template dictionary
that corresponds to the correct DOF. This feature set is used
to train a linear classifier. Observed data are segmented by
determining the optimal window via DTW, converted into
the distance features, and labelled via the linear classifier.

Classifier approaches reduce the need for domain expertise
but are poor at handling temporal variability. Velocity infor-
mation [32] can be incorporated to account for this issue.

3) Online Supervised Viterbi: The algorithms described
here modify the traditional offline Viterbi algorithm so that
it can be operated online, assuming that the model has been
trained a priori. This approach has been applied to segment
human joint angle data as the human guides a robotic arm
through a pre-determined trajectory [68], [107].

Castellani et al. [73] use pre-trained SVMs to classify
sub-tasks during robotic tele-operation tasks. A one-vs-all
SVM is used to classify each subtask, which form the HMM
states. The SVM hyperplane is translated into a sigmoid
function and used as the HMM state emission probability. An
online Viterbi algorithm is used to segment the whole data
sequence. A ‘peg in hole’ telerobotic task was used to verify
the segmentation accuracy, which consists of several smaller
sub-tasks. The state transitions, denoting the change from
one sub-task to another, are defined as the segment points.
Ekvall et al. [74] apply this method to other telerobotic tasks.

Hong et al. [47] use the finite state machine (FSM), a
deterministic version of the HMM, for video data segmenta-
tion. The training data are represented by spatial Gaussians.
The number of Gaussians is calculated by dynamic k-means
without the temporal data and is done offline. Once the
spatial information is segmented, the temporal data are
included in the training of the FSM. One FSM is trained
for each gesture. When a new observation vector arrives,
each FSM decides if the state should be advanced, based
on spatial and temporal distances between the observation
and the FSM state model. When an FSM reaches the final
state, a segment is declared. The approach is verified using
a ‘Simon Says’ system, where the program requests the user
to perform a given a task, and the program verifies that the
task is performed correctly.

The online Viterbi approach enables online application,
but can provide different results than the standard Viterbi
algorithm. Ignoring the back propagation component means
that the online Viterbi algorithm does not have the full data
set to calculate its likelihood values, only the data up to the
current time step, and can result in the algorithm suggesting
an incorrect segment, when the standard Viterbi performs
optimally, as demonstrated in [73].

4) Other Stochastic Methods: The Kalman filter has
been applied for segmentation purposes. Meier et al. [11]
constructed multiple dynamical movement primitive (DMP)
templates for segmentation. The algorithm assumes that the
start of the observation is the start of the first segment, so



the segmentation task is to find the end of the movement
primitive. It does so using the pre-trained DMPs and uses the
Kalman filter to estimate the segment length (τi) and posture
of the observed segment. The observed segment is identified
by an expectation-maximization (EM) procedure that is used
in the Kalman filter. Once the elapsed time (tcurr) exceeds τi,
the end of the segment is assumed to be found. The segment
is declared, and the algorithm restarts again at t = tcurr.

D. Offline Supervised Segmentation Approaches

Offline methods refer to techniques that perform both
training and testing offline. These algorithms, such as the
Viterbi algorithm, require the full observation sequence to
be available before segmentation. Other algorithms, such as
boosted HMMs [43], are too computationally expensive to
run online.

1) Dynamic Time Warping: A major challenge of seg-
mentation is the temporal and spatial variations between the
template and the observation. DTW [108] overcomes the
temporal variations between motion data sequences by selec-
tively warping the time vector to minimize the spatial error
between the observation data and the movement template.
DTW has been applied to segment Cartesian gesture data
[48], full-body exercise data [109], as well as EEG data [38].

Ilg et al. [30] employ DTW in a multi-tier fashion. The
observation signal is downsampled by removing all data
points that are not at a ZVC. The downsampled points are
used to warp to downsampled versions of templates. The sum
of spatial error is minimized between the observation and the
template to ensure alignment, allowing for segmentation and
identification to be performed simultaneously.

DTW-based algorithms are computationally expensive at
higher dimensionality, preventing them from being utilized
online. Poor warping can also lead to singularity issues,
where large portions of the motion are warped to small
portions of the template. The severity of the singularity issue
can be mitigated by constraining the warping path [108],
or using the derivative of the data instead of the Euclidean
distance [38].

2) Viterbi Algorithm: The Viterbi algorithm overcomes
temporal and spatial variations by using an HMM to model
each motion template, thus explicitly modelling these vari-
ances by the HMM observation variances, and the state
transition matrix. The Viterbi algorithm has been used to
segment movement data in different applications, such as
joint angle data for tele-operative surgeries [27], hand gesture
Cartesian data [110], and joint angle and tactile data for hand
grips [111].

Ganapathiraju et al. [112] and Vicente et al. [64] both use
SVM and HMM hybrids in a similar fashion. The training
data are used to train SVMs, and the SVM is used to label
windows of data. The SVM label sequences are used as the
feature vectors for the HMM, and the primitive sequences
are represented by the HMM state evolution. The Viterbi
algorithm is then employed to determine the segment points.

In computational linguistics, a commonly used technique
is the n-gram model, a n-1 ordered Markov model [113].

Ivanov and Bobick [114] combine the n-gram model with the
stochastic context free grammar (SCFG), starting from the
current position of the observation data and hypothesizing the
possible continuations of the input by tracing down branches
on the SCFG tree. The observation input is then compared
against expected states and a likelihood of state advancement
is generated. When a grammar branch is exhausted, a prim-
itive may have been completed, and the Viterbi algorithm
denotes the state path taken and thus the segmentation result.

Baby and Krüger [70] apply HMM merging to improve
Viterbi performance. Given an existing HMM template λM ,
new observation data are formulated into a new HMM λc,
and merged into λM by merging similar states between
λc and λM. If there are states in λc that do not have a
corresponding state in λM, these states are inserted as new
states into λM. Once all the observation data are merged into
the λM, the Viterbi algorithm is used to trace through the
motions, and common paths are removed from the Viterbi
paths via the longest common substrings method until no
common paths exist between any components. Each of these
components becomes a primitive; segments are detected on
switches between components. This approach was applied
to human interactions with objects from the object’s point of
view [115].

Chamroukhi et al. [53] segment movement data employing
multiple regression models and segmenting on model switch.
The observation data are represented by a regression model,
yi = βziti+εi, where the regression coefficient βzi is a func-
tion of the logistic hidden state zi. zi controls the switching
from one activity to another, for k different activities. That is,
the regression model describes a different motion according
to the state of zi, while the logistic model captures the higher
level stochastic dynamics of the transitions between motions.
When the state of zi changes, a segment point is declared.
The parameters of the regression models and z are trained by
the EM algorithm. The segments are produced by estimating
zi at each yi in a similar fashion to the Viterbi algorithm.

Although the usage of the Viterbi algorithm is widespread,
it suffers from several key issues. It is expensive to use,
and requires the full observation sequence to be available.
The Baum-Welch and the Viterbi algorithm are also local
optimizations, so the solutions provided may not be globally
optimal. For the HMM, the modelled data are assumed to
be Gaussian, which does not hold for human movement in
general [9]. Tuning is required to find the suitable number
of states to represent the model and to prevent overfitting.

3) Gaussian Mixture Models: Gaussian mixture models
(GMMs) are parametric PDFs represented as the weighted
sum of Gaussians. For segmentation, the boundaries between
each Gaussian are used to denote the segments. The number
of Gaussians needed for the GMM is typically determined a
priori [25]. GMMs have been used to segment exercise data
[25], and for imitation learning [116].

Like the HMM, GMM modelling assumes that the mod-
elled data are Gaussian, or near Gaussian in nature. The
number of Gaussians needed to model the data requires some
degree of tuning; the Bayesian Information Criterion (BIC)



can be used to assist the tuning effort [116].
4) Forward/Backward Algorithm: This algorithm is a

technique for determining the likelihood that a given se-
quence of observation data is generated from a given HMM
[94] and is typically used for primitive identification. How-
ever, it has also been applied to primitive segmentation.

Wilson and Bobick [117] utilize pre-trained parametric
HMMs (PHMMs) of hand pointing gestures. A fixed-length
sliding window is used on the observation data, and the EM
algorithm is used to estimate the parameters of the PHMM
over the windowed data. The corresponding likelihood value
is determined by the forward/backward algorithm. Windows
that result in a high likelihood are declared segments.

Lv and Nevatia [43] use HMM templates as classifiers
in an AdaBoost algorithm. The observation data are split
into two windows, with the first window starting at some
minimum length lmin, and increasing at each iteration. The
two windows are run through the AdaBoost classifiers, and
the window length that results in the highest likelihood is
selected, forming a segment at lmaxLL. The algorithm is run
multiple times, with the starting point of the first window
advancing to the end of the previous segment at each run.

Both of these methods incur a large computational cost
for both training and segmenting and cannot be used online.

E. Offline Unsupervised Segmentation Approaches

Another approach is to assume that the observed data
evolves according to an underlying deterministic model
that has been contaminated with time warping and additive
noise. Probabilistic methods can be used to approximate
both the parameters of the underlying model and find the
segmentation locations. Chiappa and Peters [118] estimate
the underlying model, warping terms and noise model via
EM. This approach requires the full sequence for action
fitting, making it unsuitable for online applications.

Zhou et al. [81] use an extension of DTW to produce
similarity measures between two temporally aligned seg-
ments. Given an initial set of segments, this measure is
used in a kernel k-means framework to determine segment
cluster centres and to assign each segment to a cluster. For
each segment, a search is used to determine the segment
boundaries that would result in minimal distance between the
segment and its cluster centre. These two steps are repeated
to iteratively converge to a solution.

Lan and Sun [76] model motion data as a written doc-
ument with unknown topics (the motion), composed from
a vocabulary of words (key poses). Hierarchical clustering
is used to extract key poses, then all data frames are
discretized to these key poses. Latent Dirichlet allocation,
a topic discovery generative modelling technique, is used to
group the key poses into motion primitives. A sliding window
is used to calculate between-window topical similarity, and
a segment is declared using a threshold. Newly observed
key poses and primitives can be incorporated to update the
model.

Fox et al. [119] examine multiple sets of time series data
simultaneously to extract global movement characteristics

over all movements. Individual time series are assumed to
exhibit only a subset of these characteristics, over certain
lengths of time. These characteristics and behaviours are
modelled as autoregressive HMMs (AR-HMMs), trained by
a Markov Chain Monte Carlo process, and can be thought
of as features of the movement. Features that describe a
given time-series data are selected via a beta process model.
Segments are declared when the time series shift from one
AR-HMM to another, signifying a shift in the underlying
movement.

Although most distance and threshold-based algorithms
are computationally light enough to be computed online,
some approaches employing computationally expensive de-
rived features can require offline implementation. Isomap, a
dimensionality reduction technique, has been combined with
thresholding on Cartesian maxima [71], [120] and joint angle
crossing points [72] to segment.

VII. VERIFICATION

Verification techniques are used to determine how well an
algorithm performs on a given dataset compared to ground
truth. The selection of the verification technique can highlight
or obscure the strengths and weaknesses of an algorithm. In
the following, it is assumed that ground truth data consists
of manual segment edge points provided by the expert
rater (Section IV-B), while the algorithm being evaluated
generates algorithmic segment edge points.

An algorithmic segment edge point is labelled as a true
positive (TP) if it corresponds to a manual segment edge
point or false positive (FP) otherwise, whereas the absence
of an algorithmic segment edge point can be labelled as
a true negative (TN) or false negative (FN), if a manual
segment edge point is present or absent, respectively, at
the corresponding algorithmic segment edge point. This
general scheme conforms to common statistical measures of
performance, but in some of the assessment schemes, for
example, when comparing point pairs, the TN set would
result in an empty set. Alternative assessment metrics, such
as ones based on shape similarity between templates and
observations, may exist, but have not been used for segmen-
tation. In the following, Acc is used to denote the different
scores used to represent accuracy. V er is used to denote the
verification methods used to calculate the algorithm accuracy.

Two common accuracy metrics, precision (Accprecision)
and recall (Accrecall) can be computed from the compari-
son of the algorithmic and manual segmentation labels. Of
the labels declared by the algorithm, precision reports the
percentage of points that received the correct label. Recall
computes the ratio of correct labels to the total number of
labels. These two scores can be aggregated together into the
F1 (AccF1

) score. These metrics are formulated as follows:

Accprecision =
TP

TP + FP
(1)

Accrecall =
TP

TP + FN
(2)

AccF1
=

2 · TP
2 · TP + FN + FP

(3)
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Fig. 5. An example of the temporal tolerance approach, where the dotted
line denotes a manual segment edge point and the yellow region is error
tolerance (±terr). The green (X) algorithmic segment edge points are
declared correct and the red (O) is declared incorrect. This algorithm is
declared to have an Accprecision of 50%.

In addition to these metrics, the allocation of data between
training and testing is important. The process of training
on one set of data and testing on another set of data is
called k-fold cross-validation, where the dataset is divided
into k folds, and one fold is used to validate, while k-1
folds are used to train. In cases where the dataset cannot
be easily divided, or there are insufficient samples, leave-
one-out cross-validation (LOOCV) is employed, where only
one sample is used for validation, and the rest are used
for training. This technique can be applied to validate the
inter-subject variability and the inter-primitive variability by
placing all of the test subject’s data, or all of the test motion
data into the testing fold.

The accuracy of an algorithm can be measured by temporal
tolerance or by classification by data point labels.

A. Temporal Tolerance

One approach to assess algorithmic segment edge points
is to declare TPs when they are close to existing manual
segments. An algorithmic segmentation point is declared
correct if it falls within ±terr of a manual segment edge
point. A FP error is declared if an algorithmic segment
edge point was identified when there is not a corresponding
manual segmentation point within the ±terr region. A FN
error is declared if a segment edge point was not found
algorithmically for a manually identified segment edge point
within the ±terr region. Alternatively, a distance-based met-
ric can be utilized, where a score of 1 is assigned if a manual
segment coincides perfectly with an algorithmic segment and
decreases towards 0 as the algorithmic segment approaches
±terr [76]. An inverted version can also be defined where
the algorithmic segment edge point is deemed correct if a
manual segment edge point falls within ±terr of it [25].

This verification method is typically used by segmentation
algorithms that search for the entire primitive at once or
otherwise determine the segment boundaries in a direct
fashion and want to assess the accuracy of the segment
boundaries [44], [29]. See Figure 5 for an illustration.

This method is sensitive to the selection of terr. terr
ranges widely and should be considered in relation to the
length of expected primitives. Authors have used terr from
0.2-1.0 s [44], [29], [98]. This method will be denoted as
V ertemporal.
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Fig. 6. An example of the classification by data point labels approach,
where the dotted line denotes a manual segment edge point and the yellow
region is the correct region for the primitive under examination. Of the 43
labels, 40 are declared correct (green X) and 3 are declared incorrect (red
O). This algorithm is declared to have an Accprecision of 93%.

B. Classification by Data Point Labels

Instead of only declaring algorithmic segment edge points
when they occur, all data points can be assigned a label and
compared against ground truth.

This method is less stringent than the temporal tolerance
approach. Incorrect segment edge points do not heavily
influence the results since there are many more within-
segment data points available to smooth out poor segment
boundaries. See Figure 6 for illustration. Note that, even
though this result looks similar to Figure 5 in that the
resultant segment bounds are in the same place, the accuracy
is higher using this verification method, because of how
the accuracy is being reported. Although FPs are penalized
more lightly, FNs are penalized more heavily. If a segment is
completely missed, 3 FNs would be counted in this example,
as compared to only 1 FN for the temporal tolerance scheme.

This verification method has been used by segmentation
algorithms that label each time step as a given label and
segment when the label changes from one primitive to an-
other [121]. Usually, this is done by assessing windowed data
rather than individual points. This method treats time-series
segmentation as a classification problem as each data window
is assigned a label. AccClass is defined as the number of data
windows with the correct label when compared to the ground
truth. In these cases, segmentation and label accuracy are the
same. This method will be denoted as V erlabels.

C. Validated Algorithms

A majority of the algorithms examined do not perform any
form of verification, or they do not report their verification
methods or scores, or report only the identification accuracy
instead of the segmentation accuracy, making it difficult to
compare between methods. Methods that reported some form
of validation results are summarized in Table I.

For online approaches, the highest temporal accuracy was
reported by Barbič et al. [25], with an AccF1

of 93%.
This paper segments by calculating the Mahalanobis distance
between a window of data against subsequent windows, and
thresholds on distance peaks. The distance metrics scale well
to higher dimensions as the segmentation focuses on a single
feature and is lightweight to use. This method successfully
separated action sequences consisting of 7 different primi-
tives, but is sensitive to the tuning parameters, such as the
window length and the threshold. The primitives examined
consist of highly different full-body movements, such as



jumping, walking, kicking, or punching, which proved to
be dissimilar enough for the distance metric, but may be
difficult to generalize to primitives that are very similar to
each other, or primitives that are not very correlated [25].

For semi-online approaches, the highest temporal accuracy
was reported by Lin and Kulić [29], with an AccF1 of
85%. They applied a two-tier algorithm where pre-trained
velocity peak and crossing templates provide a set of segment
candidates from the observation data. The candidates are
passed into HMMs where the forward algorithm is used to
verify the segments. They tested with both individualized
velocity/HMM templates, as well as generalized templates.
HMM-based methods scale well to higher dimensions but
require long training times, which need to be completed a
priori. However, velocity features rely on relatively simple
primitive types, and may not scale well to complex or
unsteady movements [29].

For offline approaches, none of the examined algorithms
reported temporal segment accuracy. The highest reported
label identification accuracy was reported by Chamroukhi
et al. [53], with an Accclass of 90%. They modelled the
observation data as a set of regression models and switched
between the models via a Viterbi-like algorithm. This method
was applied to various postures and ADL. The Viterbi algo-
rithm shows high accuracy, scales well to higher dimensions,
but requires both training and testing to be carried out offline,
which needs to be completed a priori.

VIII. OUTLOOK

A. Outstanding Problems

While many approaches have been proposed for motion
primitive segmentation, active areas of research remain.

1) Inter-subject Generalizability: Inter-subject generaliz-
ability remains an outstanding problem. Although techniques
such as HMM can be applied to generate multiple-subject
templates and account for spatial and temporal variabilities,
only a few algorithms generate such templates and test
against multiple subjects [29], [27]. Multiple-subject tem-
plates often lead to a drop in segmentation accuracy [32].
Applications such as physical rehabilitation often do not have
access to patient movement data a priori, and thus must rely
on template generalization.

If the segmentation algorithm is to be applied to subjects
of different demographics or capabilities, large variations can
be expected, and pose a significant challenge for algorithm
generalizability. This problem is especially significant in
cases where few training samples are available.

2) Inter-primitive Generalizability: Inter-primitive gen-
eralizability also remains an outstanding problem. A few
algorithms, such as those reliant on domain-knowledge [21],
classifiers [32], or parametrized models [117] provide poten-
tial solutions, but do not tend to explicitly explore or report
inter-primitive generalizability.

Generalizability is an important issue in rehabilitation
since the exercises are typically modified slightly in order
to suit the patient’s capabilities, and an algorithm that can
provide some degree of generalizability would increase the

utility of any given template. In exercise applications, move-
ments that vary in only direction should be considered the
same movement, but may pose a challenge for the algorithm
[117], and thus require techniques that are robust to these
types of variability.

Generalizability is also an important concern for appli-
cations where the motions to be performed are not known
a priori, such as in online human machine interaction.
The existing segmentation work can be divided into tech-
niques that model the primitive explicitly, or techniques that
model the segment point directly. Techniques that model
the segment point directly using domain-knowledge [21] or
learned automatically via classifiers [32] provide the means
to segment based on common characteristics over all the
primitives of interest, and warrant further investigation.

3) Adaptive Techniques: Some of the generalizability
issues above may be alleviated with adaptive techniques,
where existing models are retargetted or augmented with new
observations. Adaptive techniques are useful in situations
where the primitive of interest can vary widely or training
from scratch is computationally prohibitive. Segmentation
techniques that examine model modification tend to be
computationally expensive [70], but online algorithms [44]
have been developed.

4) Algorithm Verification and Public Databases: The
majority of the algorithms examined do not explicitly report
segmentation accuracy, in part due to the difficulties of
providing labelled data. Algorithm testing against compre-
hensive publicly available datasets with labelled data is
recommended, as they would provide both a common ground
to compare different algorithms, as well as reduce the amount
of post-processing work that researchers must do to carry out
algorithm verification.

Currently available databases (Section IV-C) tend to focus
on healthy populations, omitting populations which may
have significantly different movements. These alternative
populations would provide a wider spectrum of data for inter-
subject testing, and are particularly important for rehabilita-
tion applications.

IX. CONCLUSION

Considering applications such as human movement anal-
ysis for rehabilitation or imitation learning for robotics,
algorithms that detect the start and end points of move-
ment primitives with high temporal accuracy are required.
Movement primitive segmentation enables learning detailed
motion models for analysis of motion performance and
robotic motion imitation.

The proposed framework provides a structure and a sys-
tematic approach for designing and comparing different
segmentation and identification algorithms. This framework
outlines key points of consideration for the segment def-
inition, data collection, application specific requirements,
segmentation and identification mechanisms, and verification
schemes. The framework can guide any designer though the
various components of solving the segmentation problem.
The framework has also been applied to a review of the



literature. The analyzed algorithms can be separated into
online, semi-online and offline approaches, as computational
cost constraints and the availability of exemplar data often
serves as the major limiting factor in any given application,
and allows the algorithm designer to narrow down the
possible techniques quickly.

Online approaches refer to techniques where template
training and observation segmentation are performed online.
Typically, template training is not required and the seg-
ment point is modelled explicitly. These techniques include
segmenting when specific features [87], [21] or distance
metrics [25], [86] exceed some threshold, or at the junction
points of piecewise linear regression fits of the data [26].
These techniques are computationally light, and do not have
large numbers of tunable variables to increase algorithm
complexity. However, without a model, they are sensitive
to false positives and tend to oversegment.

Semi-online approaches refer to techniques where the
template training occurs offline, but the segmentation is
performed online. These techniques include using sequences
of velocity features to segment and identify the observation
motion [29], and converting piecewise linear regression lines
to motion motifs and using bag-of-words classifier [31], or
applying classifiers to learn the segment characteristics of
motions [32]. Lastly, online variants of the Viterbi algorithm
have also been used [68], [73]. These techniques are com-
putationally light, but require templates to be constructed a
priori, which can help in reducing oversegmentation.

Offline approaches are techniques where both template
training and observation segmentation are performed offline,
due to the segmentation process being non-causal, or the
segmentation process is too computationally expensive to
be performed online. Algorithms that fit into this category
include the DTW [48], [30], the Viterbi algorithm [27], [70],
GMM methods [25], and Isomap [120]. These techniques
are very computationally expensive and cannot be operated
online, but may yield more accurate results.

The proposed framework also helps to identify potential
directions for future research. These include algorithms
designed for inter-primitive generalization, generalization
to large variabilities in movement performance, adaptive
movement templates, and the creation of public datasets
with temporal ground truth segments with a wide range of
population types.
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[44] D. Kulić, W. Takano, and Y. Nakamura, “Online segmentation and
clustering from continuous observation of whole body motions,”
IEEE Trans Robot, vol. 25, pp. 1158–66, 2009.
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