
Extending Alloy with Partial Instances

Vajih Montaghami and Derek Rayside

University of Waterloo
{vmontagh,drayside}@uwaterloo.ca

Abstract. Kodkod, the backend of Alloy4, incorporates new features
for solving models where part of the solution, that is, a partial instance,
is already known. Although Kodkod has had this functionality for some
time, it is not explicitly available to the modeller through the Alloy lan-
guage syntax. We propose an extension to the Alloy language to make
partial instances explicitly available to the Alloy user. Explicit partial
instances are helpful for the Alloy user in a number of capacities, includ-
ing test-driven development, regression testing, modelling by example,
and combined modelling and meta-modelling. The proposed syntax also
gives the modeller explicit access to the performance benefits of Kodkod’s
partial instance features.

1 Introduction

Five years ago, while introducing Kodkod [9, 10], Torlak & Jackson wrote that
Alloy’s main deficiency as a general-purpose problem description language is its
lack of support for partial instances [10]. (Kodkod is the backend of Alloy4.) This
statement is still true for the majority of Alloy users today: despite Kodkod’s
support for partial instances, the Alloy language has not yet been extended
to explicitly support them. In this paper, we propose a syntactic extension to
the Alloy language that exposes this functionality of Kodkod. We also discuss
several reasons why Alloy users might find this functionality useful. While Torlak
& Jackson [10] demonstrate that Kodkod performs well on problems with partial
instances, they do not describe the software engineering benefits of integrating
partial instances with Alloy models.

Figure 1 introduces our syntax extension by describing three instances of a
linked list: simple, single, and cyclic. In the simple instance, the line Node = head +
middle + tail says that there are exactly three node atoms and their names are
head, middle, and tail. The next two lines give exact bounds for the next and val
relations in terms of these atoms and the integers. The single and cyclic instances
are defined in a similar manner.

The inst block gives the Alloy user direct access to Kodkod’s partial instance
feature. Previously, if the specifier wished to specify an instance, then she would
have had to do it implicitly either by constraint or by a constant function. Con-
sider the phrase val = n→0 which gives an exact bound for the val relation in the
single instance of Figure 1. In Alloy4, the specifier could have achieved a similar
semantic result with the constraint fact {val = n→0} or by commenting out the

val relation declaration and introducing a constant function of the same name:
fun val[] : Node→Int {n→0}. As we describe below, our new syntax extension
affords the specifier greater clarity and modularity, and corresponds to a more
consistently efficient translation.

Fig. 1 Alloy model of a linked list with instances expressed in proposed syntax

1 sig Node { next : lone Node, val : one Int }
2 inst simple { Node = head + middle + tail, −− introduce three atoms
3 next = head→middle + middle→tail, −− exact bound for next relation
4 val = head→0 + middle→1 + tail→2 } −− exact bound for val relation
5 inst single { Node = n, no next, val = n→0 }
6 inst cyclic { Node = a + b, next = a→b + b→a, val = a→0 + b→1}

Paper organization. Section 2 describes four ways in which partial instances
benefit the Alloy user: test-driven development, regression testing, modelling by
example, and combined modelling and meta-modelling. Section 3 describes our
proposed extension to Alloy. Section 4 presents two experiments that demon-
strate the increased computational efficiency of directly exposing Kodkod’s par-
tial instance feature when compared to adoption of traditional Alloy syntax.
Section 5 considers two other possible ways to make Kodkod’s partial instance
feature available to Alloy users, and argues that our main proposal is preferable.
Section 6 concludes.

2 Using Alloy with Partial Instances

We explore four use cases that demonstrate the utility of adding partial in-
stances to the Alloy surface syntax: test-driven development, regression testing,
modelling by example, and combined modelling and meta-modelling.

2.1 Test-Driven Development

Partial instances enables modellers to apply the test-driven development [2]
methodology to their Alloy models. Consider the following example scenario.
When we teach Alloy to senior undergraduates, the first in-class exercise is to
write invariants for a binary tree. The lecturer, who has a computer running
Alloy, displays the skeletal Alloy model listed in Figure 2.

The lecturer runs the simulation, the class looks at the result and tells the
lecturer in plain language what is wrong with the displayed instance, and then
the lecturer translates that plain language into formal constraints within the
wellFormedTree predicate.

During this initial exercise, it is common for students to identify an in-
stance of the model where some node y is both the left and right child of

2

Fig. 2 A skeletal Alloy model of a binary tree

1 sig Node { left, right : lone Node, val : one Int}
2 pred wellFormedTree[] { } −− to be filled in by students
3 run wellFormedTree for 3

some node x. When this occurs, the students usually give a constraint such
as ‘the left and right children cannot be equal,’ which the lecturer translates as
all n : Node | n.left != n.right. The students tend to be satisfied with this trans-
lation, but the astute reader will notice that this formalization prevents leaf
nodes, forcing the tree to be cyclic (i.e., a leaf node has no left child and no
right child, and clearly the empty set is equal to the empty set). The students
typically do not realize this overconstraint for fifteen or twenty minutes.

Had the students been following test-driven development with partial in-
stances, they may have realized the folly of the proposed formalization sooner.
Suppose that the students had first written the two simple partial instances in
Figure 3. Figure 3a lists a tree of a single node that the students expect to be
legal. Figure 3b lists a tree with self-loops that the students expect to be illegal.
When the wellFormedTree predicate is empty at the beginning of the lecture the
illegal self-loops test fails. When the bogus constraint n.left != n.right is added
then the singleton tree test fails. Having concrete tests (partial instances) to
detect errors in the program (model) is the essence of test-driven development.

Fig. 3 Two partial instances of a binary tree: (a) a legal singleton tree, and (b)
a tree with illegal self-loops

(a)
1 inst SingletonTree { Node = n, no left, no right, val = n→0 }
2 run wellFormedTree for SingletonTree expect 1

(b)
1 inst IllegalSelfLoops { Node = n, left = n→n, right = n→n }
2 run wellFormedTree for IllegalSelfLoops expect 0

A difference between test-driven development for imperative code versus that
for declarative logic models is the role of positive and negative examples. With
imperative code, the programmer writes positive test cases for empty procedures
(or code stubs) that initially fails. With declarative logic models, a positive ex-
ample (such as a singleton tree) will succeeds with an empty wellFormedTree
predicate. Only once the predicate becomes overconstrained will the positive ex-
ample fail. In contrast, negative examples will fail with the empty predicate, and
will only pass with a properly constrained predicate. Consider, for example, the
negative example of a node that is its own child in Figure 3b. If wellFormedTree
is underconstrained (e.g., empty) then this test will fail. Thus, the programmer

3

builds up a procedure to construct positive examples, the modeller builds up a
predicate to rule out negative examples.

2.2 Regression Testing of Alloy Models

Like programs, specifications evolve: requirements change, extra properties need
to be checked, refactoring for readability, and so on. As with programs, some form
of regression testing can provide assurance that the specification (or program)
still corresponds to programmer intent.

For an Alloy specification with associated safety properties, partial instances
can be used in regression testing to detect over-constrained models. When a
model becomes over-constrained, the safety properties will still hold; however,
the modeller might be unaware of over-constraints. Regression testing of Alloy
instances can be effective in detecting these occurrences.

The user following a TDD approach can have their initial tests do double
duty as regression tests.

2.3 Modelling by Example

The idea of modelling by example [7] is that the system induces logical con-
straints through a dialogue of examples with the user. The user begins by pro-
viding some prototypical instances to the system, and then the system responds
with other instances that the user classifies as either valid or invalid. As the di-
alogue continues the system refines a general formula that includes the positive
examples and excludes the negative examples.

A modelling by example system would be substantially facilitated by having
explicit syntactic support for partial instances in Alloy.

2.4 Combined Modelling and Meta-Modelling

Alloy is sometimes used to define new modelling languages. We will refer to such
activity as ‘meta-modelling.’ Let L name the Alloy model that describes the new
language, and let M name an Alloy model that describes a model written in the
new language. At present, there is often no mechanical connection between L
and M . Our facility for adding partial instances to Alloy makes it easier to have
L and M tightly integrated. We examine the work of Cai & Sullivan et alia as
a case study to illustrate these points.

In a series of papers over the last ten years Cai & Sullivan et alia have been
exploring formal techniques for assessing modularity in software design [3–5, 8].
This is a serious, high-quality research effort that (we claim) illustrates some
of the shortcomings of the current Alloy surface syntax that our proposal for
integrating partial instances addresses.

Cai & Sullivan have written their meta-model (L) in Z [3]. This meta-model
is then implicitly encoded in the Java source of their tool Simon. Given a model
of a software design in their language, Simon produces a specialized Alloy model

4

Fig. 4 Partial instance encoding of Irwin et alia’s description [6] of the design
space for a matrix manipulation program

1 inst IrwinMatrixDesignSpace {
2 AugmentedConstraintNetwork = ACN,
3 Variable = Density + Struct + Alg,
4 Value = dense+sparse + links+array + traverse+lookup + other,
5 domain = Density→(dense+sparse) + Struct→(links+array+other) +
6 Alg→(lookup+traverse+other),
7 dominates = ACN →((Struct→Density)+(Alg→Density)),
8 solutions = ACN →Solution,
9 }{−−Appended facts have access to atom names introduced in inst block

10 all s : Solution | {
11 let x = {p : Variable, q : Value | some b : s.bindings | p=b.var and q=b.val} |{
12 (Struct→links) in x ⇒ (Density→sparse) in x
13 (Struct→array) in x ⇒ (Density→dense) in x
14 (Alg→lookup) in x ⇒ (Struct→array) in x
15 (Alg→traverse) in x ⇒ (Struct→links) in x
16 }}
17 }
18 run createMatrixACN for IrwinMatrixDesignSpace

(M) that is used to check modularity properties of the proposed software design.
There is no mechanically analyzed connection between L and M .

We have translated the Cai & Sullivan meta-model from Z to Alloy and used
our partial instance feature to write some of Cai & Sullivan’s specific models
as partial instances of this meta-model. Figure 4 lists our encoding of Cai &
Sullivan’s study of Irwin et alia’s example of designing a program to store and
manipulate a matrix [6]. There are three variables (decisions) in this design
space (line 3): the density of the matrix, the underlying data structure used to
encode the matrix, and the algorithm used to manipulate that structure. More
specifically, the matrix may be dense or sparse, the structure may be a linked list
or an array (or other), and the algorithm may be either ‘lookup’ or ‘traversal’
(or other) (lines 4–6). In the vocabulary of Cai & Sullivan, the density decision
dominates the data structure and algorithm decisions (line 7). The intuition
here is that one selects the data structure and algorithm depending on whether
the density is expected to be dense or sparse. Additionally, the partial instance
block is followed by a list of facts (lines 9–17) that constrain valid solutions of
the design space to those where the algorithm and data structure are natural
matches for the matrix density and each other. A fact appended to a partial
instance block can make use of the atom names introduced in that block.

We now have a mechanically analyzed connection between the Cai & Sullivan
meta-model and the specific model of the design space of a matrix manipulation
program. We have greater certainty that the properties we have checked on the
meta-model also hold of the model (partial instance).

5

Clafer [1] is a language that is designed to support combined modelling and
meta-modelling.

3 Language Extension

We propose to add an inst block to the Alloy language, allowing the user to
specify a partial instance, as illustrated above in Figures 1, 2, 3, and 4. The
partial instances in those examples only use exact bounds; Kodkod and our
syntax also support lower and upper bounds as well, using the in and includes
keywords, respectively. Lower bound is a set of tuples that a relation must have,
and upper bound is the one that realation might have [9].

These inst blocks are given names and used in Alloy commands. Whereas
now a user might write run p for 3, they will now write run p for i, indicating
that predicate p is to be simulated in the context of partial instance i.

An inst block, like a sig block, may have an appended fact. For inst blocks,
the appended fact is only expected to be true when that inst block is part of
the command being executed. The purpose of this appended fact is to give
the specifier an opportunity to write constraints that mention the atom names
introduced in the inst block — these names are not available elsewhere in the
model.

Fig. 5 Grammar and preliminary type definitions
(a) Grammar

〈iBlk〉 := ‘inst’ id (‘extends’ id)? ‘{’ 〈iSt〉[,〈iSt〉]* ‘}’
(‘{’ 〈frml〉 ‘}’)?

〈iSt〉 := 〈n〉
| ‘exactly’ 〈n〉 〈var〉
| 〈var〉 ‘=’ 〈iXpr〉
| 〈var〉 ‘in’ 〈iXpr〉
| 〈var〉 ‘include’ 〈iXpr〉
| 〈var〉 ‘include’ 〈iXpr〉 ‘moreover’ 〈iXpr〉
| ‘no’ 〈var〉

〈iXpr〉 := 〈iXpr〉 ‘->’ 〈iXpr〉
| 〈iXpr〉 ‘+’ 〈iXpr〉
| ‘(’ 〈iXpr〉 ‘)’
| 〈atm〉

(b) Preliminary type definitions

〈prb〉 := 〈univ〉 〈iSt〉* 〈frml〉*
〈univ〉 := {〈atm〉[,〈atm〉]*}
〈tpl〉 := 〈atm[,atm]* 〉
〈cnst〉 := {tpl[,tpl]*} | {} [×{}]*
〈var〉 := id

〈atm〉 := id

〈sig〉 := 〈var〉
〈sigs〉 := 〈sig〉*
〈n〉 := int

Figure 5a lists the grammar for our proposed extension to the Alloy language
to support partial instances. An iBk has a name, a list of iSts and optionally an
appended fact. Each iSt alternative that contains a var bounds either a signature
or a field (whichever is named by the var). The one iSt alternative that does not
name a var provides the default number of atoms for each signature. A relation
(signature or field) name can only appear on the left-hand side of at most one
iSt in each iBk.

An iSt that names a signature on its left-hand side introduces atom names on
its right-hand side. These atom names can then be used to describe the bounds
on fields. An iXpr is an expression that describes a set of tuples using the normal

6

Alloy union (+) and cross-product (→) operators along with the names of the
atoms. If the user wishes to specify both an upper and lower bound for relation r,
they can write an iSt like r include x + y moreover p + q, which specifies a lower
bound of x + y and an upper bound of x + y + p + q.

One partial instance block may extend another. For example, the partial
instance in Figure 10 extends the partial instance in Figure 4. The semantics
of partial instance extension are simply concatenation and conjunction. Let p
name the base partial instance block; let q name the extending partial instance
block; and let r name the result of applying the extension to q. The text of r
is the concatenation of the text of p with the text of q. The appended fact of
r is the conjunction of p’s appended fact with q’s appended fact. The result r
must follow the same well-formedness guidelines as p and q: no relation can be
named on the left-hand side of more than one statement. This restriction keeps
both regular semantics and extension semantics simple, as it prevents statements
from interfering with each other (notwithstanding quantitative statements that
interact with named statements in a well-defined manner as formalized below).

Fig. 6 Universe construction
evr : sig → univ
U : iBlk → sigs→ evr
G : iSt∗ → sigs→ evr → univ G′ : iSt→ sigs→ evr
X : iSt∗ → sigs→ evr → evr X′ : iSt→ sigs→ evr → evr
N : iSt∗ → sigs→ evr N ′ : iSt→ sigs→ evr
K : sig → int→ univ
Q : iXpr → univ

U [[iBlk, sigs]] := G[[iSt1 . . . iStn, sigs,X[[iSt∗, sigs,N [[iSt∗, sigs, ∅]]]]]]
G[[iSt∗, sig, evr]] := G[[iSt1 . . . iStn, sigs, evr]]
G[[iSt1 . . . iStn, sigs, evr]] := G[[iSt2 . . . iStn, sigs, evr + + G′[[iSt1, sigs]]]]
G[[[], sigs, evr]] := evr
G′[[v [=|in|include] p, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ Q[[p]]}
G′[[v include p moreover q, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ Q[[p]] ∪Q[[q]]}
X[[iSt∗, sigs, evr]] := X[[iSt1 . . . iStn, sigs, evr]]
X[[iSt1 . . . iStn, sigs, evr]] := X[[iSt2 . . . iStn, sigs, evr + + X′[[iSt1, sigs]]]]
X[[[], sigs, evr]] := evr
X′[[exactly n v, sigs]] := {(a, b)|a ∈ sigs ∧ a = v ∧ b ∈ K[[v, n]]}
N [[iSt∗, sigs, evr]] := N [[iSt1 . . . iStn, sigs, evr]]
N [[iSt1 . . . iStn, sigs, evr]] := N [[iSt2 . . . iStn, sigs, evr + + N ′[[iSt1, sigs]]]]
N [[[], sigs, evr]] := evr
N ′[[n, sigs]] := {(a, b)|a ∈ sigs ∧ b ∈ K[[a, n]]}
K[[v, n]] := {〈ToString(v) +′ $′ + ToString(n− 1)〉} ∪K[[v, n− 1]]
K[[v, 0]] := 〈〉
Q[[p]] := {〈ToString(p)〉}
Q[[p + q]] := Q[[p]] ∪Q[[q]]
Q[[p→ q]] := 〈〉

3.1 Semantics

We define the semantics of the partial instance block as an extension of the Kod-
kod semantics [9]. The Kodkod semantics take a universe and relation bounds
as inputs. The purpose of the partial instance block is for the user to specify the
universe and relation bounds.

7

Figure 6 describes how the universe is constructed from a partial instance
block by the U function, which in turn makes use of the N, X, and G functions.
Preliminary type definitions are given above in Figure 5b. First the N function
constructs a universe in which each sig has the default number of atoms. The
X function takes this default universe and returns a universe that complies with
the exactly statements in the partial instance block. Finally, the G function adds
atoms named in upper and lower bound statements. All of these functions take
as input a set of the sigs declared in the model. This set of sig names is used
to distinguish statements that might introduce atoms (which name a sig on the
left-hand side) from statements that bound relations (which name a field on the
left-hand side).

Once the universe is constructed (Figure 6), then the bounds can be con-
structed (Figure 7). Figure 7 starts by redefining the top-level function P from
the Kodkod semantics [9] to indicate that the universe and the relation bounds
are generated from the partial instance block.

Fig. 7 Bounds construction (building on formalization of [9])

P : problem→ binding → boolean — top-level function, re-defined from [9]
F : formula→ binding → boolean — formulas, definition given in [9]
S : iSt∗ → sigs→ evr → binding → boolean — list of inst statements
S′ : iSt→ sigs→ evr → binding → boolean — individual inst statement
C : iXpr → univ → cnst — expressions
W : var → sigs→ evr → univ —

P [[sigs.U [[iBk, sigs]] iSt1 . . . iStn frml∗]]b := S[[iSt1 . . . iStn, sigs, U [[iBk, sigs]]]]b ∧ F [[frml∗]]b
S[[iSt1 . . . iStn, sigs, evr]]b := S[[iSt2 . . . iStn, evr, sigs]]b ∧ S′[[iSt1, evr, sigs]]b
S[[[], evr, sigs]]b := true
S′[[exactly n v, evr, sigs]]b := W [[v, sigs, evr]] ⊆ b(v) ⊆ W [[v, sigs, evr]]
S′[[v=p, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆ C[[p, sigs.evr]]
S′[[v in p, evr, sigs]]b := C[[∅, sigs.evr]] ⊆ b(v) ⊆ C[[p, sigs.evr]]
S′[[v include p, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆ W [[v, sigs, evr]]
S′[[v include p moreover q, evr, sigs]]b := C[[p, sigs.evr]] ⊆ b(v) ⊆ C[[p + q, sigs.evr]]
S′[[no v]]b := b(v) = ∅
C[[p + q, univ]] := C[[p, univ]] ∪ C[[q, univ]]
C[[p→ q, univ]] := {〈p1, . . . , pn, q1, . . . , qm〉|〈p1, . . . , pn〉 ∈ C[[p, univ]] ∧ 〈q1, . . . , qm〉 ∈ C[[q, univ]]}
C[[p, univ]] := {p′|p′ ∈ univ ∧ ToString(p′) = p}
W [[v, sigs, evr]] := {〈p1, . . . , pn〉|(v ∈ sigs =⇒ p1 ∈ v.evr) ∧ (v /∈ sigs =⇒ pi ∈ vi.evr)}

4 Experiments

We performed two experiments to evaluate the computational efficiency of the
proposed partial instance block: a micro-benchmark to characterize the maxi-
mum possible improvement, and our combined modelling and meta-modelling
case-study based on Cai & Sullivan’s work (§2.4). All tests are done on Intel
i7-2600K CPU at 3.40GHz with 16GB memory. The performance results are
essentially the same with both Minisat and Sat4J, although we report only the
Sat4J results here.

We compared using the partial instance block to two alternative specification
styles in two different versions of Alloy 4.2. The two different styles were con-
straining relations with facts and using constant functions instead of relations.

8

Constant functions are just expressions that are inlined at their point of use.
They add clauses but not variables to the generated SAT formula. Alloy 4.x in-
cludes some inference capability to translate constraints on relations as bounds.
In response to a draft of this paper the Alloy development team improved this
inference capability. We refer to this enhanced version as A4.2′, and to the ver-
sion of Alloy 4.2 from January 2012 as A4.2. We refer to our version of Alloy
with the partial instance block as A4.2i.

4.1 Micro Benchmark

We devised a micro-benchmark to illustrate the upper bound on the poten-
tial performance improvements of exposing Kodkod’s partial instance features
through our new syntax. Our micro-benchmark has a single signature S and a
single binary relation r that maps S to S. For our partial instance, we want to
introduce some named atoms of sig S, and then define relation r to be a fully
connected graph (i.e., map every S atom to every other S atom).

Figure 8 lists examples of these partial instance models in the three different
syntaxes: (a) constraining relation r with a fact; (b) replacing relation r with a
constant function named r; and (c) using our new partial instance syntax. The
example listings in Figure 8 show these models where signature S has two atoms
(S0 and S1). For the plots in Figure 9, we generated these models with signature
S having up to seventy-five atoms. The cardinality of relation r is proportional
to the square of the cardinality of signature S (as one would expect from a fully
connected graph).

Fig. 8 Example models for micro-benchmark experiment

(a) By Fact (b) By Constant-Function (c) By Inst-Block

one sig S0,S1 extends S{}
fact {r=S0→S1 + S1→S0}
pred f[]{all s:S | S in s.ˆr}
run f

one sig S0,S1 extends S{}
fun r[]:S→S{S0→S1 + S1→S0}
pred f[]{all s:S | S in s.ˆr}
run f

inst b { S=S0 + S1,
r=S0→S1 + S1→S0}

pred f[]{all s:S | S in s.ˆr}
run f for b

Figure 9 shows graphs characterizing how the translations of the three syn-
tactic approaches shown in Figure 8 scale on different measures: (a) total num-
ber of variables in the resulting boolean (SAT) formula; (b) number of primary
variables in the resulting boolean (SAT) formula; (c) time taken by Kodkod to
translate the Alloy model to SAT; and (d) time taken by the SAT solver to find
a solution. We make a number of observations from the data in Figure 9:

1. The inference capability of A4.2 is incomplete: it is unable to deduce that
the constraints on r can be translated as bounds rather than as variables and
clauses. Therefore the number of variables and the translation and solving
times grow exponentially.

2. All other strategies show very little growth as the number of atoms increases.

9

3. The improved inference in A4.2′ is effective (A4.2′ Fact column).
4. The number of SAT variables produced by the constant function encoding,

the improved inference, and the partial instance strategies is the same (low).
5. The partial instance encoding has the fastest translation and solving times

(by a narrow margin).

The main conclusion of Figure 9 is that if the specifier chooses to use constant
functions instead of relations or writes their facts in a manner that Alloy can
infer bounds from, then there is little performance gain from the partial instance
block. However, the partial instance block does provide the best performance,
and does so without the specifier having to worry about whether their writing
style is comprehensible to Alloy’s bounds inference facility.

Fig. 9 Results of micro-benchmarks.

A4.2 A4.2′
A4.2i

Fact Fun Fact Fun
(a) SAT Total Varaibles

0 ≤ y < 3M variables

(b) SAT Primary Varaibles
0 ≤ y < 6K variables

(c) Kodkod Translation Time
0 ≤ y < 12 seconds

(d) SAT Solving Time
0 ≤ y < 12 seconds

x axis ranges from 2 atoms to 75 atoms

4.2 Staged Evaluation

The proposed partial instance feature offers Alloy users the opportunity to stage
evaluation of their models, which might potentially save time when certain parts
of the model are not changing and other parts are. Consider, for example, the
model in Figure 4 that describes the design space of a program to manipulate
matrices. The partial instance of Figure 4 is written in terms of Cai & Sullivan’s
meta-model, which has (design) variables, values, bindings of variables to values,
and ‘states’. (The ‘states’ are of a design automaton, which is a concept they
use to analyze design spaces that we do not explain here.)

10

Suppose that the user wishes to experiment with the constraints written in
the appended fact of Figure 4. These constraints do not affect the space of valid
binding atoms. Therefore, the user could stage the evaluation of the model by
saving the legal bindings in a partial instance, such as in Figure 10. Subsequent
simulations would not have to re-solve this part of the model.

Fig. 10 Iwrin matrix design space partial instance (Figure 4) extended with
binding atoms generated by a previous simulation

1 inst IrwinMatrixDesignSpace WithBindings extends IrwinMatrixDesignSpace {
2 Binding = B0+B1+B2+B3+B4+B5+B6+B7,
3 var = (B0+B1)→Struct + (B2+B3+B4)→Density + (B5+B6+B7)→Alg,
4 val = B0→dense + B1→sparse + B2→links + B3→array + B4→other +
5 B5→traverse + B6→lookup + B7→other }
6 run createMatrixACN for IrwinMatrixDesignSpace WithBindings

Figure 11 characterizes the potential performance improvements from staged
evaluation using the Irwin matrix design space example of Cai & Sullivan. The
translation time for the model from Figure 10 is over ten times faster than the
translation time for the model from Figure 4, and the solving time is three
times faster, for an overall improvement of seven times. Obviously the speedup
to be gained from staged evaluation depends on the particulars of the model in
question; other models will likely produce different results than this one.

Figure 11 also shows performance results for A4.2 and A4.2′ simulating a
model equivalent to Figure 4 (i.e., not staged). In this particular case there is
no significant difference between A4.2 and A4.2′. We suspect that this is the
case because the domain relation is constrained piecewise across a number of
appended facts. All of these piecewise constraints add up to an exact bound
on domain, but a fairly sophisticated whole-model analysis would be needed to
deduce that. A4.2i results in four times faster solving time than A4.2′ for the
model in Figure 4, at the expense of a 10% slowdown in translation time.

Fig. 11 Performance improvements from staged evaluation

Total Vars Pri. Vars Clauses Translation Solving
time (ms) time (ms)

A4.2i (Fig. 4) 59,694 773 162,642 12,742 6,744
A4.2i (Fig. 10 — staged) 20,060 503 37,148 986 2,174

A4.2 59,953 768 162,417 11,976 27,415
A4.2′ 59,953 768 162,417 11,188 27,730

11

5 Alternatives Considered

In this section we consider some alternative approaches for specifying partial
instances in Alloy and argue for the approach proposed in this paper.

5.1 Static Analysis

Alloy 4.x already includes the capability to infer when constraints might be
encoded as Kodkod bounds rather than as SAT clauses. Although it is not yet
perfect, this capability will continue to improve. Given this capability, no extra
syntax is needed to realize the main performance benefits of Kodkod’s partial
instance feature.

We argue that there are software engineering benefits to our new syntax
beyond the performance gains that it affords. The proposed syntax makes it
easy for the specifier to run different commands with different instances, or to
run commands with no partial instance (the norm in Alloy now). Writing a
partial instance implicitly via constraints in the traditional Alloy syntax makes
it difficult to switch from running a command with a partial instance to running
a command without a partial instance. For example, to run the fragment in
Figure 8a without a partial instance, we would want to remove the keyword
abstract from the signature S and remove the sub-signatures S1, S2, S3. With
the partial instance block syntax, one does not have to edit the text of the
model to run it in these different ways. A number of our use cases described
above depend on this affordance of the new syntax.

5.2 Syntactic Alternatives for the Partial Instance Block

There are a variety of different ways in which one could specify the body of a par-
tial instance block. We consider the proposal described above to be a ‘relational’
style because each statement specifies a different relation.

Alternatively, one could imagine an ‘object-oriented’ syntax in which rela-
tions are defined piecewise with respect to individual atoms. Figure 12a lists a
small example of this syntax. The same example is listed in the relational style
in Figure 12c. The object-oriented style syntax is intuitively appealing for some
examples; however, its piecewise nature makes the bound being defined unclear:
does Figure 12a define a lower bound or an exact bound for relation r?

Another alternative syntax is ‘set-oriented’ style, shown in Figure 12b. This
style is concise and consistent with common mathematical notation, but it does
not conform to the existing Alloy expression grammar.

Our proposed relational style syntax (Figure 12c) conforms to the existing
Alloy expression grammar and has a clear and uniform way to specify lower,
exact, and upper bounds.

12

Fig. 12 Syntactic alternatives for the body of the partial instance block

(a) object-oriented style

sig S{r: S}
inst i{S=S1+S2+S3,

S1.r=S2, S2.r=S3}

(b) set-oriented style

sig S{r: S}
inst i{S={S1,S2,S3},

r={S1→S2,S2→S3}}

(c) relational style

sig S{r: S}
inst i{S=S1+S2+S3,

r=S1→S2+S2→S3}

6 Conclusion

Explicit partial instances could be used in Alloy to efficiently specify constraints
on allowable solutions (their intended usage in Kodkod); for test-driven develop-
ment of Alloy models; for regression testing of Alloy models; to support new ideas
such as modelling by example; and for combined modelling and meta-modelling.
While Alloy currently has an inference mechanism that makes use of Kodkod’s
partial instance functionality behind the scenes, these engineering benefits are
substantially facilitated by explicit syntactic support for partial instances.

There is more than one possible way to expose Kodkod’s partial instance
feature to the Alloy user. We have explored a number of alternatives and rec-
ommend a new named block with statements written in a relational style. This
recommendation is backwards compatible with existing Alloy models and the
existing Alloy expression grammar; it affords the user a uniform way to express
exact, upper, and lower bounds; it combines with Alloy commands in a modular
fashion; and it has an easy and efficient translation to Kodkod.

Kodkod has supported partial instances for five years, and that is one of its
main improvements over the backend of Alloy3. It’s time that Alloy users had
the opportunity to take full advantage of this functionality.

Acknowledgments

We thank Daniel Jackson, Aleksandar Milicevic, Steven Stewart, Emina Torlak,
and the anonymous referees for comments on previous drafts of this paper. We
also thank Aleksandar Milicevic for his assistance with the Alloy code base and
for improving the inference capabilities of the Alloy analyzer.

This work was supported in part by the National Science and Engineering
Research Council of Canada (NSERC).

13

Bibliography

[1] Bak, K., Czarnecki, K., Wasowski, A.: Feature and Meta-Models in Clafer:
Mixed, Specialized, and Coupled. In: Proc. of the 3rd International Confer-
ence on Software Language Engineering (SLE) (2010)

[2] Beck, K.: Test-Driven Development. Addison-Wesley, Reading, Mass. (2003)
[3] Cai, Y.: Modularity in Design: Formal Modeling and Automated Analysis.

Ph.D. thesis, University of Virginia (Aug 2006)
[4] Cai, Y., Huynh, S., Xie, T.: A framework and tool supports for testing

modularity of software design. In: Egyed, A., Fischer, B. (eds.) Proc.22nd
ASE. pp. 441–444. Atlanta, GA (Nov 2007)

[5] Cai, Y., Sullivan, K.: Modularity analysis of logical design models. In: East-
erbrook, S., Uchitel, S. (eds.) Proc.21st ASE. Tokyo, Japan (Sep 2006)

[6] Irwin, J., Loingtier, J.M., Gilbert, J.R., Kiczales, G., Lamping, J., Mend-
hekar, A., Shpeisman, T.: Aspect-oriented programming of sparse matrix
code. In: ISCOPE. pp. 249–256 (1997)

[7] Mendel, L.: Modeling by Example. Master’s thesis, MIT (Sep 2007)
[8] Sullivan, K.J., Griswold, W.G., Cai, Y., Hallen, B.: The structure and value

of modularity in software design. In: Proc.9th FSE. pp. 99–108. Vienna,
Austria (Sep 2001)

[9] Torlak, E.: A Constraint Solver for Software Engineering: Finding Models
and Cores of Large Relational Specifications. Ph.D. thesis, MIT (2009)

[10] Torlak, E., Jackson, D.: Kodkod: A relational model finder. In: Grum-
berg, O., Huth, M. (eds.) Proc.13th TACAS. LNCS, vol. 4424, pp. 632–647.
Springer-Verlag, Braga, Portugal (Mar 2007)

