Acknowledgements:

• Jon Eyolfson [TA s2012; Lab Instructor w2013 & s2013]
• Students of w2012: David Choi, Michael Lin, Aman Muthrej, Atulan Zaman

Licensed under Creative Commons Attribution-ShareAlike (CC BY-SA) version 2.5 or greater.
http://creativecommons.org/licenses/by-sa/2.5/ca/
http://creativecommons.org/licenses/by-sa/3.0/
Contents

0 Background 11
 0.1 Engineering Design 11
 0.2 Resources available to us 11
 0.3 Measuring resource consumption 12
 0.3.1 Big-O notation 12
 0.3.2 NP-Completeness and Boolean satisfiability 13
 0.3.3 Undecidability and The Halting Problem 14
 0.3.4 Easy, Hard, and Impossible 15
 0.4 Kinds of Machines and Computational Power 15
 0.4.1 Turing Machines and Programming Languages 16
 0.4.2 Understanding Real Programs in Theoretical Terms 16
 0.5 The Heap and Garbage Collection 20
 0.6 Programming ‘Paradigms’ 21
 0.7 Basic Set Operations 23
 0.8 Engineering Practice vs. Theory 24
 0.9 Orientation Questions 28
 0.10 Self-Assessment Questions 30
 0.11 Additional Exercises 31

1 Regular Languages & Finite Automata 33
 1.1 Regular Expressions 33
 1.2 Finite State Machines 35
 1.3 Regex → NFA 36
1.4 NFA → DFA 37
1.5 DFA Minimization 37
1.6 Example regex → NFA → DFA → minimized DFA 38
1.7 DFA Minimization with an Explicit Error State 39
1.8 Another Example 40
1.8.1 Regex → NFA 40
1.8.2 NFA → DFA 40
1.8.3 DFA → minimized DFA 40
1.9 Finite Automata in ECE351 vs. ECE327 41
1.10 Additional Exercises 42

2 Classifying Grammars by Complexity 51
2.1 Always choose the simplest possible complexity class 53
2.1.1 Refactoring and the Equivalence of Grammars 53
2.2 Is this grammar context-free? 53
2.3 Is this grammar regular? 54
2.3.1 Common cases outside the regular class 54
2.3.2 Proving a grammar is regular 54
2.4 Is this grammar ambiguous? 55
2.4.1 Removing ambiguity using precedence 56
2.4.2 Removing ambiguity using associativity 57
2.5 Is this grammar LL(1)? Simple tests 60
2.5.1 Remove common prefixes with left-factoring 60
2.5.2 Remove left recursion 60
2.6 Is this grammar LL(1)? Full test 61
2.6.1 Convert EBNF to BNF 62
2.6.2 Which nonterminals are nullable? 63
2.6.3 FIRST sets 63
2.6.4 FOLLOW sets 64
2.6.5 PREDICT sets 65
2.7 Is this a PEG? (Parsing Expression Grammar) 66
2.8 Additional Exercises 66

3 Case Studies 75
3.1 Git 75
3.2 LLVM 77
3.3 Java Virtual Machine & Common Language Runtime 79
 3.3.1 Comparison with VMWare, VirtualBox, etc. 80
3.3.2 Structure of the Call Stack 81
3.3.3 Object Header and Type Information Block 82
3.4 Cfront: Translating C++ to C 84
 3.4.1 Optimizing Polymorphic Calls 89
 3.4.2 Why have polymorphism as a language feature? 89
3.4.3 Subtype Polymorphism and Parametric Polymorphism 89

4 Optimization 93
 Tiger: §10.0–1, §17.0, §17.2–3
 4.1 Optimization by Intuition 93
 4.2 Optimization by Dataflow Analysis 94
 4.2.1 Convert to Three-Address Form 94
 4.2.2 Available Expressions 96
 4.2.3 Solving by Iteration to the Least Fixed Point 98
 4.2.4 Reaching Definitions 103
4.3 Duality of Available Expressions and Reaching Definitions 105
4.4 Least Fixed-Point Solutions [extra] 106
4.5 Summary 107

5 Storage Management 109
 5.1 Register Allocation 109
 5.1.1 Liveness Analysis 111
 5.1.2 Interference Graph Colouring 112
5.2 Garbage Collection 113
5.3 Object Allocation 114
5.4 DieHard: Probabilistic Memory Safety for C 114
5.5 Memory Safety and Language Selection 115

A Bibliography 119
List of Figures

1. Summary of some big-O related terminology 12
2. Truth table for $x \cdot y \cdot z$ 13
3. A simple finite state machine that accepts ‘prize’ and loops on ‘rock’, ‘paper’, or ‘scissors’. 17
4. Stack+heap diagram for iterative linear search 18
5. Stack+heap diagram for recursive linear search 18
6. Stack+heap diagram for binary tree search 19
7. Programming paradigms 22

1.1 Terminology for FSA/FSM/etc. 33
1.2 Grep is a compiler 34
1.3 Grep is an interpreter 34
1.4 Grep is an interpreter 34
1.5 Rules for converting regex to NFA [Tiger f2.6] 36
1.6 Rules for converting regex to NFA [PLP f2.7] 36
1.7 Example of converting regex to NFA [PLP f2.8]. The regex is: $d^* (d | .d.) d^*$ 38
1.8 Example of NFA to DFA conversion and DFA minimization [PLP f2.9 & f2.10] 38
1.9 An NFA and corresponding non-minimal DFA for the regular expression $f?g$, as well as a bogus minimized DFA. 39
1.10 DFA with an explicit error state X. 39
1.11 Minimizing a DFA with an explicit error state. 39
1.12 Comparison of finite state machine notations in ECE351 and in ECE327 41
1.13 A simple ECE327 machine translated into an equivalent ECE351 machine 41

2.1 Chomsky hierarchy of grammatical complexity 51
2.2 Kinds of grammars and the machines needed to parse them 51
2.3 Language notation examples 52
2.4 Context-sensitive grammar for $\{a^nb^nc^n \mid n \geq 1\}$ 53
2.5 An EBNF grammar for F, from lab4 61
2.6 **BNF version of \(\mathcal{F} \) grammar from Figure 2.5.** We’ve converted both the Kleene stars (‘*’) and the alternative bars (‘|’). Converting the stars resulted in the introduction of three new nonterminals: FList, TermTail, and FactorTail. Converting the ‘|’ just results in multiple lines with the same left-hand side (LHS).

3.1 Flipbook of skeleton Git repository 75
3.2 Flipbook of student Git repository 76
3.3 General structure of a simple compiler 77
3.4 General structure of a retargetable compiler 77
3.5 Structure of LLVM 77
3.6 Link-time optimization with LLVM 78
3.7 Virtual Machine 79
3.8 Structure of call stack (PLP f8.10) 81
3.9 Visualization of call stack and heap from PythonTutor.com 81
3.10 (PLP f9.3) 83
3.11 (PLP f9.4) 83
3.12 (Tiger f14.3) 83
3.13 Simple C++ to C translation 85
3.14 Simple C++ to C translation with VTables and with switch statements 86
3.15 C++ to C translation using VTables, with a polymorphic call 87
3.16 C++ to C translation using switch statements 88

4.1 Example flow graph 98
4.2 An example illustrating the difference between Available Expressions and Reaching Definitions. 105
4.3 Hasse diagrams for domains of powersets of two and three elements. Images from Wikipedia, under the GNU Free Documentation License. 106

5.1 Liveness analysis example 111
5.2 Interference graph example 112
5.3 Garbage collection in action. 113
Todo list

Phases of compilation .. 23
Parse Tree vs. AST ... 23
AST Evaluation (an Interpreter) 23
Ambiguity caused by If-Else statements (PLP-p.84) ... 23
See http://www.jflap.org/ for software for converting a DFA to an equivalent regular grammar .. 54
Incorporate material from http://theory.stanford.edu/\protect\ unhbox\voidb@x\penalty\@M\{|amitp/yapps/yapps-doc/\node3.html ... 57
Piazza post from Ryan ... 64
Student confusion about why this production doesn’t add (see suppressed text) ... 64
gcc, Eclipse, edg, gdb, ghc, HipHop, v8, XUL, CLR, WAM 91
Memory management intro blurb 109
Explain GC techniques ... 113
Explain object allocation 114
Background

0.1 Engineering Design

In engineering design we are concerned with questions such as the following:

- What kind of machine is required to solve problem P?
- What is easy? What is hard? What is impossible?
- Will technique T work for problem P?
- How expensive is technique T?
- When to use approximation?
- Making tradeoffs between available resources.

In order to answer such questions in the context of compilers we need to know some concepts and terminology from theoretical computer science.

0.2 Resources available to us

As compiler writers and programming language designers we make tradeoffs between the following resources:

$$
\begin{align*}
\text{Resources} & \quad \text{engineer} & \quad \text{time & cognition} \\
& & \quad \text{compiler} & \quad \text{time & space} \\
& & \quad \text{executable} & \quad \text{time & space} \\
& & \quad \text{programmer} & \quad \text{time & cognition} \\
& & \quad \text{user} & \quad \text{time & security}
\end{align*}
$$

By engineer here we mean the person writing the compiler. By executable we mean the compiled program. By programmer we mean the person who will use the compiler. By end user we mean the person who will run the program written by the programmer and compiled by the compiler.

Engineering judgement is required to make design decisions that save one resource at the expense of another.

Consider the programming language feature of automatic array bounds checking. This costs the compiler engineer some time and cognition, makes the compiler run a little longer and use a bit more space, makes the resulting executable program a bit slower and require a bit more space (to remember the runtime size of every array) — but, it saves the programmer some time and cognition, and it saves the user from security holes (a buffer overflow attack is only possible against programs written in languages without automatic array bounds checking).
0.3 Measuring resource consumption

It is easier to measure the consumption of some resources than others. Different disciplines give us different tools to measure different resources. The time and cognition required for an engineer or a programmer to perform a particular task are difficult to measure quantitatively. For our purposes we will just use the comparisons ‘more’ and ‘less’. How much more or how much less is often a topic of contentious debate. Similarly, it is difficult to quantify the impact of crashes, data loss, and security breaches for the end user — although programming language features play a role in preventing or permitting these problems.

The two things we do know how to quantify well are machine time and space. We can measure these things in terms of seconds or bytes for particular program executions, and in some circumstances that approach is appropriate. However, in many circumstances that approach is inadequate because it does not tell us about how much time or space will be used for a different input. Consequently, we often measure the time and space to be used by a computation as functions of the size of the input.

0.3.1 Big-O notation

Big-O notation is used to express the asymptotic complexity of an algorithm, usually in terms of time, but sometimes in terms of space. Big-O notation is sometimes referred to as computational complexity or asymptotic complexity. Let \(n \) be a measurement of the size of the input.

<table>
<thead>
<tr>
<th>Big-O</th>
<th>Name</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(1))</td>
<td>constant (polynomial)</td>
<td>hash-table lookup</td>
</tr>
<tr>
<td>(O(\lg n))</td>
<td>logarithmic (polynomial)</td>
<td>binary search</td>
</tr>
<tr>
<td>(O(n))</td>
<td>linear (polynomial)</td>
<td>bucket sort</td>
</tr>
<tr>
<td>(O(n \lg n))</td>
<td>log-linear (polynomial)</td>
<td>quick sort</td>
</tr>
<tr>
<td>(O(n^2))</td>
<td>quadratic (polynomial)</td>
<td>bubble sort</td>
</tr>
<tr>
<td>(O(n^3))</td>
<td>cubic (polynomial)</td>
<td>Early’s parsing algorithm</td>
</tr>
<tr>
<td>(O(2^n))</td>
<td>NP-complete (exponential)</td>
<td>SAT</td>
</tr>
<tr>
<td>—</td>
<td>undecidable</td>
<td>the halting problem</td>
</tr>
</tbody>
</table>

The dominant term is all that matters in big-O notation. For example, \(O(n^2 + n) \) is just written as \(O(n^2) \) because the \(n^2 \) term dominates the \(n \) term.

Figure 1: Summary of some big-O related terminology. Anything less than exponential we refer to as polynomial. In ece250 you learned a variety of polynomial time algorithms, mostly for sorting and searching. In that context, the difference between \(O(n^2) \) (e.g., bubble sort) and \(O(n \lg n) \) (e.g., quick sort) is important. In ece351 we are primarily concerned with the difference between polynomial and exponential (and undecidable). From the perspective of ece351, all polynomial time problems are easy.
0.3.2 NP-Completeness and Boolean satisfiability

NP stands for non-deterministic polynomial time:

a. If we have a solution, then we can verify it in polynomial time on a single-core deterministic machine.
b. If we have a magical (i.e., non-deterministic) single-core machine that can always guess the right next step (i.e., has ‘non-deterministic powers’), then we can compute a solution in a polynomial number of magically correct guesses.
c. If we have a massively parallel deterministic computer that has an exponential number of cores, then we can compute a solution in polynomial time: every core tries a different path, and some of them will find a solution (if a solution exists) in a polynomial number of steps.
d. If we have a single-core deterministic computer, then we can compute a solution in exponential time.

The canonical example of an NP-complete problem is the Boolean satisfiability problem, commonly known as sat. Given a boolean formula, find values for the variables that make the formula true. The brute force way to solve this problem is to enumerate the truth table for the function and look for a row that evaluates to true. The truth table is exponential in the number of variables in the formula: e.g., a formula with three variables will have 2^3 rows in its truth table. Consider, for example, the boolean formula $x \cdot y \cdot z$ depicted in Figure 2.

<table>
<thead>
<tr>
<th>$x \cdot y \cdot z$</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0</td>
<td>0</td>
</tr>
<tr>
<td>0 0 1</td>
<td>0</td>
</tr>
<tr>
<td>0 1 0</td>
<td>0</td>
</tr>
<tr>
<td>0 1 1</td>
<td>0</td>
</tr>
<tr>
<td>1 0 0</td>
<td>0</td>
</tr>
<tr>
<td>1 0 1</td>
<td>0</td>
</tr>
<tr>
<td>1 1 0</td>
<td>0</td>
</tr>
<tr>
<td>1 1 1</td>
<td>1</td>
</tr>
</tbody>
</table>

A defining feature of NP-complete problems is not just that they take an exponential amount of time on a deterministic machine, but that the answer to such a problem can be verified in polynomial time. For example, if someone tells us that $\langle 1, 1, 1 \rangle$ is a solution to the formula $x \cdot y \cdot z$, we can easily verify that by substituting the values into the formula.

While sat is the canonical example of an NP-complete problem, there are other common examples, including: travelling salesman, A boolean formula here is essentially an F program: the variables have only boolean (true/false) values, and the only operators are conjunction (logical and), disjunction (logical or), and negation (logical not).

Figure 2: Truth table for $x \cdot y \cdot z$. The formula has 3 variables and the table has 2^3 rows, only one of which evaluates to true (the shaded row at the bottom of the table).

A non-deterministic machine could ‘magically’ (non-deterministically) choose the right row in a single step. You can think of non-deterministic powers as parallelism here. If a machine had eight cores it could evaluate all eight rows of the truth table in parallel and thereby determine which rows evaluated to true in a small amount of clock time.

A single core (i.e., deterministic) machine would have to evaluate each row of the table in sequence, which in the worst case could take an exponential amount of time (because there are an exponential number of rows in the table).
scheduling, knapsack/bin packing, and graph colouring. All of these kinds of problems can be converted to \textsc{sat} (which is the standard technique for proving that a problem is NP-complete). When faced with a new problem of unknown complexity you want to think if it is similar to any of these known NP-complete problems. For example, register allocation appears similar to bin packing.

In this course we will see a number of NP-complete problems: register allocation by graph colouring; circuit equivalence by graph isomorphism, \textit{etc.}

0.3.3 Undecidability and The Halting Problem

There are limits to what can be computed. Problems that cannot be solved on a computer are known as \textit{undecidable}.

The canonical example of an undecidable problem is The Halting Problem: given a program \(P\) and an input for that program \(i\), prove that \(P\) will not get stuck in a loop when it executes with \(i\). In other words, prove that program \(P\) will \textit{halt} on input \(i\).

In the 1930’s Alan Turing famously devised a program \(P\) and input \(i\) for that program where he proved that it was impossible to prove that \(P\) would halt on \(i\). Because there exists one case it which this problem is undecidable we say that it is undecidable in general. There are lots of programs for which it easy to prove termination (\textit{i.e.}, that they will halt on all possible inputs). For example, the classic hello world program, or any other program without loops and without recursion, will always halt for any input.

An important corollary to the Halting Problem proof is that given two programs \(P\) and \(Q\) (written in some Turing Complete language), we cannot decide, in general, if \(P\) and \(Q\) are equivalent. This has important implications for compilers. How can we test our compilers if we cannot compute equivalence of their outputs? Suppose you add a new optimization to your compiler: how can you know that it is correct if you can’t compute the equivalence of the optimized program to the original program?

In practice what compiler engineers do is check that the compiled programs compute the same outputs. Let’s name our two source programs \(P\) and \(Q\). Let \(P’\) and \(Q’\) name the compiled versions of \(P\) and \(Q\) (\textit{i.e.}, the output of our compiler). Then we run \(P’\) on input \(i\) to get output \(p\), and we run \(Q’\) on input \(i\) to get output \(q\), and finally we check that \(p\) and \(q\) are equivalent. This is not as good as directly checking \(P\) and \(Q\) for equivalence, because there might be some input \(x\) that we did not test for which \(P’\) and \(Q’\) compute different outputs.
0.3.4 Easy, Hard, and Impossible

For the purposes of this course, polynomial time algorithms are *easy*, exponential time algorithms are *hard*, and undecidable problems are *impossible*. Note that this classification is about the amount of time that the computer must spend running the algorithm, not about how much time and cognition the engineer must expend implementing the algorithm. For example, quick sort is a tricky algorithm to implement, but it runs quickly, so here we would say that it is ‘easy’.

There are a number of hard (NP-complete) problems in compiler engineering. There are at least three ways to solve such problems:

a. Use a polynomial time approximation algorithm. This is the approach most commonly used in practice. Any compiler textbook will describe a number of polynomial approximations for a hard problem.

b. Implement an NP-complete algorithm yourself. This is never done in compilers, and almost never done anywhere else.

c. Translate the problem into a boolean formula and ask a SAT solver for the answer. This is the direction that research is heading in, and it is what we recommend that you do in your future career if faced with an NP-complete problem for which there is not a well-accepted polynomial time approximation algorithm.

There has been several decades of intense research on SAT-solvers, including annual competitions with various categories. SAT-solvers are used in a variety of areas in industry, but especially in digital hardware design tools. It is highly unlikely that a future you, working under time and budget constraints, will be able to write a solver for an NP-complete problem that runs more quickly than one of the existing open-source SAT-solvers.

0.4 Kinds of Machines and Computational Power

The *computational power* of a machine is the set of problems that it can compute. We say machine X is more powerful than machine Y if there are some problems that X can solve that Y cannot solve.

There are four kinds of theoretical machines that are of interest to us. Their computational power grows along with the amount of storage available to them, and the flexibility in accessing that storage. In all cases the machine’s controller has a finite number of states.

Finite State Machines (FSM): You should be familiar with these from other courses (*e.g.*, ECE327). FSMs always run in linear time, because at each step they consume one token of the input. FSMs are what we use to recognize regular languages.
Push-down automata (PDA): A PDA is a FSM plus an (infinite) stack for storing values. Push-down automata are the kind of machines needed to recognize context-free languages. Push-down automata always run in polynomial time.

Linear-bounded automata (LBA): A LBA is a FSM plus a finite tape. The physical computers we use every day are, from a strict theoretical perspective, LBAs, even though we often think of them as Turing Machines.

Turing Machine: A Turing Machine is a FSM plus an (infinite) tape. We usually conceptualize the computers we use every day as Turing machines, even though technically they are LBAs.

Non-determinism gives a Turing Machine speed but not power. The set of problems that can be computed is the same, but the non-deterministic machine can compute some of them exponentially faster. These are the NP-complete problems: non-deterministic polynomial time, or exponential time on a deterministic machine.

0.4.1 Turing Machines and Programming Languages

We say a programming language is *Turing complete* if it can be used to describe any computation that can be done by a Turing Machine. Roughly speaking, if the programming language has conditionals (if statements), loops or recursion, and a potentially unlimited number of variables then it is Turing complete.

Almost everything that you think of as a ‘programming language’ is Turing complete. Languages like HTML and SQL are not Turing complete, and for that reason are sometimes considered to not be programming languages.

The *Turing tar-pit* refers either to programming languages that lack higher level constructs, or to the argument that such constructs are unnecessary because the programming language under consideration is already Turing complete. Higher-level constructs do not add to the theoretical expressive power of a language that is already Turing complete, but they might make a person writing in that language more productive.

0.4.2 Understanding Real Programs in Theoretical Terms

We can understand real programs in the theoretical terms introduced above, and such an understanding can help us make better engineering choices about what kind of programming language technology is necessary for that program. Consider the finite state machine pictured in Figure 3. This machine accepts the token ‘prize’ and loops on the tokens ‘rock’, ‘paper’, and ‘scissors’.

Non-deterministic PDAs are more powerful than deterministic PDAs, although we will not exploit that fact in this course. Some context-free grammars cannot be parsed by a deterministic PDA and require a non-deterministic PDA.

The idea of a Turing Machines is a thought experiment that Alan Turing came up with in the 1930s. These are not machines that existed as such. At that time a ‘computer’ was a person who worked with a slide rule, pencil, and paper.

54. *Beware of the Turing tar-pit in which everything is possible but nothing of interest is easy.* — Alan Perlis, Epigrams on Programming, 1982
Let’s look at some different ways of writing this finite state machine in a Turing complete language (Java). First we’ll generalize the idea of this machine to a program that reads the first token on its input tape (args[0]) and searches for that token on the rest of the input tape. This generalized idea is no longer strictly a finite state machine, but it makes more sense in a general purpose language and will facilitate our discussion.

Figure 4 gives an implementation of this rock/paper/scissors/prize machine as a iterative linear search: i.e., a for loop. The right-hand side of Figure 4 shows the stack and heap when this program executes on the input ‘prize paper rock scissors prize’ and matches the first ‘prize’ with the last ‘prize’. The horizontal box represents the input tape (array), which is an object in the heap. The regular (non-array) objects in the heap are ellipses. The vertical box represents the stack frame for the main method, with slots for each of the local variables. The dotted edges represent pointers. We can see that this program is like a finite state machine insofar as it requires a constant amount of storage for its computation: just the local variables in the main stack frame.

Figure 5 lists an implementation of the rock/paper/scissors/prize machine that uses a recursive procedure called search. The stack+heap illustration for the same input (‘prize rock paper scissors prize’) at the same point in execution (when the first ‘prize’ matches the last ‘prize’) shows that this program is like a pushdown automata: it requires a linear amount of space, since a new stack frame is created for each token on the input tape. The heap of this program remains the same as before: just the input. Only the stack has changed.

Figure 6 lists an implementation of the rock/paper/scissors/prize machine that first constructs a binary search tree of the input, and then searches it. This program is, from a certain theoretical perspective, the most complicated — although from a practical programming perspective it takes no more effort to write than the others. The run times of the previous programs were obviously linear: they exam-

Figure 3: A simple finite state machine that accepts ‘prize’ and loops on ‘rock’, ‘paper’, or ‘scissors’.
public class IterativeLinearSearch {
 public static void main(final String[] args) {
 final String toFind = args[0];
 for (int i = 1; i < args.length; i++) {
 final String cursor = args[i];
 if (toFind.equals(cursor)) {
 System.out.println("found it!");
 System.exit(0); // DIAGRAM
 }
 }
 System.out.println("didn't find it.");
 System.exit(1);
 }
}

public class RecursiveLinearSearch {
 public static void main(final String[] args) {
 search(args[0], 1, args);
 }
 private static void search(String toFind, int startIndex, String[] a) {
 if (startIndex >= a.length) {
 System.out.println("didn't find it.");
 System.exit(1);
 } else {
 final String cursor = a[startIndex];
 if (toFind.equals(cursor)) {
 System.out.println("found it!");
 System.exit(0); // DIAGRAM
 } else {
 search(toFind, ++startIndex, a);
 }
 }
 }
}
ine each token of the input once. The run time of this program is
$O(n \lg n)$ because that’s the amount of time it takes to construct
the binary search tree. The actual search of the tree takes only $O(\lg n)$
time. If one wanted to perform multiple searches then this would be
a faster program than the previous examples.

We can see that this program also makes use of the heap: in other
words, it performs dynamic memory allocation. This program instanti-
ates five objects: a tree and four nodes. The use of dynamic memory
allocation makes this program like a Turing Machine (or LBA), since
these machines have random access to their storage.

```java
public class BinaryTreeSearch {
    public static void main(final String[] args) {
        TreeSet s = new TreeSet();
        final String toFind = args[0];
        for (int i = 1; i < args.length; i++) {
            s.add(args[i]);
        }
        if (s.contains(toFind)) {
            System.out.println("found it!");
            System.exit(0); // DIAGRAM
        } else {
            System.out.println("didn’t find it.");
            System.exit(1);
        }
    }
}
```

Figure 6: Stack+heap diagram for
binary tree search
0.5 The Heap and Garbage Collection

Once we start using the heap then we have to start worrying about cleaning up after ourselves — garbage collection. Turing Machines have infinite storage, but our real computers do not. When our program no longer needs some object then we want to reclaim that space to we can reuse it for some future object. There are three main strategies for handling garbage collection:

- **Don’t.** The program in Figure 6 does not really need any storage reclamation, because all of the objects allocated are needed until the program terminates, at which point the entire heap is garbage. Some command-line programs in the real world are like this. Interactive programs are not like this: they do some work, clean up after themselves, then do some more work. Interactive programs include any gui (graphical user interface) or web server.

- **Manual.** Some programming languages, such as C/C++, allow the programmer to manually reclaim memory (the delete keyword in C++). For the example program in Figure 6 we could delete the entire search tree after the search is performed. Deleting the entire tree would be a bit tricky:
 - We would need to implement a destructor for both the Tree class and the Node class, which would have to perform a post-order traversal of the tree (i.e., the tree needs to be deleted from the leaves up).
 - We would need to be confident that the tree was well-formed. Otherwise we might fail to delete some nodes.
 - We would need to be confident that the nodes in the tree were not shared with any other trees.
 - We would need to develop, and document, a policy about whether deleting the tree would also delete the contents of the tree (‘rock’, ‘paper’, ‘scissors’, ‘prize’ in our example). In our example program in Figure 6 the input tokens are shared between the tree, the args array, and some local variables (e.g., toFind). So it might be unwise to delete them when we delete the tree. But it also might be tricky to remember to delete them later, because that would require knowing exactly how those objects were shared and that any incoming pointers were no longer needed.

- **Automatic.** We can rely on an automatic garbage collector to reclaim space used by objects that are no longer needed. Most modern programming languages include a garbage collector. We will study different techniques for automatic garbage collection later.
0.6 Programming ‘Paradigms’

There are different styles of programming languages. These have historically been referred to as programming paradigms because languages tended to fit neatly into one or the other category. Many modern languages, however, have features from a variety of styles. One of the major trends of the last decade is that mainstream object-oriented languages are acquiring features historically associated with functional languages.

In this course we will write in Java, an imperative object-oriented language with some functional features. You will learn more advanced object-oriented programming techniques (such as design patterns) and functional programming techniques (such as immutable data) than you have been previously exposed to.

Imperative languages have two distinctive features:

a. **Sequential composition.** Statements are executed one after the other. Other kinds of languages might not even have statements, and the evaluation order of the expressions might be determined by the compiler, rather than being specified by the programmer as in an imperative languages.

b. **Re-assignment.** The value of variables can be changed. Here is an example program exhibiting both sequential composition and re-assignment:

```java
x = 7; // initial assignment to x
print(x); // print 7 to console
x = 2; // re-assignment: change the value of x to 2
print(x); // print 2 to console
```

The theoretical model for imperative languages is Turing Machines.

Functional languages are characterized by three things:

a. **Immutable Data.** Variables cannot be re-assigned.

b. **Anonymous Functions.** Often denoted with lambda (\(\lambda\)). Java 8 and C++ 11 have both added anonymous functions. For example, here is an anonymous function that takes two arguments (\(x\) and \(y\)) and returns ‘true’ if \(x\) is less than \(y\):

\[
\lambda \, x, y \quad . \quad x < y
\]

c. **Higher-Order Functions.** A higher-order function is a function that takes a function pointer as an argument. A common example
is the sort function, which often takes two arguments: the list to be sorted and a comparator function (that defines if the sort should be ascending or descending). In a language with anonymous functions we could call sort and specify ascending order with an anonymous function like so:

```plaintext
comparator = \lambda x, y . x < y;
sort(list, comparator);
```

The theoretical model for functional languages is the \(\lambda \) calculus. This is theoretically equivalent to Turing Machines, but emphasizes a style based on expressions and immutable values (like math), rather than on manipulating the state of a machine (imperative languages).

<table>
<thead>
<tr>
<th>Paradigm</th>
<th>Characteristics</th>
<th>Example Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Imperative</td>
<td>has assignment</td>
<td>Pascal, Basic, Turing, C, Java, C++, C#</td>
</tr>
<tr>
<td></td>
<td>has sequential composition</td>
<td></td>
</tr>
<tr>
<td>Object-oriented</td>
<td>has objects</td>
<td>Java, C++, C#, Scala, Python, Javascript, Smalltalk, OCaml, Ruby</td>
</tr>
<tr>
<td></td>
<td>might have classes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>might have inheritance</td>
<td></td>
</tr>
<tr>
<td></td>
<td>might have dynamic dispatch</td>
<td></td>
</tr>
<tr>
<td>Functional</td>
<td>has higher-order functions</td>
<td>Lisp/Scheme, Haskell, OCaml, F#, Python, Scala</td>
</tr>
<tr>
<td></td>
<td>has anonymous functions (lambda (\lambda))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>data are immutable by default</td>
<td></td>
</tr>
<tr>
<td>Logic</td>
<td>has logical equations/expressions</td>
<td>Prolog, sql</td>
</tr>
<tr>
<td></td>
<td>engine to evaluate equations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(e.g., iteration to a fixed point)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 7: Programming paradigms
0.7 Basic Set Operations

Union $A \cup B$

Intersection $A \cap B$

Difference $A - B$

Phases of compilation

Parse Tree vs. AST

AST Evaluation (an Interpreter)

Ambiguity caused by If-Else statements (PLP-p.84)
0.8 Engineering Practice vs. Theory

This section contains a collection of stories and jokes to help you appreciate the relationship between theory and engineering practice. Generally speaking, engineers are concerned with the finite, whereas theoreticians are concerned with the infinite. Engineers build things in the material world, which is finite.

A theoreticians’s salary. A theoretician is someone who does not care about their salary up to a constant factor.

A theoretician would focus on the asymptotic behaviour (i.e., big-O) rather than the constant factors of a data structure or algorithm. When the inputs get large enough, the asymptotic behaviour is all that matters. But when the inputs are small, the constant factors assume greater importance.

For example, suppose the theoretician’s salary grows quadratically ($O(n^2)$) in the number of years they have been working, whereas the practitioner’s salary grows merely linearly ($O(n)$). The theoretician might think that they have a higher salary. The practitioner would reserve judgment until they knew the constant factors. For example, if the practitioner’s salary was $10,000 \times n$, that would be better than a theoretician’s salary of $1 \times n^2$ within the range of a human lifetime, because of the constant factors.

This same kind of analysis matters when selecting data structures. For example, a hash table might have $O(1)$ asymptotic lookup, but with large constant factors in both time and space. In practice, if the set is expected to contain only two or three elements, it might actually be faster and more space-efficient to use a list and do linear search. Linear search is $O(n)$, which is clearly worse than $O(1)$ in theory — and in practice for large inputs — but the constant factors matter when the inputs are small.

British vs. French Engineers.

Q: What did the French engineer say to the British engineer?
A: Yes, well, it works in practice — but does it work in theory?

There are a few things happening in this joke. Culturally, the British approach tends to focus more on practice and less on theory, whereas the Continental European (French, German, etc.) approach tends to focus more on theory and less on practice.

The more typical line is yes, it works in theory — but does it work in practice? In normal engineering design, we first construct a theoretical model of a design, and only after analyzing that theoretical model do we build and test in the material world.

However, historians of science and engineering have demonstrated
that normal engineering design does not illustrate the entire relationship between theory and practice: sometimes practice precedes, rather than follows, theory. A major case study here is thermodynamics and the steam engine. When Newcomen and Watt invented the steam engine they did not have the theory of thermodynamics. Rather, the theory of thermodynamics was invented to explain and understand their engines.

This joke reminds us that neither theory nor practice is superior to the other: we must understand both, and strive for them to work in harmony to achieve the best results.

Engineer’s Induction. In mathematics, an inductive proof involves a base case and an inductive case. The inductive case shows that if one case is true, then the next case after it is also true. The base case is concrete (just for one particular input), whereas the inductive case is abstract (covering many inputs).

The term *engineer’s induction* is a derisive term for the practice of just trying a few concrete cases in an effort to establish a general truth. For example, in 1772 Euler noticed that the following polynomial seems to always compute primes:

\[P(x) = x^2 + x + 41 \]

Does \(P(x) \) always compute a prime, for any input \(x \)? Let’s use engineer’s induction:

<table>
<thead>
<tr>
<th>(x)</th>
<th>(P(x))</th>
<th>Prime?</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>41</td>
<td>✓</td>
</tr>
<tr>
<td>1</td>
<td>43</td>
<td>✓</td>
</tr>
<tr>
<td>2</td>
<td>47</td>
<td>✓</td>
</tr>
<tr>
<td>3</td>
<td>53</td>
<td>✓</td>
</tr>
<tr>
<td>4</td>
<td>61</td>
<td>✓</td>
</tr>
<tr>
<td>5</td>
<td>71</td>
<td>✓</td>
</tr>
</tbody>
</table>

So, by engineer’s induction we conclude that the polynomial \(P(x) \) always produces a prime number.

But is our conclusion really sound? No. Can you guess what input does not produce a prime? Good engineering intuition suggests we try 41, since it is a named constant in the formula. And indeed, that does not produce a prime, which we can see because 41 would be a common factor:

\[P(41) = 41^2 + 41 + 41 = 41 \times (41 + 1 + 1) \]

Engineer’s induction is a quick-and-dirty technique that can be useful as a first-order approximation, but it should not be considered as proof.
All of software testing is engineer’s induction. In testing all we do is try some specific inputs. We hope that other inputs, that we have not tested, will also produce the desired results, but we have no reason to believe that they will other than engineer’s induction. In this course you will learn some more powerful ways to think about software testing (which is very important for compilers), but they are still ultimately engineer’s induction.

In your future careers you will probably use more powerful techniques for establishing program correctness called formal methods. Formal methods involves using mechanized logic tools to give higher confidence that software (or algorithms) are correct.

The computer hardware engineering community has been using these in practice for over twenty years, since the 1994, when Intel\(^1\) had to recall Pentium chips with faulty floating point units. That recall cost them about $500M. It is less expensive to invest the effort to use formal methods up front to verify a hardware design than to recall a chip.

The computer software industry, in certain focused areas, has been using formal methods since around 2005 when Microsoft\(^2\) required device drivers to pass their Static Driver Verifier before being included with Windows. More recently, Amazon Web Services\(^3\) has been using formal methods to verify their distributed algorithms. Concurrent software is very difficult to test, because not only does one need to establish correctness in the single-threaded case, but also when multiple threads interleave in different ways.

Close enough for practical purposes.
0.9 Orientation Questions

Exercise 0.9.1 All courses are UW are required to have an Outline. [T/F]
Solution 0.9.1 T

Exercise 0.9.2 The Outline specifies the marking scheme and deadlines. [T/F]
Solution 0.9.2 T

Exercise 0.9.3 When does the Outline need to be finalized by?
Solution 0.9.3 The end of the first week of class.

Exercise 0.9.4 Students can have some input on the Outline before it is finalized. [T/F]
Solution 0.9.4 T

Exercise 0.9.5 The dagger/cross annotated sections in the Lab Manual indicate sections:
 a. that tell you what steps to take for that lab
 b. that you can ignore
 c. that describe concepts required to understand the lab, which might be tested on the exam
Solution 0.9.5 C

Exercise 0.9.6 Good debugging techniques include:
 a. forming a hypothesis
 b. using the debugger
 c. having a nap and coming back later with a fresh mind
 d. all of the above
Solution 0.9.6 D

Exercise 0.9.7 The labs in this course are cumulative. [T/F]
Solution 0.9.7 T

Exercise 0.9.8 List labs that have code that is used by future labs.
Solution 0.9.8 1, 3, 4, 6

Exercise 0.9.9 List labs that have code that is not used by future labs.
Solution 0.9.9 2, 5, 7, 8, 9

Exercise 0.9.10 If you are going to skip a lab, it is better to skip a lab where the code is not re-used by future labs. [T/F]
Solution 0.9.10 T

Exercise 0.9.11 Announcements for this course will be made by:
 a. carrier pigeon
 b. bulletin board in hallway
 c. email
 d. Piazza
Exercise 0.9.13 The Lab Manual, Course Notes, Outline, slides, etc., will be updated throughout the term.

a. Nope, they are set in stone on the first day.
b. Yep, everything changes all the time.
c. The Outline is fixed at the end of the first week. The other documents will receive minor improvements throughout the term.

Solution 0.9.13 E

Exercise 0.9.14 The weekly lab deadline used to be Sunday at 11:59 PM. Why are we no longer using that deadline?

a. Religious reasons.
b. Students would not attend the lab sessions all week. They wouldn’t start the lab until Saturday. Then they would complain that the course staff were not available to help them.

Solution 0.9.14 B

Exercise 0.9.15 The weekly lab deadline used to be Thursday at 11:59 PM. Why are we no proposing to change that deadline?

a. Legal reasons.
b. Students would not attend the lab sessions all week. They wouldn’t start the lab until Thursday 6 PM. Then they would complain that the course staff were not available to help them.

Solution 0.9.15 B

Exercise 0.9.16 Git hiccups are easy to resolve via email/Piazza posts.

a. Yep, email solves everything!
b. No. If you are having a hiccum with Git that also means that you probably lack the technical skills to accurately describe the problem, so nobody will be able to help you fix it based on your description of the situation. You need to have someone look at your computer. Come to the scheduled lab times.

Solution 0.9.16 B

Exercise 0.9.17 Why do we start each class with a poem?

a. It’s fun.
b. The rhythm naturally calls the class to attention.
c. It prepares the mind to listen.
d. All of the above.

Solution 0.9.17 D
0.10 Self-Assessment Questions
Exercise 0.10.1 Do you read Piazza announcements?

a. Yes, I read everything on Piazza.
b. Yes, I have my filters set to highlight instructor announcements.
c. No, I don’t mind if my grades suffer because I’m not paying attention.
d. No, I don’t have the technical skills to configure my filters.
e. No, I do not use electronic media.
f. No, I’m just lazy.

Solution 0.10.1 A or B

Exercise 0.10.2 Self-assess your skills in the following matrix:

<table>
<thead>
<tr>
<th>Exams</th>
<th>Strong</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programming</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A: You should have no problem in this course.

B1: You might feel unnecessarily stressed about the labs, but you will get a decent grade in the end because of the exams and written assignments.

B2: You will find the labs engaging but easy, and so will choose to push deeper into the material. You will help your classmates (and be rewarded with bonus participation points for doing so). The danger is that you feel overconfident throughout the term and then decide to not study for the exam — please do not make that mistake. It’s a downer to have a give a low grade to a good programmer.

c: You will find this course challenging. Help is available. Make use of it. Go to the scheduled lab times. Find a peer mentor in class. Good time management skills will help you get the best possible result.

Solution 0.10.2 Work to improve your areas of weakness.

Exercise 0.10.3 Self-assess your skills in the following matrix:

<table>
<thead>
<tr>
<th>Git</th>
<th>Strong</th>
<th>Weak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strong</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A: You should have no problem in this course.

B1: You will have the technical skills to compensate for your poor time management. Force yourself to improve your time management skills anyway.

B2: You will start labs early and attend scheduled lab times, so you will have no trouble finding help when you need it. You might experience a Git hiccup, but it won’t bother you much.

c: You will panic because you will experience a Git hiccup that you cannot resolve at a time when nobody is available to help you. Focus on improving your technical skills and your time management skills to get yourself out of this quadrant.

Solution 0.10.3 Work to improve your areas of weakness.

0.11 Additional Exercises
Chapter 1
Regular Languages & Finite Automata

Regular languages are important

\[
\begin{align*}
\text{theory} & : \text{simplest kind of formal language} \\
\text{practice} & : \\
\text{easy} & : \text{implemented with finite automata} \\
\text{useful} & : \text{for many tasks}
\end{align*}
\]

Finite automata are the simplest kinds of machines: they have no storage capability beyond their current state. More sophisticated machines have additional storage, such as a stack (pushdown automata) or a tape (Turing Machine, Linear Bounded Automata).

You might be familiar with regular expressions from co-op work.

1.1 Regular Expressions

Regular expressions are the simplest class of formal languages, and define what can be computed by a finite automaton. A regular expression is defined over some alphabet, named Σ. There are three operations that can be used to compose smaller regular expressions into larger ones:

Concatenation. One thing followed by another: e.g., AB.

Alternation. One of two alternatives: e.g. $A|B$ means A or B.

Repetition. Zero or more: A^*

The expressive power of regular languages is exactly the same as what can be computed with finite automata.
Grep is a Compiler. From a user’s perspective, grep is a program that searches for a string in a text file. Really, it’s a compiler in disguise. A compiler transforms a source program into an executable program. Grep transforms a regular expression (its source program) into a finite state machine (which can be executed). In this chapter we will learn the basic theory behind how grep (and similar tools) do this compilation.

Grep is an Interpreter. Does grep actually return the executable finite state machine? No. What it returns is the set of lines in the input text file that match the regular expression. So it is more accurate to say that grep is an interpreter.

Grep is a Just-In-Time Compiler. An interpreter evaluates the source program directly: it does not translate it into an executable form. Grep, internally, produces an executable finite state machine (FSM). So grep is really more like a just-in-time (JIT) compiler: it produces executable code from an input program, runs that code on a particular input, returns the output and discards the generated code. This is what modern virtual machines, such as Oracle’s JVM or Microsoft’s CLR, do. So it is most accurate to say that grep is a just-in-time compiler.
1.2 Finite State Machines

A finite state machine (i.e., finite automata) reads characters from an input tape. When it reaches the end of the input tape, it returns one of two results: either it *accepts* or *rejects* the string on the input tape. The string on the input tape will contain characters from the machine’s alphabet.

Finite state machines are commonly visualized with circles for states and labelled edges for transitions between states.

Initial State. A state with an incoming arrow that has no origin. There will be just one initial state for each machine.

Accepting State. A double circle. There might be multiple accepting states. Note that execution of the machine does not terminate when an accepting state is reached: it terminates when the end of the input is reached. If the machine happens to be in an accepting state at that time, then the machine accepts that input.

Transition. An arrow between two states, labelled with the input character that causes the machine to take that transition. In this example, if the machine is in state 1 and the next character in the input is an ‘A’, then it will transition to state 2.

Epsilon Transition. Non-deterministic finite state machines include *epsilon* (ε) transitions. This is a transition that the machine can take without consuming an input character. There might be multiple outgoing epsilon transitions from a single state. It is understood that the machine will ‘magically’ choose the epsilon transition that will eventually lead to accepting the input — if it is possible for the machine to accept the given input.

In our diagrams we will sometimes label epsilon transitions with a lower-case e rather than with an ε.

Deterministic finite automata do not have epsilon transitions.

Implicit Error State. There is, implicitly, a distinguished error state that the machine transitions to when the next character of the input does not match any of the available transitions. Consider, for example, a machine that accepts the string ‘A’, from the alphabet {A, B}. What happens if this machine receives the input string ‘B’? It rejects, of course — it goes to the Error state. We can explicitly draw this Error state, and then add transitions to it from every other state in the machine, labelled with every character of the alphabet that they do not already have a transition for. This tends to make the diagrams very cluttered, so typically the Error state is left implicit (i.e., not visualized).

Finite state machines are the simplest kind of theoretical machine. They have no storage beyond their current state. More sophisticated kinds of machines, such as push-down automata and Turing Machines, add more storage to the foundational finite automata model.
1.3 Regex → NFA

This material is covered well in all compiler text books. The conversion rules from the Tiger book and the PLP books are reproduced here for your convenience in Figure 1.5 and Figure 1.6. Crafting has equivalent figures with slightly different visual notation.

Figure 1.5: Rules for converting regex to NFA [Tiger f2.6]

- **a** constructed as M^+
- **ε** constructed as $M\ | \ ε$
- **M | N**
- **M ∙ N**
- **M**

Figure 1.6: Rules for converting regex to NFA [PLP f2.7]

- **(a) base case**
- **(b) concatenation**
- **(c) alternation**
- **(d) Kleene closure**

Pragmatics: p.56
Tiger: p.25
Crafting: §3.8.1. Note that Crafting uses λ for the empty string, whereas the other two books use $ε$.

Figure 1.5: Rules for converting regex to NFA [Tiger f2.6]
1.4 \textbf{NFA → DFA}

All three textbooks use the standard ‘set of subsets’ approach. \textit{Crafting} describes the approach in words and pseudo-code, whereas the other two books just use words.

In the worst case, the output \texttt{DFA} might be exponentially larger than the input \texttt{NFA}. This case rarely happens in practice.

\begin{itemize}
 \item[a.] Create initial DFA state \(\mathit{A} \), which comprises the NFA start state plus all NFA states that are reachable from its initial state by \(\varepsilon \) transitions.
 \item[b.] For each letter \(x \) in the NFA’s alphabet, see which DFA states it transitions to from the DFA states included in \(\mathit{A} \). Which states can those states get to via \(\varepsilon \)? Note that the originating NFA states to be considered here are just the ones that consume \(x \) (for each \(x \)).
\end{itemize}

1.5 \textbf{DFA Minimization}

The \texttt{DFA} produced in the above procedure is often not as small as it could be. We can use the following procedure to attempt to minimize it. In following this procedure, we will, during intermediate steps, construct machines that are not legal \texttt{DFA}’s. However, at the end of the procedure we will have a legal \texttt{DFA}, and one that is hopefully smaller than what we started with.

\begin{itemize}
 \item[a.] Merge all final states into a new final state. Merge all non-final states into a new non-final state. This machine is likely not a legal \texttt{DFA}, because it will have states with multiple transitions with the same label; call these \textit{ambiguous} transitions.
 \item[b.] Pick an ambiguous transition. Split its start state so that transition is no longer ambiguous. Repeat until all ambiguities have been removed.
\end{itemize}

In the example from Figure 1.8b:

\begin{itemize}
 \item[a.] Merge all non-final states: \(\mathit{ABC} \). Merge all final states: \(\mathit{DEFG} \).
 \item[b.] \(\mathit{ABC} \) has an ambiguous transition on ‘\(d \)’: split it into \(\mathit{AB} \) and \(\mathit{C} \) to remove the ambiguity. We know that \(\mathit{A} \) and \(\mathit{C} \) must be split from each other by looking at the \texttt{DFA}: \(\mathit{A} \) and \(\mathit{C} \) both accept \(d \) but have different targets (\(\mathit{B} \) and \(\mathit{D} \), respectively). Must we also split \(\mathit{B} \) to its own state? No, we can group it with \(\mathit{A} \) because they share the same target when accepting a \(d \), namely \(\mathit{B} \).
 \item[c.] \(\mathit{AB} \) has an ambiguous transition on ‘\(. \)’: split it into \(\mathit{A} \) and \(\mathit{B} \) to remove the ambiguity. No ambiguities remain. Done.
\end{itemize}
1.6 Example regex → NFA → DFA → minimized DFA

Pragmatics: p.59

Figure 1.7: Example of converting regex to NFA [PLP f2.8]. The regex is: $d^* (d \mid d \cdot) d^*$

(a) NFA → DFA

Error: NFA state 11 should not be in DFA state G. http://www.cs.rochester.edu/~u/scott/pragmatics/3e/errata.shtml

(b) DFA minimization

Figure 1.8: Example of NFA to DFA conversion and DFA minimization [PLP f2.9 & f2.10]
1.7 DFA Minimization with an Explicit Error State

The above presentation of DFA minimization works most of the time, but not always. There is one more pre-step that is sometimes needed: adding a distinguished error state to the DFA before minimization.

Consider the regular expression f^*g^*, for zero or one fs followed by any number of gs. We could derive the following NFA, where e edges are ϵ edges, and the corresponding non-minimal DFA:

![Diagram of NFA and corresponding non-minimal DFA for f^*g^*]

This is not good, this is not right: this ‘minimized’ DFA is not equivalent to the original language — it accepts any number of fs and and number of gs in any order. What gives? We need to explicitly represent error transitions in the non-minimal DFA before minimizing.

What happens to the non-minimal DFA if it gets an f while in state B? It rejects. We can model this explicitly by introducing a terminal non-accepting state X, like so:

![Diagram of DFA with explicit error state X]

Now we have explicitly specified what every state does for each letter of the input alphabet (i.e., f and g). If we apply our minimization procedure to this error-explicit DFA we will get the right answer:

![Diagram of minimizing DFA with explicit error state]

(a) merge final and non-final states
(b) split A from BC to remove ambiguity on f
(c) drop explicit error state X
1.8 Another Example

Recall the W language for Boolean waveforms from the labs. Imagine that we extend this language for a three-valued logic: true, false, and unknown. Here is a regular expression for this new language. Complete each construction and transformation.

$$(U|F|T)^*$$

1.8.1 Regex → NFA

From a previous midterm.

1.8.2 NFA → DFA

Dotted, unlabelled edges are epsilon edges.

1.8.3 DFA → minimized DFA
1.9 Finite Automata in ECE351 vs. ECE327

The finite state machines that you see in ECE327 and in ECE351 are, in theory, the same. Just as Java and assembler are, in theory, the same: both Java and assembler are Turing-complete languages. Similarly, the finite automata notations you learn in ECE351 and ECE327 can be converted back and forth to each other because they represent the same theoretical concepts. In this case, the notation in ECE351 is the lower-level notation (i.e., lacks many features that make it convenient for human usage), whereas the ECE327 notation is the higher-level notation. Figure 1.12 summarizes the similarities and differences between the two notations.

<table>
<thead>
<tr>
<th>ECE351</th>
<th>ECE327</th>
</tr>
</thead>
<tbody>
<tr>
<td>finite number of states</td>
<td>finite number of states</td>
</tr>
<tr>
<td>finite alphabet</td>
<td>finite alphabet</td>
</tr>
<tr>
<td>labelled states</td>
<td>labelled states</td>
</tr>
<tr>
<td>one input stream</td>
<td>multiple input streams</td>
</tr>
<tr>
<td>no internal variables</td>
<td>internal variables</td>
</tr>
<tr>
<td>no assignment</td>
<td>assignment to internal variables</td>
</tr>
<tr>
<td>condition on next token</td>
<td>condition on arbitrary expressions</td>
</tr>
<tr>
<td>multiple guards per transition</td>
<td>single guard per transition</td>
</tr>
</tbody>
</table>

How do we show that these two notations are equivalent? The same way that we show Java is equivalent to assembler, and that NFA’s are equivalent to DFA’s: we translate one into the other.

ECE351 ~ ECE327 The only feature that ECE351 machines have that ECE327 machines do not is multiple guards per transition. But ECE327 machines have a richer language for conditions that can easily accommodate this.

ECE327 ~ ECE351 There are a number of features to consider:

- **multiple input streams**: multiplex them down to one stream
- **internal variables**: incorporate into state labels
- **assignment to internal variables**: incorporate into transitions
- **complex conditions**: incorporate into states and transitions

Suppose the ECE351 machine has a transition guarded by x and y (meaning that the input token must be an x or a y). An equivalent ECE327 machine that names the input stream i would have a transition guarded with $i = x \lor i = y$.

Figure 1.13: A simple ECE327 machine translated into an equivalent ECE351 machine. Let i name the single input variable in the ECE327 machine. In the ECE351 machine we simply check if the next token is t (true) or f (false). The ECE351 machine has multiple states that correspond to a single state in the ECE327 machine.
1.10 Additional Exercises

Exercise 1.10.1 Consider a language where real numbers are defined as follows: a real constant contains a decimal point or E notation, or both. For example, 0.01, 2.7834345, 1.2E12, and 7E5 35. are real constants. The symbol "" denotes unary minus and may appear before the number or on the exponent. There is no unary "+" operation. There must be at least one digit to the left of the decimal point, but there might be no digits to the right of the decimal point. The exponent following the "E" is a (possibly negative) integer. Write a regular expression (RE) for such real constants. You may use any of the EBNF extended notation.

Solution 1.10.1 Constraints on real constant:

- contains a decimal point, $\mathbb{0-9}^{*}$, or both
- unary minus may appear before the number or an exponent
- no unary
- at least one digit to the left of decimal point
- zero or more $\mathbb{0-9}^{*}$ to the right of the decimal point
- exponent following 'E' is an $\mathbb{0-9}^{*}$

Therefore, a regular expression that matches this definition is as follows:

$$\sim^{2} \mathbb{[0-9]^{*}} (. \mathbb{[0-9]^{*}} (E \sim^{2} \mathbb{[0-9]^{+}})^{2}) \mid (E \sim^{2} \mathbb{[0-9]^{+}})$$

Exercise 1.10.2 Draw NFA for the following notations used in extended regular expressions:

a. $R?$ that matches zero or one copy of R

b. R^{+} that matches one or more copies of R

Solution 1.10.2 in the source file (see the tex file)

Exercise 1.10.3 Draw an NFA for $(a \mid b)^{*} a(a \mid b)^{3}$

Solution 1.10.3 in the source file (see the tex file)

Exercise 1.10.4 In a certain (fictional) programming language, assignment statements are described as: an assignment statement may have an optional label at the start of the statement. The assignment statement itself consists of an identifier, followed by the assignment operator, followed by an arithmetic expression and ending with the statement termination operator.
A label consists of one or more letters (no digits), followed by a colon (':').

An identifier starts with a letter which may be followed by any number of letters or digits.

The assignment operator is the equal sign ('=').

Arithmetic expressions consist of one or more identifiers, separated by arithmetic operators.

The arithmetic operators are: $+$, $-$, \times, \div.

The statement termination operator is the semicolon (';').

Write a regular expression to recognize assignment statements for this language.

Solution 1.10.4

$L = a|b|c|...|z$

$D = 0|1|2|3|4|5|6|7|8|9$

$(LL^* : |e)L(L|D)^* := L(L|D)^*((+| - | \times | \div)L(L|D)^*)^*$

Exercise 1.10.5 Consider the following NFA, whose final state is state 8. Convert the NFA into a DFA, and draw the resulting DFA. Indicate which state(s) of the DFA are final states. Dotted edges are epsilon ('e') edges.

![NFA Diagram]

Solution 1.10.5

Exercise 1.10.6 Minimize the number of states in the following DFA. Draw the resulting optimized DFA. All states of the initial DFA are final states. Dotted edges are epsilon ('e') edges.

![DFA Diagram]
Solution 1.10.6
The file `ece251ms00p2dsoln.pdf` hasn’t been created from `.tmp/ece251ms00p2dsoln.dot` yet.
Run ‘`dot -Tpdf -o ./tmp/ece251ms00p2dsoln.pdf ./tmp/ece251ms00p2dsoln.dot`’ to create it.
Or invoke `\LaTeX` with the `-shell-escape` option to have this done automatically.

Exercise 1.10.7 Construct (draw) a Non-deterministic Finite Automaton (NFA) to recognize the regular expression:

\[((a|b)bb^*)|aa^*|(a|b)ab^* \]

Solution 1.10.7 in the source file (see the tex file)

Exercise 1.10.8 List two differences between NFAs and DFAs.

Solution 1.10.8

a. DFAs cannot have edges labelled \(\epsilon\), NFAs can,

b. DFAs must have different labels on all edges leaving a given state while NFAs can have several edges leaving the same state with the same label.

Exercise 1.10.9 What kind of machine is required to recognize a regular language?

Solution 1.10.9 Finite automata (finite state machine)

Exercise 1.10.10 How long does it take for a finite state machine to run?

Solution 1.10.10 \(O(n)\) / linear time

Automata Question. Consider the following NFA that starts at state 1 and accepts at state 3 (but gets stuck at state 2):
Exercise 1.10.11 If we assume angelic non-determinism, and the machine receives input string ‘x’, which state will it transition to?

Solution 1.10.11 3

Exercise 1.10.12 If we assume demonic non-determinism, and the machine receives input string ‘x’, which state will it transition to?

Solution 1.10.12 2

Exercise 1.10.13 If we assume arbitrary non-determinism, and the machine receives input string ‘x’, which state will it transition to?

Solution 1.10.13 either 2 or 3

Exercise 1.10.14 Write a regular expression that describes floating point numbers. These examples should be accepted by your solution: 1.2, 0.004, .5, 0, -76.45, -.12, 87, +2.2, +.3

Solution 1.10.14 $(^-|+)?[0-9]\.|?[0-9]*$ Note: do not require the backslash before the period in student solutions

Exercise 1.10.15 HTML is the standard language for describing web pages. Can a regular expression for recognizing HTML be written? Why or why not? Here is an example fragment of HTML:

```html
<html>
<head><title>Web Page Title</title></head>
<body>
It's a web page!
</body>
</html>
```

Solution 1.10.15 No, HTML is not a regular language because it has nested tags.
Exercise 1.10.16 Consider the usual string representation of binary integers. The most significant bit is on the left, and the least significant bit is on the right. For example, ‘10’ is 2, and ‘100’ is 4. Leading zeros are permitted, e.g. ‘0010’ is also 2. Write a regular expression that accepts all binary integers that are divisible by 5.

The general technique for writing a DFA to check if a binary number is divisible by \(n \) is available online, e.g.: http://stackoverflow.com/questions/21897554/design-dfa-accepting-binary-strings-divisible-by-a-number
Solution 1.10.16

This question is too hard. It should have been phrased to write a DFA, instead of a regex. If you know the technique it is not hard to make the DFA. Set states to be the remainders. Define the transition function $\delta(s, \alpha)$ to be $\delta(s, 0) = (2s) \% 5$ and $\delta(s, 1) = (2s + 1) \% 5$. Solid lines are 1-transitions and dotted lines are 0-transitions.

Different people have come up with different regexs that are equivalent to this DFA. Converting a DFA to a regex is not hard in principle, but this one is large in practice.

Here is the short one: $[0 + 1 (11 + 0) (01^*01)^* 1]^*$

Here is the full derivation of the long one:

\[
\begin{align*}
Q_0 &= 0Q_0 \cup 1Q_1 \\
Q_1 &= 0Q_2 \cup 1Q_3 \\
Q_2 &= 0Q_4 \cup 1Q_0 \\
Q_3 &= 0Q_1 \cup 1Q_2 \\
Q_4 &= 1Q_4 \cup 0Q_3
\end{align*}
\]

First simplify 1.5,

\[Q_4 = 1^* \cup 0Q_3 \] (1.6)

Apply 1.4 and 1.6 to 1.3

\[
\begin{align*}
Q_2 &= 0Q_4 \cup 1Q_0 \\
&= 01^* \cup 0Q_3 \cup 1Q_0 \\
&= 01^* \cup 00Q_4 \cup 001Q_2 \cup 1Q_0 \\
&= 01^* \cup (001)^* \cup 000Q_1 \cup 1Q_0
\end{align*}
\] (1.7)
Apply 1.7 and 1.4 to 1.2

\[Q_1 = 0Q_2 \cup 1Q_3 \]
\[= 0Q_2 \cup 10Q_1 \cup 11Q_2 \]
\[= (10)^* \cup (0 \cup 11)Q_2 \]
\[= (10)^* \cup (0 \cup 11)[01^* \cup (001)^* \cup 000Q_1 \cup 1Q_0] \]
\[= (10)^* \cup (0 \cup 11)[01^* \cup (001)^* \cup 1Q_0] \cup (0 \cup 11)000Q_1 \]
\[= (10)^* \cup (0 \cup 11)[01^* \cup (001)^* \cup 1Q_0] \] (1.8)

Apply 1.8 to 1.1

\[Q_0 = 0Q_0 \cup 1Q_1 \]
\[= 0^* \cup 1(10)^* \cup 1[(0 \cup 11)000]^* \cup 1(0 \cup 11)[01^* \cup (001)^* \cup 1Q_0] \]
\[= 0^* \cup 1(10)^* \cup 1[(0 \cup 11)000]^* \cup 1(0 \cup 11)[01^* \cup (001)^*] \cup 1(0 \cup 11)1Q_0 \]
\[= [1(0 \cup 11)1]^* \cup 0^* \cup 1(10)^* \cup 1[(0 \cup 11)000]^* \cup 1(0 \cup 11)[01^* \cup (001)^*] \]

Automata Question. Recall the \(W \) language for Boolean waveforms from the labs. Imagine that we extend this language for a three-valued logic: true, false, and unknown. Here is a regular expression for this new language. Complete each construction and transformation.

\((U|F|T)^*\)

Exercise 1.10.17 Regex → NFA

Solution 1.10.17 Dotted, unlabelled edges are epsilon edges.
Exercise 1.10.18 NFA → DFA

Solution 1.10.18

Exercise 1.10.19 DFA → minimized DFA

Solution 1.10.19

Exercise 1.10.20 Are NFAs more powerful than DFAs? Why?

Solution 1.10.20 No. They can be converted to each other.

Exercise 1.10.21 Are ece327 finite state machines more powerful than ece351 finite state machines?

Solution 1.10.21 TBD

Exercise 1.10.22 Are ece327 finite state machines more convenient for people to use to describe hardware circuits?

Solution 1.10.22 TBD

More Automata Questions. Produce NFAs that recognize the following regular expressions. Convert the NFAs to DFAs and minimize them.

Exercise 1.10.23 $xy^*(z|cw)ab$?

Solution 1.10.23 TBD
Exercise 1.10.24 \((rmb|c)^2(nsf)^*\)

Solution 1.10.24 TBD
Chapter 2
Classifying Grammars by Complexity

As engineers we are concerned with practical design questions such as how hard is this problem? and what kind of machine is needed to solve this problem? and what kinds of techniques are applicable for this problem?. In this chapter we will learn to analyze grammars to answer these kinds of questions.

We are primarily concerned with three classes of languages: regular, $\text{LL}(1)$, and context-free (CFG). Regular languages are the simplest kind of formal languages, and they are also useful in practice. $\text{LL}(1)$ is the class of languages that we can easily write parsers for by hand, using the recursive descent technique. $\text{LL}(1)$ stands for Left-to-right, Leftmost derivation, 1 token of lookahead. Context-free languages are the most sophisticated kind of languages that computer engineers are typically concerned with. Natural languages fall outside of the context-free class. We will learn some simple tests to show that a grammar is outside of a particular class, as well as some sophisticated techniques to prove that a grammar is inside a particular class:

- **outside** of Regular §2.3.1
 - counting two things
 - balanced parentheses
 - nested expressions
- **outside** of $\text{LL}(1)$ §2.6
 - common prefixes §2.5.1
 - left recursion §2.5.2
 - ambiguity §2.4
- **outside** of CFG §2.2
 - counting three things
 - multiple symbols on LHS of grammar

<table>
<thead>
<tr>
<th>Kind of Grammar</th>
<th>Time</th>
<th>Required Machine</th>
</tr>
</thead>
<tbody>
<tr>
<td>regular</td>
<td>$O(n)$</td>
<td>finite automata</td>
</tr>
<tr>
<td>$\text{LL}(1)$</td>
<td>$O(n)$</td>
<td>deterministic pushdown automata</td>
</tr>
<tr>
<td>context-free</td>
<td>$O(n^3)$</td>
<td>nondeterministic pushdown automata</td>
</tr>
<tr>
<td>context-sensitive</td>
<td>?</td>
<td>linear bounded automata</td>
</tr>
<tr>
<td>unrestricted</td>
<td>?</td>
<td>Turing Machine</td>
</tr>
</tbody>
</table>

See §0.1 of these notes.

The seminal work in the analysis of grammars was done by linguist Noam Chomsky. Starting from his ideas, computer scientists and engineers have developed the ideas, focusing on the simpler classes of grammars that are useful for machines but not for linguists, and determining the answers to our engineering design questions.

Figure 2.1: Venn diagram relating grammar complexity classes. Sometimes referred to as the Chomsky hierarchy. This diagram includes the classes that we will focus on, and excludes others.

Figure 2.2: Kinds of grammars and the machines needed to parse them. A question mark in the time column indicates that there is no reasonable limit on the time required to parse this kind of grammar.
What is a Language? How do we specify one?

A LANGUAGE IS A SET OF STRINGS. A language is the set of strings that are in the language. A recognizer is a program that checks if an input string is in the language’s set of strings.

If the language comprises a finite set of strings, we could just write them down. For example, suppose our language is the set of strings \{a, ab, abc\}. This example is a finite language with three strings in it.

WHAT IF THE SET IS INFINITE? Almost all languages are infinite. So we cannot just write down the set of strings in the language (at least not in finite space and time). We need some finite notation for specifying the language. There are multiple such notations that are in common use:

- grammars
- regular expressions (for regular languages only)
- set comprehensions
- words

Some languages are easier to specify in one notation than in others. Some languages are impossible to specify in some notations. Let’s consider some examples:

<table>
<thead>
<tr>
<th>L</th>
<th>Words</th>
<th>RegEx</th>
<th>Set Comprehension</th>
<th>Grammar</th>
<th>Example Strings</th>
</tr>
</thead>
</table>
| 1 | any number of xs | x* | \{x^n | n ≥ 0\} | S → x S
| | | | | | e, x, xx, xxx, ... |
| 2 | x followed by some ys | xy+ | \{xy^n | n ≥ 1\} | S → x y T
T → y T
| | | | | | xy, xyy, xyy, ... |
| 3 | counting two things | | \{x^n y^n | n ≥ 0\} | S → x S y
| | | | | | xy, xxyy, xxyy, ... |
| 4 | counting three things | | \{x^n y^n z^n | n ≥ 1\} | see Figure 2.4 | xyz, xxyyyzzz, ... |

5 nested subtractions

S → E
E → E - T
T → '(' E ')

Figure 2.3: Language notation examples
2.1 Always choose the simplest possible complexity class

When designing a language, always choose the simplest possible grammatical complexity class. Simpler grammars take less time and machinery to parse and are easier to work with. Almost all grammars that computer engineers would want to work with are at most peg’s. Do engineers always follow this kiss rule? No. And it causes unnecessary trouble. Some notable examples of poor language design include:

- The full grammar for vhdl is at least ambiguous because ‘a(i)’ could be an array access or a function call.

- The language that the airline industry uses to encode ticket information uses an unrestricted grammar. The only defence for this incredible blunder is that these ticket codes were designed before grammatical complexity and formal languages were well understood. This poor design decision is still creating unnecessary pain for engineers decades later.

2.1.1 Refactoring and the Equivalence of Grammars

Two grammars are said to be weakly equivalent if they accept exactly the same set of input strings. Two grammars are said to be strongly equivalent if they accept exactly the same set of input strings and produce the same parse trees. A main technique that engineers use is to refactor a complex grammar to an equivalent simpler grammar.

2.2 Is this grammar context-free?

Context-free grammars have only one non-terminal on the lhs of each production. The canonical example of a language that is not context-free is \(\{a^n b^n c^n \mid n \geq 1 \} \). In other words, the letter \(a \) repeated \(n \) times, followed by the letter \(b \) repeated \(n \) times, followed by the letter \(c \) repeated \(n \) times. Figure 2.4 lists a grammar for this language. Note that all but the top two productions have multiple symbols on the lhs (left-hand side): sometimes multiple non-terminals (e.g., \(CB \)), and in other cases a mixture of non-terminals and terminals (e.g., \(aB \)).

\[
\begin{align*}
S & \rightarrow aSBC \\
S & \rightarrow aBC \\
CB & \rightarrow HB \\
HB & \rightarrow HC \\
HC & \rightarrow BC \\
aB & \rightarrow ab \\
BB & \rightarrow bb \\
bc & \rightarrow bc \\
Cc & \rightarrow cc
\end{align*}
\]

Figure 2.4: Context-sensitive grammar for \(\{a^n b^n c^n \mid n \geq 1 \} \).

2.3 Is this grammar regular?

2.3.1 Common cases outside the regular class

The three important things that engineers want to do in practice that cannot be done with regular grammars are:

- (unlimited) balanced parenthesis, e.g. \(\{a^n | n \geq 1\}\)
- expression nesting

 \[
 E \rightarrow (E) \\
 E \rightarrow E + E \\
 E \rightarrow x
 \]
- indefinite counting (e.g., \(\{a^n b^n | n \geq 1\}\))

 \[
 S \rightarrow aSb \\
 S \rightarrow ab
 \]

These are the three main features that we will look for to determine that a grammar is not regular.

2.3.2 Proving a grammar is regular

Context-free grammars restrict the left-hand side to be a single non-terminal. Regular grammars, as a subset of context-free grammars, inherit this left-hand side restriction, and further restrict the right-hand side to one of the following three cases:

- the empty string (\(\epsilon\))
- a single terminal symbol
- either left linear or right linear:
 - right: a single terminal followed by a single nonterminal
 - left: a single nonterminal followed by a single terminal

Note that all the rules in a regular grammar must be either left linear or right linear: if the two forms are mixed then the grammar might not be regular.

See https://en.wikipedia.org/wiki/Formal_grammar for software for converting a DFA to an equivalent regular grammar
2.4 *Is this grammar ambiguous?*

A grammar is ambiguous if there exists a legal input string that has multiple valid derivations.

Test: for a given input string, do two derivations; if they are both accepting and different then the grammar is ambiguous.

Challenge: coming up with the input string that will reveal the ambiguity. In theory this is impossible (undecidable): in other words, there exists a grammar for which we cannot compute an ambiguity-revealing input string. In practice a little bit of human intuition is usually sufficient (certainly for any grammars that we will consider in this class).

Consider the following grammar, where *INT* means any integer:

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow E + E \\
E & \rightarrow \text{INT}
\end{align*}
\]

Is it ambiguous? Consider the input string ‘1+2+3’. It can parse either as ‘(1+2)+3’ or as ‘1+(2+3)’, so yes, the grammar is ambiguous.

We can remove this ambiguity by refactoring the grammar. Our refactored grammar will accept the same set of input strings, but for each (legal) input string will produce exactly one parse.

The problem with this example grammar is that it does not specify whether addition is left-associative or right-associative: it allows both parses. From an arithmetic standpoint this is fine, because both parses are arithmetically correct. But from an engineering standpoint we would like to choose one associativity over the other for a few reasons. First, an ambiguous *CFG* is definitely not *LL*(1), nor is it a *PEG*. Therefore, we need more machinery (*nondeterministic PDA vs. deterministic PDA*), more complex parsing algorithms (*Earley vs. recursive descent*), and more time to parse (*O*(n\(^3\)) vs. *O*(n)). Second, it makes testing easier if there is only one acceptable output.

Operator associativity and precedence are potential sources of ambiguity that we can design (or refactor) grammars to avoid. There is an equivalent *LL*(1) grammar for this language.
2.4.1 Removing ambiguity using precedence

In grade school we learn the order of operations and the acronym BEDMAS, which stands for brackets, exponents, division, multiplication, addition, subtraction. This is operator precedence, and it is something that needs to be designed in to a grammar. How we enforce precedence:

a. Each level of precedence should be its own non-terminal
b. The lowest level of precedence should be the top level production (highest level of precedence is the last production)
c. Each production should use the next highest level of precedence
d. The highest level of precedence includes the operands

Consider the following ambiguous grammar, where S is the top-level:

\[
S \rightarrow E \\
E \rightarrow E + E \\
E \rightarrow E \ast E \\
E \rightarrow \text{INT}
\]

This grammar will parse ‘1+2*3’ either as ‘(1+2)*3’ or as ‘1+(2*3)’, but only the second parse is arithmetically correct. How can we design the grammar to produce only this second parse? By introducing operator precedence into the grammar.

The first rule above says that each level of precedence should be its own non-terminal. We have two operators (*, +), and we want each of them to have their own level of precedence, so therefore two levels of precedence. Let’s name them E and F:

\[
E \rightarrow E + E \\
F \rightarrow F \ast F
\]

We want F to be the highest level of precedence (multiplication comes first), so from the last rule above we add the production:

\[
F \rightarrow \text{INT}
\]

We want E to be the lowest level of precedence, so from the second rule above we keep the production:

\[
S \rightarrow E
\]

Now we apply the third rule above to connect things:

\[
E \rightarrow F
\]

The input ‘1+2*3’ now unambiguously parses as ‘1+(2*3)’. The input ‘4+5+6’ still parses ambiguously, so the grammar is still ambiguous. From an arithmetic standpoint this doesn’t matter because addition and multiplication are associative: ‘4+(5+6)’ sums to 15, as does ‘(4+5)+6’.

Pragmatics: p.90 + §6.1.1
2.4.2 Removing ambiguity using associativity

Let’s change the operators in our grammar to subtraction and division, for which the associativity matters (they are left associative), so the remaining ambiguity matters. Here’s our modified grammar:

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow E - E \\
E & \rightarrow F \\
F & \rightarrow F / F \\
F & \rightarrow \text{INT}
\end{align*}
\]

Consider that ‘8-6-2’ evaluates to 4 if parsed as ‘8-(6-2)’ (right-associative parse; incorrect), but evaluates to 0 if parsed as ‘(8-6)-2’ (left-associative parse; correct). The problem is in this production:

\[
E \rightarrow E - E
\]

We can expand \(E\) on either the left side or the right side of the subtraction operator. Subtraction is a left-associative, so we should change this production to be left-recursive only:

\[
E \rightarrow E - F
\]

Similarly, division is left-associative, so we should change its production to be left recursive only:

\[
F \rightarrow F / \text{INT}
\]

Our resulting grammar is:

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow E - F \\
E & \rightarrow F \\
F & \rightarrow F / \text{INT} \\
F & \rightarrow \text{INT}
\end{align*}
\]

This grammar parses ‘8-6-2’ unambiguously and correctly in a left-associative manner as ‘(8-6)-2’.

It’s left-associative, but not LL(1) due to left recursion

This is a fundamental problem with BNF and LL(1): expressing left-associativity in BNF requires using left recursion; if we refactor to remove the left recursion, we also end up changing the associativity. There is no simple solution.

But we can write a (weakly) equivalent grammar in EBNF using repetition that does not constrain the associativity, and then implement as we want (this is what we did in LAB3).
Dangling Else: A classic problem

Consider the following pseudo-code snippet that summarizes the enrollment conditions for ece351:

```c
if (Dept == ECE) if (Term == 3A) Enroll = Y; else Enroll = Override;
```

Clearly 3A ece students can enroll in ece351. But who can use an override to get into the course? Students from outside ece? Or students from within ece who are in a different term? It depends on the parse: is the else associated with the inner or outer if? Let’s look at the typical grammar for an optional else:

```c
stmt → ...
| conditional
conditional → if (expr) stmt
| if (expr) stmt else stmt
```

The grammar is ambiguous. Both parses are possible:

- **else associated with inner-if:**
  ```c
  if (Dept == ECE) {
    if (Term == 3A) {
      Enroll = Yes;
    }
  } else { // other−term ECE
    Enroll = Override;
  }
  ```

- **else associated with outer-if:**
  ```c
  if (Dept == ECE) {
    if (Term == 3A) {
      Enroll = Yes;
    }
  } else { // outsiders
    Enroll = Override;
  }
  ```

This problem is usually resolved in one of four ways in practice:

- Require every if to have a corresponding endif statement
- Require every if to have a corresponding else
- Introduce indenting to the grammar
- Add a note to the language specification

Exercise 2.4.1 Which of the above approaches change the grammar to remove the ambiguity?

Solution 2.4.1 The first three. Adding a note to the language specification leaves the grammar ambiguous, and requires the parser implementer to deal with this case specially.

Exercise 2.4.2 For the approaches that remove ambiguity from the grammar, write the new unambiguous grammar.
Solution 2.4.2 TBD

Exercise 2.4.3 Recall that pegs do not permit ambiguity. Write a peg that expresses the desired behaviour of C/Java/etc. languages. Use pseudo-Parboiled syntax: i.e., Sequence(), FirstOf(), etc.

Solution 2.4.3 FirstOf(IfAlone, IfElse)
2.5 Is this grammar $\text{LL}(1)$? Simple tests

Any grammar that is left recursive or has common prefixes is not $\text{LL}(1)$. Both of these problems can usually be removed by refactoring the grammar. The refactored grammar might be $\text{LL}(1)$. To know for sure we’ll still need to perform the full test described in the next section.

2.5.1 Remove common prefixes with left-factoring

There is an algorithm for this (see Crafting a Compiler). The general pattern presented here will show you the idea and be good enough for you to do exam questions.

<table>
<thead>
<tr>
<th>Problem:</th>
<th>Solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal → Prefix Suffix₁</td>
<td>Goal → Prefix Tail</td>
</tr>
<tr>
<td></td>
<td>Tail → Suffix₁</td>
</tr>
<tr>
<td></td>
<td>Suffix₂</td>
</tr>
</tbody>
</table>

Example Problem:

<table>
<thead>
<tr>
<th>Problem:</th>
<th>Solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>stmt → id := expr</td>
<td>stmt → id Tail</td>
</tr>
<tr>
<td></td>
<td>Tail → := expr</td>
</tr>
<tr>
<td></td>
<td>(expr)</td>
</tr>
</tbody>
</table>

2.5.2 Remove left recursion

There is an algorithm for this (see Crafting a Compiler). The general pattern presented here will show you the idea and be good enough for you to do exam questions.

<table>
<thead>
<tr>
<th>Problem:</th>
<th>Solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal → Goal Suffix</td>
<td>Goal → Prefix Tail</td>
</tr>
<tr>
<td></td>
<td>Prefix Tail</td>
</tr>
<tr>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>

Example Problem:

<table>
<thead>
<tr>
<th>Problem:</th>
<th>Solution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>List → List , id</td>
<td>List → id Tail</td>
</tr>
<tr>
<td></td>
<td>Tail → , id Tail</td>
</tr>
<tr>
<td></td>
<td>e</td>
</tr>
</tbody>
</table>
2.6 Is this grammar LL(1)? Full test

If a grammar is LL(1) then we can predict which alternative to choose based on one token of lookahead.

Let’s think about the grammar from the labs reproduced in Figure 2.5 intuitively: which nonterminals have alternatives? Apparently Factor and Constant. When we are expecting a Constant, and we lookahead one token will we be able to determine which alternative? Yes, because the alternatives are just one token: either ‘0’ or ‘1’. Factor is almost as simple: in one case we see a ‘!’, in the next a ‘(’, then an identifier, and finally a ‘0’ or a ‘1’. So as long as ‘!’, ‘(’, ‘0’, and ‘1’ are not valid identifiers then we will know which alternative to choose based on one token of lookahead.

Is it really that simple? Almost, but not quite. The intuition is correct: are the predict sets disjoint? Can we predict which alternative to choose based on one token of lookahead? The technical detail we’ve glossed over is the Kleene star (‘*’) used in the grammar of Figure 2.5. We need to convert this grammar from EBNF (which allows the ‘*’ and the bar ‘|’) to basic BNF, which has neither the star (‘*’) nor the bar (‘|’). When we convert the stars we will get some new nonterminals, and we won’t be as confident in our intuitive assessment of those nonterminals: we’ll want a more rigorous formal analysis to determine if this grammar is LL(1).

Some sources claim that regular BNF includes the bar ‘|’. Scott says it doesn’t. In either case, we want to remove the bar for the following computations.

```
Program → Formula* $$
Formula → Var ◦ Expr ◗
Expr → Term (‘+’ Term)*
Term → Factor (‘.’ Factor)*
Factor → ‘!’ Factor | ‘(’ Expr ‘)’ | Var | Constant
Constant → ‘0’ | ‘1’
Var → id
```

Figure 2.5: An EBNF grammar for \mathcal{F}, from LAB4
2.6.1 \textit{Convert ebnf to bnf}

Need to get rid of star and bar (repetition and alternation). Bar is easy: just break up into multiple productions. Star is a bit harder: need to introduce new non-terminals and do the repetition by recursion. Will also need epsilon to terminate the recursion.

\begin{align*}
\text{Program} & \rightarrow \text{FList } \$$ \\
\text{FList} & \rightarrow \text{Formula } \text{FList} \\
\text{FList} & \rightarrow \epsilon \\
\text{Formula} & \rightarrow \text{Var } \text{'='} \text{Expr } \text{'.'} \\
\text{Expr} & \rightarrow \text{Term } \text{TermTail} \\
\text{TermTail} & \rightarrow \text{'}+\text{'} \text{Term } \text{TermTail} \\
\text{TermTail} & \rightarrow \epsilon \\
\text{Term} & \rightarrow \text{Factor } \text{FactorTail} \\
\text{FactorTail} & \rightarrow \text{'}\text{' } \text{Factor } \text{FactorTail} \\
\text{FactorTail} & \rightarrow \epsilon \\
\text{Factor} & \rightarrow \text{'}!\text{' } \text{Factor} \\
\text{Factor} & \rightarrow \text{'}\text{(' } \text{Expr } \text{')'} \\
\text{Factor} & \rightarrow \text{Var} \\
\text{Factor} & \rightarrow \text{Constant} \\
\text{Constant} & \rightarrow \text{'}\text{o'} \\
\text{Constant} & \rightarrow \text{'}\text{1'} \\
\text{Var} & \rightarrow \text{id}
\end{align*}

The intuitive questions now are whether we can predict which alternative to choose for our new nonterminals FList, TermTail, and FactorTail. In practice this is not too hard for TermTail and FactorTail. If we’re expecting a TermTail and we lookahead and see a ‘+’ then we do that alternative, else the TermTail goes to \(\epsilon\). In theory, however, we would like to know which tokens might predict the TermTail \(\rightarrow \epsilon\) production, rather than counting on the ‘else’ clause that we could exploit here in practice.

For the FList \(\rightarrow\) Formula FList production we can intuitively see that a Formula begins with an id (derived from Var), and if the next FList is empty we’ll expect to see the end-of-input (‘$$’).

So we could implement a recursive descent parser for this simple grammar by hand without really requiring any theory, which is what we did in \textit{Lab2}. But to really know that this grammar is LL(1), or to make that determination for a more sophisticated grammar, we need some theory.
2.6.2 Which nonterminals are nullable?

‘Nullable’ means that the nonterminal can derive \(\epsilon \). The standard notation for this (used by Scott) is \(\text{eps}(A) \), where ‘eps’ is short for ‘epsilon’. When constructing the equation there are three cases:

- Derives \(\epsilon \) directly = 1 (nullable).
- Contains a terminal = 0 (cannot be nullable).
- Sum-of-products: one product for each alternative, where the product comprises \(\text{eps}(A_i) \) for each nonterminal \(A_i \) in the production.

<table>
<thead>
<tr>
<th>Nonterminal</th>
<th>Equation</th>
<th>Solution</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{eps}(\text{Program}))</td>
<td>= 0</td>
<td>= 0</td>
<td>contains a terminal (\ $$$$)</td>
</tr>
<tr>
<td>(\text{eps}(\text{FList}))</td>
<td>= 1</td>
<td>= 1</td>
<td>derives (\epsilon) directly</td>
</tr>
<tr>
<td>(\text{eps}(\text{Formula}))</td>
<td>= 0</td>
<td>= 0</td>
<td>contains terminals ‘(' and ‘(', ‘,'</td>
</tr>
<tr>
<td>(\text{eps}(\text{Expr}))</td>
<td>= \text{eps}(\text{Term}) \cdot \text{eps}(\text{TermTail})</td>
<td>= 0</td>
<td>sum-of-products (but only one alternative)</td>
</tr>
<tr>
<td>(\text{eps}(\text{TermTail}))</td>
<td>= 1</td>
<td>= 1</td>
<td>derives (\epsilon) directly</td>
</tr>
<tr>
<td>(\text{eps}(\text{Term}))</td>
<td>= \text{eps}(\text{Factor}) \cdot \text{eps}(\text{FactorTail})</td>
<td>= 0</td>
<td>sum-of-products (but only one alternative)</td>
</tr>
<tr>
<td>(\text{eps}(\text{FactorTail}))</td>
<td>= 1</td>
<td>= 1</td>
<td>derives (\epsilon) directly</td>
</tr>
<tr>
<td>(\text{eps}(\text{Factor}))</td>
<td>= 0 + 0 + \text{eps}(\text{Var}) + \text{eps}(\text{Constant})</td>
<td>= 0</td>
<td>one product for each alternative</td>
</tr>
<tr>
<td>(\text{eps}(\text{Constant}))</td>
<td>= 0 + 0</td>
<td>= 0</td>
<td>both alternatives are terminals</td>
</tr>
<tr>
<td>(\text{eps}(\text{Var}))</td>
<td>= 0</td>
<td>= 0</td>
<td>derives a terminal</td>
</tr>
</tbody>
</table>

2.6.3 FIRST sets

We need the nullability information in order to construct the FIRST sets. Some treatments put \(\epsilon \) in the FIRST sets. We are following Scott’s treatment with an explicit nullability predicate (\(\text{eps} \)); this treatment is also widely used.

<table>
<thead>
<tr>
<th>Nonterminal</th>
<th>Equation</th>
<th>Solution</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{first}(\text{Program}))</td>
<td>= \text{first}(\text{FList}) \cup { $$}</td>
<td>= { \text{id}, $$ }</td>
<td>\text{FList is nullable.}</td>
</tr>
<tr>
<td>(\text{first}(\text{FList}))</td>
<td>= \text{first}(\text{Formula})</td>
<td>= { \text{id} }</td>
<td>See note about (\epsilon) above.</td>
</tr>
<tr>
<td>(\text{first}(\text{Formula}))</td>
<td>= \text{first}(\text{Var})</td>
<td>= { \text{id} }</td>
<td>See note about (\epsilon) above.</td>
</tr>
<tr>
<td>(\text{first}(\text{Expr}))</td>
<td>= \text{first}(\text{Term})</td>
<td>= { \text{!, (, 0, 1, id} }</td>
<td>See note about (\epsilon) above.</td>
</tr>
<tr>
<td>(\text{first}(\text{TermTail}))</td>
<td>= {+}</td>
<td>= {+}</td>
<td>See note about (\epsilon) above.</td>
</tr>
<tr>
<td>(\text{first}(\text{Term}))</td>
<td>= \text{first}(\text{Factor})</td>
<td>= {\text{!, (, 0, 1, id} }</td>
<td>See note about (\epsilon) above.</td>
</tr>
<tr>
<td>(\text{first}(\text{FactorTail}))</td>
<td>= {}</td>
<td>= {}</td>
<td>Factor has four alternatives.</td>
</tr>
<tr>
<td>(\text{first}(\text{Factor}))</td>
<td>= {\text{!, (} \cup \text{first}(\text{Var}) \cup \text{first}(\text{Constant}) }</td>
<td>= {\text{!, (, 0, 1, id} }</td>
<td></td>
</tr>
<tr>
<td>(\text{first}(\text{Constant}))</td>
<td>= {0, 1}</td>
<td>= {0, 1}</td>
<td></td>
</tr>
<tr>
<td>(\text{first}(\text{Var}))</td>
<td>= {\text{id}}</td>
<td>= {\text{id}}</td>
<td></td>
</tr>
</tbody>
</table>
2.6.4 FOLLOW sets

The intuition of FOLLOW(A) is ‘what tokens might come after A?’ We need the nullability information and the first sets to compute the follow sets. The specification for FOLLOW sets is (Scott p.80):

\[
\text{FOLLOW}(A) \equiv \{ c : S \Rightarrow^+ \alpha A c \beta \}
\]

This specification is given as a set comprehension: it specifies the set of all c’s such that some property is true of c (the property, or predicate, is the part after the colon). The property here is that there is some nonterminal (or terminal) S that can eventually derive a string in which c follows A, perhaps surrounded by some other arbitrary symbols (\(\alpha\) and \(\beta\)). We construct the equations like so:\footnote{Adapted from the algorithm on p.82.}

\[
\text{FOLLOW}(A) = \bigcup \begin{cases}
\{\text{FIRST}(\beta) : D \rightarrow \alpha A \beta\} \\
\{\text{FOLLOW}(D) : D \rightarrow \alpha A \beta\} & \text{where } D \neq A \\
\{\text{FOLLOW}(D) : D \rightarrow \alpha A \beta\} & \text{where } D \neq A \text{ and } \text{ EPS}(\beta) \text{ is true}
\end{cases}
\]

In other words, look at all of the productions and see if they match any of these three patterns (the part after the colon): if so, then add (union, \(\cup\)) either \(\text{FIRST}(\beta)\) or \(\text{FOLLOW}(D)\), as appropriate.

<table>
<thead>
<tr>
<th>Nonterminal</th>
<th>Equation</th>
<th>Solution</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOLLOW(Program)</td>
<td>(= \emptyset)</td>
<td>(= \emptyset)</td>
<td>(\emptyset) is the empty set</td>
</tr>
<tr>
<td>FOLLOW(FList)</td>
<td>(= {$$})</td>
<td>(= {$$})</td>
<td>FList is nullable</td>
</tr>
<tr>
<td>FOLLOW(Formula)</td>
<td>(= \text{FIRST}(FList) \cup \text{FOLLOW}(FList))</td>
<td>(= {\text{id}, $$})</td>
<td></td>
</tr>
<tr>
<td>FOLLOW(Expr)</td>
<td>(= {,;})</td>
<td>(= {,;})</td>
<td></td>
</tr>
<tr>
<td>FOLLOW(TermTail)</td>
<td>(= \text{FOLLOW}(Expr))</td>
<td>(= {,;})</td>
<td></td>
</tr>
<tr>
<td>FOLLOW(Term)</td>
<td>(= \text{FIRST}(TermTail) \cup \text{FOLLOW}(Expr))</td>
<td>(= {,;})</td>
<td>TermTail is nullable.</td>
</tr>
<tr>
<td>FOLLOW(FactorTail)</td>
<td>(= \text{FOLLOW}(Term))</td>
<td>(= {,;})</td>
<td></td>
</tr>
<tr>
<td>FOLLOW(Factor)</td>
<td>(= \text{FIRST}(FactorTail) \cup \text{FOLLOW}(Term))</td>
<td>(= {,+,;})</td>
<td>FactorTail is nullable.</td>
</tr>
<tr>
<td>FOLLOW(Constant)</td>
<td>(= \text{FOLLOW}(Factor))</td>
<td>(= {,+,;})</td>
<td></td>
</tr>
<tr>
<td>FOLLOW(Var)</td>
<td>(= {\text{\textlangle},} \cup \text{FOLLOW}(Factor))</td>
<td>(= {\text{\textlangle},+,;})</td>
<td>Var occurs in two RHS’s</td>
</tr>
</tbody>
</table>

\footnotetext{Student confusion about why this production doesn’t add (see suppressed text)}

\footnotetext{Piazza post from Ryan}
2.6.5 Predict Sets

We need the nullability information, first sets, and follow sets to compute the predict sets.

\[
\text{PREDICT}(A \rightarrow \beta) = \text{FIRST}(\beta) \cup \begin{cases}
\text{FOLLOW}(A) & \text{if } \text{EPS}(\beta) \text{ is true} \\
\emptyset & \text{otherwise}
\end{cases}
\]

<table>
<thead>
<tr>
<th>Production</th>
<th>Equation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREDICT(Program → FList $$)</td>
<td>= \text{FIRST}(\text{FList} \ $$) = \text{FIRST}(\text{FList}) \cup { $$} = { \text{id}, $$}</td>
<td>\beta = \text{FList} $$]</td>
</tr>
<tr>
<td>PREDICT(FList → Formula FList) = \text{FIRST}(\text{Formula})</td>
<td>= { \text{id} }</td>
<td>\text{disjoint}</td>
</tr>
<tr>
<td>PREDICT(FList → $$) = \text{FOLLOW}(\text{FList})</td>
<td>= { $$}</td>
<td>\text{. } \text{LL}(1)</td>
</tr>
<tr>
<td>PREDICT(Formula → Var ‘<=’ Expr ‘;’) = \text{FIRST}(\text{Var})</td>
<td>= { \text{id} }</td>
<td></td>
</tr>
<tr>
<td>PREDICT(Expr → Term TermTail) = \text{FIRST}(\text{Term})</td>
<td>= { !, (, 0, 1, \text{id} }</td>
<td></td>
</tr>
<tr>
<td>PREDICT(TermTail → ‘+’ Term TermTail) = { + }</td>
<td>= { + }</td>
<td>\text{disjoint}</td>
</tr>
<tr>
<td>PREDICT(TermTail → $$) = \text{FOLLOW}(\text{TermTail})</td>
<td>= { $$}</td>
<td>\text{. } \text{LL}(1)</td>
</tr>
<tr>
<td>PREDICT(Term → Factor FactorTail) = \text{FIRST}(\text{Factor})</td>
<td>= { !, (, 0, 1, \text{id} }</td>
<td></td>
</tr>
<tr>
<td>PREDICT(FactorTail → ‘.’ Factor FactorTail) = { . }</td>
<td>= { . }</td>
<td>\text{disjoint}</td>
</tr>
<tr>
<td>PREDICT(FactorTail → $$) = \text{FOLLOW}(\text{FactorTail})</td>
<td>= { +, $$}</td>
<td>\text{. } \text{LL}(1)</td>
</tr>
<tr>
<td>PREDICT(Factor → ‘!’ Factor) = { ! }</td>
<td>= { ! }</td>
<td></td>
</tr>
<tr>
<td>PREDICT(Factor → ‘(’ Expr ‘)’) = { (}</td>
<td>= { (}</td>
<td>\text{disjoint}</td>
</tr>
<tr>
<td>PREDICT(Factor → Var) = { \text{id} }</td>
<td>= { \text{id} }</td>
<td>\text{. } \text{LL}(1)</td>
</tr>
<tr>
<td>PREDICT(Factor → Constant) = { 0,1 }</td>
<td>= { 0,1 }</td>
<td></td>
</tr>
<tr>
<td>PREDICT(Constant → ‘0’) = { 0 }</td>
<td>= { 0 }</td>
<td>\text{disjoint}</td>
</tr>
<tr>
<td>PREDICT(Constant → ‘1’) = { 1 }</td>
<td>= { 1 }</td>
<td>\text{. } \text{LL}(1)</td>
</tr>
<tr>
<td>PREDICT(Var → id) = { \text{id} }</td>
<td>= { \text{id} }</td>
<td></td>
</tr>
</tbody>
</table>

Since the predict sets for productions with the same LHS are all disjoint then we can conclude that this grammar is LL(1).

Note: \(\beta \) here refers to the entire RHS. So technically:

\[
\text{PREDICT}(\text{FList} \rightarrow \text{Formula} \text{FList}) = \text{FIRST}(\text{Formula} \text{FList})
\]

Since Formula is not nullable this is equal to \(\text{FIRST}(\text{Formula}) \).

Also, for the productions that go directly to \($$ \) we have elided the ‘FIRST(\$$)’ from their formula:

\[
\text{PREDICT}(\text{FList} \rightarrow $$) = \text{FIRST}(\$$) \cup \text{FOLLOW}(\text{FList}) = \text{FOLLOW}(\text{FList})
\]
2.7 Is this a PEG? (Parsing Expression Grammar)

PEG’s and CFG’s largely overlap: many (if not most) of the languages that computer engineers are concerned with fall in the intersection. Some points of interest outside the intersection include:

• PEG’s cannot represent ambiguity; CFG’s can.
• PEG’s can count three things; CFG’s cannot.
• CFG’s can have left-recursion; PEG’s cannot.

2.8 Additional Exercises

Exercise 2.8.1 The following grammar is not suitable for a top-down predictive parser. Fix the problems by rewriting the grammar (with any required changes) and then construct the LL(1) parsing table for your new grammar.

\[
L \rightarrow R'a'
L \rightarrow Q'ba'
R \rightarrow 'aba'
R \rightarrow 'caba'
R \rightarrow R'bc'
Q \rightarrow 'bbc'
Q \rightarrow 'bc'
\]

Solution 2.8.1

There are a few issues with this grammar that we should resolve:

• \[a^n b^n c^n \mid n \geq 1\] of the production \(R \rightarrow Rbc\)
• Unpredictability of \(Q\) given one look ahead token because of common prefix

Left Recursion:

\[
R \rightarrow 'aba'
R \rightarrow 'caba'
R \rightarrow R'bc'
\]

Introduce additional non-terminal \(R'\):

\[
R' \rightarrow 'bc'R' \mid \epsilon
\]

and rewrite the productions for \(R\):

\[
R \rightarrow 'aba'R'
R \rightarrow 'caba'R'
\]

Common Prefix:

\[
Q \rightarrow 'bbc'
Q \rightarrow 'bc'
\]

We can left factor \(Q\) to remove the common prefix by introducing the non-terminal \(Q_{tail}\):

\[
Q \rightarrow 'b'Q_{tail}
Q_{tail} \rightarrow 'bc' \mid 'c'
\]
Our final grammar is:

\[
\begin{align*}
L & \rightarrow R'a' \\
L & \rightarrow Q'ba' \\
R & \rightarrow 'aba'R' \\
R & \rightarrow 'caba'R' \\
R' & \rightarrow 'bc'R' \\
R' & \rightarrow e \\
Q & \rightarrow 'b'Q_{tail} \\
Q_{tail} & \rightarrow 'bc' \\
Q_{tail} & \rightarrow 'c'
\end{align*}
\]

Exercise 2.8.2

Consider the grammar given below, with S as the start symbol, and a, b, c, d, f and g as terminals.

\[
\begin{align*}
S & \rightarrow XYZ $$ \\
X & \rightarrow 'a' | Z'b' | e \\
Y & \rightarrow 'c' | 'd'XY | e \\
Z & \rightarrow 'f' | 'g'
\end{align*}
\]

Compute the FIRST and FOLLOW sets for each non-terminal in the grammar.

Solution 2.8.2

Recall that EPS, FIRST, FOLLOW, and PREDICT sets are defined as follows:

\[
\begin{align*}
\text{EPS}(\alpha) & \equiv \text{if } \alpha \Rightarrow^* e \text{ then true else false} \\
\text{FIRST}(\alpha) & \equiv \{ c : \alpha \Rightarrow^* c\beta \} \\
\text{FOLLOW}(A) & \equiv \{ c : S \Rightarrow^+ aAc\beta \} \\
\text{PREDICT}(A \rightarrow \alpha) & \equiv \text{FIRST}(\alpha) \cup (\text{if EPS}(\alpha) \text{ then FOLLOW}(A) \text{ else } \emptyset)
\end{align*}
\]

Exercise 2.8.3

Assume the grammar shown below, with expr as the start symbol, and that terminal id can be any single letter of the alphabet (a through z).

\[
\begin{align*}
\textit{expr} & \rightarrow \textit{id} \ "\:=\" \textit{expr} \\
\textit{expr} & \rightarrow \textit{term} \ \textit{term} \textit{tail} \\
\textit{term} \textit{tail} & \rightarrow \ "+" \ \textit{term} \ \textit{term} \textit{tail} | e \\
\textit{term} & \rightarrow \textit{factor} \ \textit{factor} \textit{tail} \\
\textit{factor} \textit{tail} & \rightarrow \ "*" \ \textit{factor} \ \textit{factor} \textit{tail} | e \\
\textit{factor} & \rightarrow \ "(" \ \textit{expr} \ "\)" | \textit{id}
\end{align*}
\]

In two or three sentences, explain why the grammar cannot be parsed by an LL(1) parser.
Solution 2.8.3 The problem originates from the non-terminal \textit{expr}. The productions

\[
\begin{align*}
\text{\textit{expr}} & \rightarrow \ 'id' \ "\:=\" \ \textit{expr} \\
\text{\textit{expr}} & \rightarrow \ \textit{term} \ \textit{term_tail}
\end{align*}
\]

actually have \underline{\text{\textit{expr}}} (The latter production for \textit{expr} may derive \textquote{\textit{id}} as its first terminal: \textit{expr}→\textit{term}... \textit{term}→\textit{factor}... \textit{factor}→\textquote{\textit{id}}), so an LL(1) parser cannot predict the production to take for the non-terminal \textit{expr}.

Exercise 2.8.4 Consider the expression represented by the following expression tree. Assume that \(A, B, C, D\) and \(E\) are binary operators. Consider the following infix expression: \(3 \ C \ 4 \ B \ 1 \ A \ 2 \ D \ 6 \ B \ 7 \ E \ 5\).

Tree \([A [B [C \ 3 \ 4 \] \ 1 \] \ D \ 2 \ [E [B \ 6 \ 7 \] \ 5 \]]]\)

Assume this expression generates the tree shown. Given that all operators have different precedences, and that the operators are non-associative, list the operators \(A, B, C, D\) and \(E\) in order from highest to lowest precedence. If there is more than one possible answer list them all.

Solution 2.8.4 Precedence:

- \(C\) has higher precedence than \(B\)
- \(B\) has higher precedence than \(A\)
- \(B\) has higher precedence than \(E\)
- \(E\) has higher precedence than \(D\)
- \(D\) has higher precedence than \(A\)

Highest to lowest precedence:

\[
C \ B \ E \ D \ A
\]

Exercise 2.8.5 Refactor the following grammar to LL(1) form.

\[
\begin{align*}
S & \rightarrow \ \text{id} \ 'A' \ 'Y' \\
& \mid \ \text{id} \ 'A' \ 'Y' \\
A & \rightarrow \ 'A' \ 'id' \\
& \mid \ \text{id}
\end{align*}
\]

Solution 2.8.5

\[
\begin{align*}
S & \rightarrow \ \text{id} \ T \\
T & \rightarrow \ \textquote{\textit{A}} \ 'Y' \\
& \mid \ \textquote{\textit{A}} \ 'Y' \\
A & \rightarrow \ \text{id} \ U \\
U & \rightarrow \ \textquote{\textit{A}} \ \text{id} \ U \\
& \mid \ \epsilon
\end{align*}
\]

Consider the following ambiguous grammar:
Exercise 2.8.6 Give an input string with two different legal parse trees in this grammar. Show the parse trees.

Solution 2.8.6 $1 + 2 \times 3$ could parse two ways (as could $1+2+3$):

\[
(1 + 2) \times 3 \quad 1 + (2 \times 3)
\]

![Parse trees for $(1 + 2) \times 3$ and $1 + (2 \times 3)$](image)

Exercise 2.8.7 Refactor this grammar to have the normal arithmetic precedence and to be right associative. Show the parse tree for your input string above.

Solution 2.8.7

This solution has the precedence correct, but is not right associative, and is ambiguous.

\[
\begin{align*}
E & \rightarrow E \ '+' E \\
E & \rightarrow F \\
F & \rightarrow F \ '*' F \\
F & \rightarrow \text{INT}
\end{align*}
\]

\[
\begin{align*}
1 + 2 \times 3 & \mapsto 1 + (2 \times 3) \\
1 + 2 + 3 & \mapsto 1 + (2 + 3) \\
\text{INT} & \mapsto 1 + (2) + 3
\end{align*}
\]

This solution is correct on precedence and associativity. It is not LL(1), due to common prefixes, but being LL(1) is not required here.

\[
\begin{align*}
E & \rightarrow F \ '+' E \\
E & \rightarrow F \\
F & \rightarrow \text{INT} \ '*' F \\
F & \rightarrow \text{INT}
\end{align*}
\]

This solution is correct on precedence and associativity, and is also LL(1).
<table>
<thead>
<tr>
<th>Nonterminal</th>
<th>Result</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{eps}(G)$</td>
<td>0</td>
<td>$$ is a terminal</td>
</tr>
<tr>
<td>$\text{eps}(A)$</td>
<td>1</td>
<td>goes to ϵ directly</td>
</tr>
<tr>
<td>$\text{eps}(B)$</td>
<td>0</td>
<td>q is a terminal</td>
</tr>
<tr>
<td>$\text{eps}(C)$</td>
<td>1</td>
<td>goes to ```` directly</td>
</tr>
</tbody>
</table>

Exercise 2.8.8 Convert to BNF

$$G \rightarrow AB$$

$$G \rightarrow Cx$$

$$A \rightarrow yA$$

$$B \rightarrow Cq$$

$$C \rightarrow pC \mid \epsilon$$

Solution 2.8.8

$$A \rightarrow $$

$$B \rightarrow Cq$$

$$C \rightarrow $$

Exercise 2.8.9 \text{eps}

Is the following grammar LL(1)? Prove your answer by computing the \text{eps}, \text{first}, \text{follow} and \text{predict} sets. Provide both the equations and their solutions, as we studied in class.

\text{Note:} You may start from the predict sets and work backwards, computing only the first and follow sets that you need.

$$S \rightarrow E$$

$$E \rightarrow FP$$

$$P \rightarrow +E$$

$$\mid e$$

$$F \rightarrow \text{int}Q$$

$$Q \rightarrow *F$$

$$\mid e$$

\text{predict}(P \rightarrow e) = \text{follow}(P)

\text{predict}(Q \rightarrow e) = \text{follow}(Q)

\text{eps}(G) = 0$$ is a terminal

\text{eps}(A) = 1$$ goes to ϵ directly

\text{eps}(B) = 0$$ q is a terminal

\text{eps}(C) = 1$$ goes to ϵ directly

Exercise 2.8.10 \text{first}
Chapter 2: Classifying Grammars by Complexity

Solution 2.8.10

<table>
<thead>
<tr>
<th>Nonterminal</th>
<th>Equation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{FIRST}(G))</td>
<td>(\text{FIRST}(A) \cup \text{FIRST}(B) \cup \text{FIRST}(C) \cup {x})</td>
<td>({p,q,x,y})</td>
</tr>
<tr>
<td>(\text{FIRST}(A))</td>
<td>({y})</td>
<td>({y})</td>
</tr>
<tr>
<td>(\text{FIRST}(B))</td>
<td>({q} \cup {p})</td>
<td>({p, q})</td>
</tr>
<tr>
<td>(\text{FIRST}(C))</td>
<td>({p})</td>
<td>({p})</td>
</tr>
</tbody>
</table>

Exercise 2.8.11 Follow

<table>
<thead>
<tr>
<th>Nonterminal</th>
<th>Equation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{FOLLOW}(G))</td>
<td>(\emptyset)</td>
<td>(\emptyset)</td>
</tr>
<tr>
<td>(\text{FOLLOW}(A))</td>
<td>({y})</td>
<td>({p, q})</td>
</tr>
<tr>
<td>(\text{FOLLOW}(B))</td>
<td>({y} \cup {p, q})</td>
<td>({p, q})</td>
</tr>
<tr>
<td>(\text{FOLLOW}(C))</td>
<td>({p, q})</td>
<td>({q, x})</td>
</tr>
</tbody>
</table>

Exercise 2.8.12 Predict

<table>
<thead>
<tr>
<th>Production</th>
<th>Equation</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{PREDICT}(G \rightarrow AB$$))</td>
<td>(\text{FIRST}(AB$$))</td>
<td>({p, q, y})</td>
</tr>
<tr>
<td>(\text{PREDICT}(G \rightarrow Cx$$))</td>
<td>(\text{FIRST}(Cx))</td>
<td>({p, x})</td>
</tr>
<tr>
<td>(\text{PREDICT}(A \rightarrow yA))</td>
<td>({y})</td>
<td>({y})</td>
</tr>
<tr>
<td>(\text{PREDICT}(A \rightarrow \epsilon))</td>
<td>(\text{FOLLOW}(A))</td>
<td>({p, q})</td>
</tr>
<tr>
<td>(\text{PREDICT}(B \rightarrow Cq))</td>
<td>(\text{FIRST}(Cq))</td>
<td>({p, q})</td>
</tr>
<tr>
<td>(\text{PREDICT}(C \rightarrow pC))</td>
<td>({p})</td>
<td>({p})</td>
</tr>
<tr>
<td>(\text{PREDICT}(C \rightarrow \epsilon))</td>
<td>(\emptyset)</td>
<td>({q, x})</td>
</tr>
</tbody>
</table>

Exercise 2.8.13 Is this grammar LL(1)? Why or why not?

Solution 2.8.13 No. We can predict \(A, B, \) and \(C \) with one token of lookahead, but not \(G \): the two \(G \) productions both have ‘p’ in their predict sets. Consider the input strings ‘pq’ and ‘px’: we need to lookahead \(\cdots \) to the ‘q’ or the ‘x’ to determine which \(G \) production to use.

Exercise 2.8.14 What kind of machine is required to recognize a LL(1) language?

Solution 2.8.14 Pushdown automata

Exercise 2.8.15 What grammar class is required for the language \(\{a^n b^n \mid n > 0\} \)?

Solution 2.8.15 CFG

\(\text{LL(1)} \) is also a correct answer, since this grammar falls in the \(\text{LL(1)} \) subset of CFGs.
Exercise 2.8.16 What grammar class is required for the language \(\{ a^n b^n c^n \mid n > 0 \} \)?

Solution 2.8.16 Context-sensitive (or PEG, but we won’t learn that until after the midterm)

Exercise 2.8.17 How do we show that a grammar is ambiguous?

Solution 2.8.17 Show an input string that has multiple [] with the given grammar

Exercise 2.8.18 How do we show that a grammar is unambiguous?

Solution 2.8.18 Mathematically beyond the scope of ECE351. We just say that we cannot think of an input string with multiple parses. As long as nobody else in class can think of such an input string then you are in luck.

In some countries, such as Bangladesh, there is a practice to give sons the formal first name Mohammed, but then always refer to them by a middle name. In these cases, the formal first name might be abbreviated as ‘Md’ to indicate that it is not for common use.

Suppose that we have the following grammar for boys names:

\[
\begin{align*}
S & \rightarrow \text{Md Anwar Sadat} \\
Md & \rightarrow \text{Hosni Mubarak} \\
S & \rightarrow \text{Md Siad Barre} \\
S & \rightarrow \text{Md Zia-ul-Haq} \\
S & \rightarrow \text{Md Ayub Khan} \\
S & \rightarrow \text{Md Nawaz Sharif}
\end{align*}
\]

(Referring to people by their middle name is also common in families of British ancestry. In many Hispanic countries it is common to name boys ‘Jesus’. The English abbreviation for ‘William’ is ‘Wm’, as in ‘Wm Shakespeare’.)

Exercise 2.8.19 Is this grammar LL(1)? Why? Why not?

Solution 2.8.19 No, this grammar is not LL(1) because of []

If we are expecting to derive S and we look ahead one token and see ‘Md’ then we will not know which rule we are in.

Exercise 2.8.20 Refactor to an equivalent grammar that is LL(1).
$S \rightarrow Md \text{ Tail}$
$Tail \rightarrow \text{Anwar Sadat}$
$Tail \rightarrow \text{Hosni Mubarak}$

Solution 2.8.20
$Tail \rightarrow \text{Siad Barre}$
$Tail \rightarrow \text{Zia-ul-Haq}$
$Tail \rightarrow \text{Ayub Khan}$
$Tail \rightarrow \text{Nawaz Sharif}$

Exercise 2.8.21 Prove this grammar is LL(1). Start with the Predict sets, and compute other sets as necessary. Construct equations symbolically before providing concrete answers.

Solution 2.8.21

Predict($S \rightarrow Md \text{ Tail}$) = \{Md\}
Predict($Tail \rightarrow \text{Anwar Sadat}$) = First($\text{Anwar Sadat}$) = \{Anwar\}
Predict($Tail \rightarrow \text{Hosni Mubarak}$) = First($\text{Hosni Mubarak}$) = \{Hosni\}
Predict($Tail \rightarrow \text{Siad Barre}$) = First($\text{Siad Barre}$) = \{Siad\}
Predict($Tail \rightarrow \text{Zia-ul-Haq}$) = First($\text{Zia-ul-Haq}$) = \{Zia-ul-Haq\}
Predict($Tail \rightarrow \text{Ayub Khan}$) = First($\text{Ayub Khan}$) = \{Ayub\}
Predict($Tail \rightarrow \text{Nawaz Sharif}$) = First($\text{Nawaz Sharif}$) = \{Nawaz\}

Consider the following grammar.
$S \rightarrow E$
$E \rightarrow E - E$
$| \hspace{1em} \text{INT}$

Exercise 2.8.22 Show that this grammar is ambiguous.

Solution 2.8.22 Input string ‘3 - 2 - 1’ parses as either ‘(3-2)-1’ or ‘3-(2-1)’.

Exercise 2.8.23 Refactor the grammar to remove the ambiguity (and to produce arithmetically correct results with the AST is evaluated).

$S \rightarrow E$
$E \rightarrow E - F$

Solution 2.8.23
$| \hspace{1em} F$
$F \rightarrow F / \text{INT}$
$| \hspace{1em} \text{INT}$

Exercise 2.8.24 What is something that can be expressed in a CFG that cannot be expressed in a PEG?

Solution 2.8.24 ambiguity
Non-terminal Equation Solution Comment

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>Equation</th>
<th>Solution</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{eps}(S))</td>
<td>= 0</td>
<td></td>
<td>contains a terminal ($$)</td>
</tr>
<tr>
<td>(\text{eps}(X))</td>
<td>= 1</td>
<td>= 1</td>
<td>derives (\epsilon) directly</td>
</tr>
<tr>
<td>(\text{eps}(Y))</td>
<td>= 1</td>
<td></td>
<td>derives (\epsilon) directly</td>
</tr>
<tr>
<td>(\text{eps}(Z))</td>
<td>= 0</td>
<td>= 0</td>
<td>derives terminals</td>
</tr>
</tbody>
</table>

Non-terminal Equation Solution Comment

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>Equation</th>
<th>Solution</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{first}(S))</td>
<td>= (\text{first}(X) \cup \text{first}(Y) \cup \text{first}(Z))</td>
<td>= {'a', 'c', 'd', 'f', 'g'}</td>
<td>X and (Y) are nullable</td>
</tr>
<tr>
<td>(\text{first}(X))</td>
<td></td>
<td>= {'a', 'f', 'g'}</td>
<td>two non-(\epsilon) options</td>
</tr>
<tr>
<td>(\text{first}(Y))</td>
<td>= {'c', 'd'}</td>
<td>= {'c', 'd'}</td>
<td>two non-(\epsilon) options</td>
</tr>
<tr>
<td>(\text{first}(Z))</td>
<td></td>
<td>= {'f', 'g'}</td>
<td>two non-(\epsilon) options</td>
</tr>
</tbody>
</table>

Non-terminal Equation Solution Comment

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>Equation</th>
<th>Solution</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{follow}(S))</td>
<td>= (\emptyset)</td>
<td>= (\emptyset)</td>
<td></td>
</tr>
<tr>
<td>(\text{follow}(X))</td>
<td></td>
<td>= {'c', 'd', 'f', 'g'}</td>
<td>(S \rightarrow XYZ \ $$; (Y \rightarrow 'd'XY) ((Y) is nullable)</td>
</tr>
<tr>
<td>(\text{follow}(Y))</td>
<td>= (\text{first}(Z))</td>
<td></td>
<td>(S \rightarrow XYZ \ $$</td>
</tr>
<tr>
<td>(\text{follow}(Z))</td>
<td>= {'b', $$}</td>
<td>= {'b', $$}</td>
<td>(S \rightarrow XYZ \ $$; (X \rightarrow Z'b')</td>
</tr>
</tbody>
</table>
Chapter 3
Case Studies

3.1 Git

In Git commits are immutable objects and branches are like variables that can be re-assigned to different commit objects. A commit object contains all of the files in the repository at that time. We are not concerned with the internal structure of commit objects here. Figure 3.1 shows a hypothetical history of the skeleton repository as it evolves from initial state to Lab2 release.

Inspired by http://gitolite.com/gcs/ and http://eagain.net/articles/git-for-computer-scientists/
If you want to know more, for your own interest, see http://www.aosabook.org/en/git.html

Figure 3.1: Flipbook of skeleton Git repository
(a) Initial state

(b) hours.txt for prelab

(c) Merging Lab1 skeleton

(d) Lab1 soln first draft

(e) Lab1 soln second draft

(f) Merging Lab2 skeleton

(g) Lab2 soln first draft

Figure 3.2: Flipbook of student Git repository
3.2 LLVM

LLVM is a compiler toolkit originally developed at the University of Illinois at Urbana-Champaign (UIUC), but now largely developed by Apple (Apple hired Chris Lattner from UIUC). LLVM is an alternative to GCC (the GNU Compiler Collection). LLVM’s main advantage over GCC is its clean modular design, which makes it easier to test and to add new features. LLVM forms the core of Apple’s development tools for both the Mac and the iPhone. It is also widely used in research and industry.

Figures here are from http://www.aosabook.org/en/llvm.html

Figure 3.3: General structure of a simple compiler

Figure 3.4: General structure of a retargetable compiler

Figure 3.5: Structure of LLVM
Exercise 3.2.1 Suppose there are L programming languages and M kinds of machines. If compilers were structured according to the architecture pictured in Figure 3.3, how many optimizers would the compiler engineer need to write?

Solution 3.2.1 $L \times M$

Exercise 3.2.2 Suppose there are L programming languages and M kinds of machines. If compilers were structured according to the architecture pictured in Figure 3.4, how many optimizers would the compiler engineer need to write?

Solution 3.2.2 1

Exercise 3.2.3 Apple is the only personal computer company to have successfully switched machine architectures, and they have done it twice: around 1995 they migrated from Motorola 68k to PowerPC, and ten years later they migrated from PowerPC to x86. What about compiler architectures facilitated these transitions?

Solution 3.2.3 Re-targetable compilers facilitate cross-compilation: producing code for machine y while running on machine x. So Apple could develop and compile their software on, for example, PowerPC, and target compilation for x86. The produced x86 binaries could then be run on a new x86 machine.

http://www.storiesofapple.net/the-68k-ppc-transition-and-snow-leopard-comparing-apples-to-oranges.html

https://en.wikipedia.org/wiki/Apples_transition_to_Intel_processors

A student answer would not need to be so long. Simply saying that re-targetable compilers facilitate cross-compilation would be enough.
Whenever you execute a program in a memory-safe language it runs in a virtual machine. In other words, any program written in a language other than C. Many languages that you are familiar with, such as C#, Javascript, Java, Python, etc., run inside a VM. The description here applies equally to Google’s v8 Javascript ‘engine’ (VM) as it does to Sun’s Java VM or Microsoft’s CLR (Common Language Runtime).

These statements are not strictly true: there are other memory-unsafe languages besides C, but they are not popular; there are also memory-safe languages that run outside of a VM, but they will have most of this runtime support compiled into them.

Figure 3.7: This picture has some JVM specific labels, but the ideas are the same for any programming language VM, e.g. Microsoft’s CLR.

Stack here is the runtime stack of the executing program (thread) — not the stack of the parser (which is the stack we spoke of previously).

Multiple source languages can be compiled to the same bytecode intermediate form, as shown. What is not shown is that the JIT compiler will also have its own intermediate form(s).

The JIT will also be linking together code from multiple class files.

The scheduler juggles three main things: the JIT compiler, and garbage collector, and the threads. Different designs and different levels of delegation to the OS scheduler are possible. For example, a simple design with a high level of delegation is to just run the JIT compiler when classes are loaded, just run the CC when allocation fails due to lack of space, and create an OS thread for every VM thread. High performance industrial VMs are not written this way.
3.3.1 Comparison with VMWare, VirtualBox, etc.

You might have heard the term virtual machine with respect to products like VMWare, VirtualBox, Xen, kvm, etc., that let you run a guest os in a separate window on a host os. We’ll call those operating system virtual machines, and what’s described above a programming language virtual machine. These are two variations of the same idea.

A virtual machine is a software implementation of some real or imaginary machine that executes programs in some kind of isolation.

The Java virtual machine, for example, has an instruction set, just like a real machine. The job of the Java vm is to translate (and execute) programs written to this imaginary instruction set (Java byte-code) to programs in the instruction set of the underlying hardware (e.g., x86).

An operating system vm might also be doing some translation, if the guest architecture and the host architecture are different (e.g., running ARM code on x86), or if the underlying hardware does not provide sufficient isolation protection (as was the case with x86 chips until recently).

An operating system vm is not concerned with object allocation and collection. A programming language vm is less concerned with enforcing isolation on poorly behaved programs, because the programs it executes are known to be memory-safe.
3.3.2 Structure of the Call Stack

![Diagram of call stack structure]

Figure 3.8: Structure of the call stack [PLP 18.11, which is essentially the same as Tiger f6.2]. By historical convention, the call stack grows from higher addresses to lower addresses. PLP draws the stack growing up (which is the normal way to visualize a stack), whereas the Tiger book draws the stack growing down (which would be the normal way to visualize growth from higher to lower addresses).

Stack frames are sometimes called activation records.

```python
1 def listSum(numbers):
2     if not numbers:
3         return 0
4     else:
5         (f, rest) = numbers
6         return f + listSum(rest)
7     myList = (1, (2, (3, None)))
8     total = listSum(myList)
```

Figure 3.9: Visualization of call stack and heap from PythonTutor.com
3.3.3 Object Header and Type Information Block

Object Header

Pointer to the Type Information Block: Each object has a type, and each object header (usually) has a pointer to a record (‘information block’) about that type. The TIB may contain the virtual method dispatch table.

IdentityHashCode: In Java (and many other languages) each object has an identity hashcode: a unique integer that is associated with it. (These are unique for all of the live objects at any given point in time; however, it is possible for a number to be reused for a different object that is created later in the execution.)

Lock: Locks are used to ensure disciplined mutation of data in a multi-threaded program.

GC bits: The garbage collector may want to associate some information with each object. A GC based on reference counting will include an integer counting the number of incoming pointers to the object. A mark-sweep GC will include some bits (usually two) to indicate that the object is still live during the mark phase (the sweep phase then collects unmarked objects).

Array length: If the object is an array, then its header will also include an integer indicating how long the array is. This is used to ensure that the array is accessed only within bounds.

Type Information Block / Class Descriptor

Super classes: Some kind of information about the super-classes to facilitate dynamic type tests (e.g., instanceof checks).

VTable: The virtual method table. The addresses of where to branch to invoke polymorphic methods.
class foo {
 int a;
 double b;
 char c;
public:
 virtual void k(...
 virtual int l(...
 virtual void m();
 virtual double n(...
 ...
} F;

Figure 3.10: (PLP f9.3)

class bar : public foo {
 int w;
public:
 void m(); //override
 virtual double s(...
 virtual char *t(...
 ...
} B;

Figure 3.11: (PLP f9.4)

class A {int x = 0;
 int f() {...} }
class B extends A {int g() {...} }
class C extends B {int g() {...} }
class D extends C {int y = 0;
 int f() {...} }

Figure 3.12: (Tiger f14.3)
3.4 Cfront: Translating C++ to C

The original C++ compiler, Cfront by Bjarne Stroustrup, translated C++ to C. Let’s take a look at what it did (approximately). C++ is a super-set of C: every C program is a legal C++ program. So what extra features of C++ do we need to think about? Classes, inheritance, and virtual functions (dynamic dispatch / polymorphism). What tools do we have in C to translate these things to? Structs, function pointers, arrays, switch statements, and unsafe casts.

- Each class becomes a struct, with some extra fields for the object header (just a tib pointer in these examples).
 The struct will include all of the fields inherited from all of the super-classes (not show in these examples), as well as the fields declared locally in the class.

- A new struct called tib is introduced for the Type Information Block. This will contain some information used for dynamic dispatch: possibly a vtable (Figures 3.13 and 3.15) or a type tag (Figure 3.16).
 The tibs need to be initialized somewhere before the program starts executing. We’ve just put this initialization in the main method in these examples.

- Every class method becomes a standalone procedure with a new first parameter called ‘this,’ which is of the type of the struct that corresponds to the class in which the method was declared. Call sites to methods are modified to pass in the this parameter.

- New branching logic is introduced at polymorphic call sites. We show two possible translations here: vtables (Figures 3.13 and 3.15), and switch statements (Figure 3.16). Other translations are possible.
 For example, the SmallEiffel compiler generates nested ifs.
 A vtable is an array of function pointers. Each method is assigned an index into this array. The call site looks up the appropriate function pointer and branches to it.
 The switch statement translation assigns every class an integer representing its type. Polymorphic call sites then branch based on the runtime value of this integer.

The simple example program in Figure 3.13 prints a (positive) random number. The slightly more sophisticated program in Figure 3.15 prints a random number that is randomly made negative sometimes.

The examples that follow do not illustrate a number of issues, such as:

- Inheritance of fields. The field declarations are simply copied into the structs corresponding the subclasses, which is easy enough. The variables that are of the superclass type in the original source must be changed to either union types or void* in the translation. Again, that’s not difficult, but it makes the examples look uglier and more complicated, because the reader would need to understand either unions or void* pointers.

- Static fields. These can be placed in the tib.

- Other object header data, such as locks or gc bits.
Figure 3.13 shows a simple translation of a C++ program to C. The class RNumber becomes a struct RNumber. The method RNumber.getX() becomes the procedure RNumber_getX(RNumber this).

The example in Figure 3.13 does not include dynamic dispatch. Therefore, we have elided the object headers and type information blocks from the C translation.
C translation (switch)

```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef struct TIB {
    int type;
} TIB;

typedef struct RNumber {
    struct TIB tib;
    int x;
} RNumber;

int main() {
    srand(time(NULL));
    RNumber n;
    // Set up the object metadata
    n.tib.type = 1;
    // done with object metadata
    // run the object constructor here
    n.x = rand();
    // back to our regularly scheduled program
    int x2;
    switch (n.tib.type) {
        case 1: // RNumber
            x2 = RNumber_getX(n); break;
    }
    // end call getX()
    printf("x2 is \%d", x2);
    return 0;
}
```

C translation (VTables)

```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef struct TIB {
    int (* vtable[1]) (RNumber this);
} TIB;

typedef struct RNumber {
    struct TIB tib;
    int x;
} RNumber;

int main() {
    srand(time(NULL));
    RNumber n;
    // Set up the object metadata
    n.tib.vtable[0] = RNumber_getX;
    // done with object metadata
    // run the object constructor here
    n.x = rand();
    // back to our regularly scheduled program
    int x2 = n.tib.vtable[0](n); // call getX();
    printf("x2 is \%d", x2);
    return 0;
}
```
C++ original

```cpp
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
using namespace std;

class RNumber {
public:
    int x = rand();
    virtual int getX() = 0;
};

class Positive : public RNumber {
public:
    virtual int getX() { return x; }
};

class Negative : public RNumber {
public:
    virtual int getX() { return x * -1; }
};

int main() {
    srand(time(NULL));
    RNumber* poly;
    int r = rand() % 2; // flip a coin
    if (r) {
        poly = new Positive;
    } else {
        poly = new Negative;
    }
    int x2 = poly->getX(); // polymorphic call site
    printf("x2 is %d", x2);
    return 0;
}
```

C translation (VTables)

```c
#include<stdio.h>
#include<stdlib.h>
#include<time.h>

typedef struct TIB TIB;

typedef struct RNumber RNumber;

struct TIB {
    int (* vtable[1]) (struct RNumber* this);
};

struct RNumber {
    // Object header
    TIB tib;
    // instance fields
    int x;
};

int Positive_getX(struct RNumber* this) { return (+this).x; }

int Negative_getX(struct RNumber* this) { return (+this).x * -1; }

int main() {
    srand(time(NULL));
    struct RNumber poly;
    poly.x = rand(); // object constructor
    int r = rand() % 2; // flip a coin
    if (r) {
        // Set up the object metadata (i.e., the TIBs)
        poly.tib.vtable[0] = Positive_getX;
    } else {
        // Set up the object metadata (i.e., the TIBs)
        poly.tib.vtable[0] = Negative_getX;
    }
    // back to our regularly scheduled program
    int x2 = poly.tib.vtable[0](&poly); // call getX();
    printf("x2 is %d", x2);
    return 0;
}
```
Simple example
(Figure 3.13)

```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef struct RNumber RNumber;
struct TIB {
    int type;
};

// The class RNumber becomes struct RNumber
struct RNumber {
    // object header (just a TIB pointer here)
    struct TIB tib;
    // regular data members
    int x;
};

// We add a new parameter, "this"
int RNumberGetX(RNumber this) { return this.x; }
```

Polymorphic example
(Figure 3.15)

```c
#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef struct TIB TIB;
struct TIB {
    int type;
};

struct RNumber {
    // Object header
    TIB tib;
    // instance fields
    int x;
};

int Positive_getX(struct RNumber* this) { return (*this).x; }
int Negative_getX(struct RNumber* this) { return (*this).x * -1; }

int main() {
    srand(time(NULL));
    struct RNumber poly;
    poly.x = rand(); // object constructor
    int r = rand() % 2; // flip a coin
    if (r) {
        // Set up the object metadata
        poly.tib.type = 1; // Positive is type 1
    } else {
        // Set up the object metadata
        poly.tib.type = 2; // Negative is type 2
    }
    // back to our regularly scheduled program
    int x2;
    switch (poly.tib.type) { // call getX()
        case 1: // Positive
            x2 = Positive_getX(&poly); break;
        case 2: // Negative
            x2 = Negative_getX(&poly); break;
    } // end callgetX()
    printf("x2 is %d", x2);
    return 0;
}
```
3.4.1 Optimizing Polymorphic Calls

As you can imagine, there is some performance penalty for the overhead of adding a switch statement or vtable lookup to every method call. Compiler engineers have expended a tremendous amount of effort to reduce or eliminate this overhead. For now we won’t be studying those techniques, but rest assured that the overhead of using inheritance and polymorphism is often lower than the translations given in this section would suggest.

3.4.2 Why have polymorphism as a language feature?

Adding inheritance and polymorphic calls to a language makes it more complicated for the compiler writer, but does not change the theoretical expressive power of the language: if it was Turing complete before, it’s still Turing complete afterwards. So why do compiler engineers bother with the effort of supporting these language features? What do these features do for programmers?

Polymorphism makes adding new cases (classes) a modular operation.

The most expensive part of the software production lifecycle is maintenance. Polymorphism, if used strategically, can reduce the cost of software maintenance by making adding new functionality to the program a more modular operation.

Consider our F and VHDL toolchains, for example. With the Visitor pattern (simply a strategic use of polymorphism) we can add new translations and optimizations to our compilers without having to modify our AST classes. This makes it easier to add and test and debug the new functionality, all of which contributes to lowering the cost of this maintenance activity.

3.4.3 Subtype Polymorphism and Parametric Polymorphism

We have been discussing *subtype polymorphism*, which is the most prevalent in object-oriented programming.

There is another type of polymorphism that is prevalent in functional programming and has become more common in object-oriented programming in the last ten years or so: *parametric polymorphism*. Parametric polymorphism is seen in Java’s generic/parameterized types and the C++ standard template library. For example, the class List<T> has type parameter T, which we might instantiate with List<String> or List<Integer>, etc.

The Tiger book uses the term ‘polymorphism’ just for parametric polymorphism. The point of this subsection is just for you to be aware that there are two distinct ideas that are both described with the word ‘polymorphism’.
Exercise 3.4.1 Consider the following pseudocode:

```java
struct Shape { int type; int x; int y; }
String name(Shape s) {
    switch (s.type) {
        case 0: return "triangle";
        case 1: return "ellipse";
    }
}
int area(Shape s) {
    switch (s.type) {
        case 0: return x * y / 2; // triangle
        case 1: return x * y * PI; // ellipse
    }
}
```

Suppose we want to add a new kind of Shape, such as Squares. How many of these procedures would we need to edit?

Solution 3.4.1 Two: Both procedures name and area would need to be modified in order to add a new Shape such as Square.

Exercise 3.4.2 Re-write the pseudocode above using classes, inheritance, and polymorphism.

Solution 3.4.2

```java
abstract class Shape {
    int x; int y;
    abstract String name();
    abstract int area();
}
class Triangle extends Shape {
    String name() { return "triangle"; }
    int area { return x * y / 2; }
}
class Ellipse extends Shape {
    String name() { return "ellipse"; }
    int area { return x * y * PI; }
}
```
Exercise 3.4.3 In this new code, what do we have to modify in order to add a new kind of Shape? (e.g., Square)

Solution 3.4.3 Nothing else needs to be modified in order to add Square.

Exercise 3.4.4 Write the pseudo-code to add Square to the re-factored pseudocode above

Solution 3.4.4

```java
class Square extends Shape {
    String name() { return "square"; }
    int area { return x * y; }
}
```
Chapter 4
Optimization

There are many different kinds of optimizations that compilers perform. Some optimizations are inverses of other optimizations.

4.1 Optimization by Intuition

It is easy to do compiler optimizations by human intuition on small programs. Optimization is usually easiest to perform mechanically on three address code. In these examples, since we are doing them manually, we will just work with the regular syntax. For example:

<table>
<thead>
<tr>
<th>Common Subexpression Elimination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
</tr>
<tr>
<td>a = (x + y) + z;</td>
</tr>
<tr>
<td>b = (x + y) * z;</td>
</tr>
<tr>
<td>After</td>
</tr>
<tr>
<td>a = t + z;</td>
</tr>
<tr>
<td>b = t * z;</td>
</tr>
<tr>
<td>(Sort operands)</td>
</tr>
</tbody>
</table>

The Scott book refers to ‘optimization’ as ‘code improvement’ because this is an engineering exercise rather than a mathematical one: in other words, we are trading off certain factors against other factors, not searching for the extrema of a parabola. Generally speaking we are trying to save program execution time, and to do so we spend space. Sometimes things go the other way: spend time to save space. The memory hierarchy plays a role in how much space we have to spend, and how expensive (in time) that space is to use.
Loop invariant code motion: move code that doesn’t change inside the loop (i.e., is loop invariant) to outside of the loop.

<table>
<thead>
<tr>
<th>Example 1</th>
<th>Example 2</th>
<th>Example 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>After</td>
<td>After</td>
</tr>
<tr>
<td>for (i = 0; i < n; ++i) {</td>
<td>for (i = 0; i < n; ++i) {</td>
<td>for (i = 0; i < n; ++i) {</td>
</tr>
<tr>
<td>a[i] = x + y;</td>
<td>b = x + y;</td>
<td>b = x + y + i;</td>
</tr>
<tr>
<td>}</td>
<td>}</td>
<td>}</td>
</tr>
<tr>
<td>a[i] = b;</td>
<td>a[i] = b * b;</td>
<td>a[i] = b * b;</td>
</tr>
</tbody>
</table>

Can’t be done because the value of b now varies with each iteration of the loop.

There are many other optimizations that can be done, such as constant propagation (which we did in Lab 2 as part of simplifying F), dead code elimination, etc. We will focus on these two.

4.2 Optimization by Dataflow Analysis

How do we formalize these optimizations so that we can program a compiler to perform them? The first step in each case is to perform a (different) dataflow analysis. For Common Subexpression Elimination we need a Available Expressions analysis, whereas for Loop Invariant Code Motion we need an Reaching Definitions analysis. These analyses are quite similar.

4.2.1 Convert to Three-Address Form

It is much easier to perform dataflow analysis and optimization on code that is in three-address form, so the first step is to convert to that form. The optimization that we intuitively above actually comprises both Common Subexpression Elimination and Copy Propagation. The Copy Propagation doesn’t become clear until we convert the example to three-address form and step through it:

<table>
<thead>
<tr>
<th>Original</th>
<th>Three-Address Form</th>
<th>After CSE</th>
<th>After Copy Prop.</th>
<th>After Dead Code Elim.</th>
</tr>
</thead>
<tbody>
<tr>
<td>t = x + y;</td>
</tr>
<tr>
<td>a = (x + y) + z;</td>
<td>a = t + z;</td>
</tr>
<tr>
<td>b = (x + y) + z;</td>
<td>u = x + y;</td>
<td>u = t;</td>
<td>u = t;</td>
<td>u = t;</td>
</tr>
<tr>
<td>b = u * z;</td>
<td>b = u * z;</td>
<td>b = t * z;</td>
<td>b = t * z;</td>
<td>b = t * z;</td>
</tr>
</tbody>
</table>
Construct AST. Post-order traversal, introducing temporary variables for each node. The following example shows a complex expression of the quadratic formula in its original form, AST form, and three-address form.

```java
public class Quadratic {

    public static void main(String[] args) {
        double x = positiveRoot(1, 3, -4);
        System.out.println(x);
        double x3 = positiveRoot3AC(1, 3, -4);
        System.out.println(x3);
        System.out.println(x == x3);
    }

    static double positiveRoot(int a, int b, int c) {
        return ((-1 * b) + Math.sqrt(b*b - 4*a*c)) / (2*a);
    }

    static double positiveRoot3AC(int a, int b, int c) {
        int negB = -1 * b;
        int b2 = b*b;
        int ac = a * c;
        int fourac = 4 * ac;
        int discriminant = b2 - fourac;
        double sqrt = Math.sqrt(discriminant);
        double numerator = negB + sqrt;
        int denominator = 2 * a;
        double x = numerator / denominator;
        return x;
    }
}
```
4.2.2 Available Expressions

To perform Common Subexpression Elimination we need to know which expressions are available at each statement. In the above example 1, when we get to the statement assigning u we need to know that we have already computed the value of \(x + y \) and stored it in the variable \(t \); in other words, the expression \(x + y \) is available at the statement assigning \(u \). Let’s number our statements so we can talk about them more concisely:

1. \(t = x + y; \)
2. \(a = t + z; \)
3. \(u = x + y; \)
4. \(b = u \cdot z; \)

A dataflow analysis is defined by a set of equation templates involving four sets:

- \(\text{In} \): set of expressions available at beginning
- \(\text{Out} \): set of expression available at end
- \(\text{Gen} \): set of expressions computed in block
- \(\text{Kill} \): set of expressions killed by computations in block

The equation templates for Available Expressions are:

\[
\text{In}_s = \bigcap_{p \in \text{successors}(s)} \text{Out}_p
\]

\[
\text{Out}_s = \text{Gen}_s \cup (\text{In}_s - \text{Kill}_s)
\]

Let’s instantiate these equation templates for each statement in our example:

\(\text{In}_1 = \emptyset \)
• \(\text{1 has no predecessors} \)

\(\text{Gen}_1 = \{t=x+y;\} \)
• \(\text{the expression } x+y \)

\(\text{Kill}_1 = \{a=t+z;\} \)
• \(\text{expressions that depend on } t \)

\(\text{Out}_1 = \text{Gen}_1 \cup (\text{In}_1 - \text{Kill}_1) \)
• \(\text{instantiating the equation template} \)

\(\text{In}_2 = \text{Out}_1 \)
• \(\text{1 is the only predecessor of 2} \)

\(\text{Gen}_2 = \{a=t+z;\} \)
• \(\text{the expression } t+z \)

\(\text{Kill}_2 = \emptyset \)
• \(\text{no expressions depend on } a \)

\(\text{Out}_2 = \text{Gen}_2 \cup (\text{In}_2 - \text{Kill}_2) \)
• \(\text{instantiating the equation template} \)
Chapter 4: Optimization

Code to be analyzed:

```
1 t = x + y;
2 a = t + z;
3 u = x + y;
4 b = u * z;
```

Out$_3$ = Gen$_3$ \cup (In$_3$ $-$ Kill$_3$) instantiating the equation template

Out$_4$ = Gen$_4$ \cup (In$_4$ $-$ Kill$_4$) instantiating the equation template

Now that we have our set of equations we can solve them. Note that the only thing we really have to solve for are the Out sets because there is no branching or merging in this code so the In sets have trivial definitions.

```
Out$_1$ = \{t=x+y;\} 
Out$_2$ = \{t=x+y; a=t+z;\} 
Out$_3$ = \{t=x+y; a=t+z; u=x+y;\} 
Out$_4$ = \{t=x+y; a=t+z; u=x+y; b=u*z;\}
```

Common Subexpression Elimination. Now that we know the Available Expressions we can do our Common Subexpression Elimination. We examine each statement and see if the expression it evaluates is already available.

We discover that statement 3 evaluates x+y, and that x+y is already available (i.e., the expression x+y is in In$_3$) with the name t, so we can change statement 3 to read u=t;
4.2.3 *Solving by Iteration to the Least Fixed Point*

In the above examples the equations were simple enough that we could solve them symbolically, by manipulating and re-arranging the equations as you have been doing since highschool. When the program we are analyzing gets more complicated this approach will not be enough. We will eventually run into situations where the symbolic equations have multiple solutions. For example, the following equation has potentially many solutions:

\[S = \{x\} \cup S \]

Any set that includes \(x\) is a solution to this equation, such as:

\[
\begin{align*}
\{x\} &= \{x\} \cup \{x\} \\
\{x,y\} &= \{x\} \cup \{x,y\} \\
\{x,y,z\} &= \{x\} \cup \{x,y,z\}
\end{align*}
\]

All of these solutions are *fixed points* of the equation. Are all of these solutions equally valid for dataflow analysis? No: dataflow analysis requires the *least fixed point*, which in this example is the set \(\{x\}\).

When performing dataflow analysis we find the least fixed point solution by *iteration*, building up the sets from empty. Until now the problems that we have solved have been simple enough that direct substitution in the symbolic equations would give the correct solution: in other words, our iteration took only one step. The following problem requires multiple iteration steps.

Consider the following flow graph, perform Common Subexpression Elimination by computing Available Expressions using (multi-step) iteration to the least fixed point.

![Flow graph](image-url)

We first learned iteration to a fixed point in §4.1.

Figure 4.1: Example flow graph from *Dragon book* (1st ed.) exercise 14.1; modified by removing edge \(B_3 \rightarrow B_4\). Each statement is given a line number.

By intuition we can see that lines 40 and 50 have redundant computations of \(B+C\). We can change these lines to \(C=A\) and \(D=A\), respectively, to eliminate the common subexpression by re-using the value of the available expression.
We always know the concrete solutions for the Gen and Kill sets after one step, since these sets do not depend on the ordering of the blocks (i.e., do not depend on the control-flow of the program). So let’s do these sets first. First the Gen sets, which are produced by examining each block in isolation:

\[
\begin{align*}
\text{Gen}_1 &= \{1, 2\} \\
\text{Gen}_2 &= \{B+C, A-B\} \\
\text{Gen}_3 &= \{C*D\} \\
\text{Gen}_4 &= \{B+C, A-B\} \\
\text{Gen}_5 &= \{B+C, E+1\} \\
\text{Gen}_6 &= \{C*D, B-D\} \\
\{\text{all}\} &= \{B+C, A-B, C*D, E+1, B-D\}
\end{align*}
\]

Then the Kill sets. Recall that the Kill sets are produced by a complete scan of the program, ignoring the control flow (i.e., ignoring the ordering of the blocks):

\[
\begin{align*}
\text{Gen}_1 &= \{1, 2\} \\
\text{Gen}_2 &= \{B+C, A-B\} \\
\text{Gen}_3 &= \{C*D\} \\
\text{Gen}_4 &= \{B+C, A-B\} \\
\text{Gen}_5 &= \{B+C, E+1\} \\
\text{Gen}_6 &= \{C*D, B-D\} \\
\{\text{all}\} &= \{B+C, A-B, C*D, E+1, B-D\}
\end{align*}
\]

Now let’s build the In sets symbolically. For Available Expressions, the In sets are where we encode the control-flow of the program:

\[
\begin{align*}
\text{In}_1 &= \emptyset \quad \text{(1 has no predecessors)} \\
\text{In}_2 &= \text{Out}_1 \cap \text{Out}_4 \quad \text{Blocks 1 and 4 are the predecessors of Block 2} \\
\text{In}_3 &= \text{Out}_2 \cap \text{Out}_5 \quad \text{Blocks 2 and 5 are the predecessors of Block 3} \\
\text{In}_4 &= \text{Out}_2 \quad \text{Block 2 is the only predecessor of Block 4} \\
\text{In}_5 &= \text{Out}_3 \quad \text{Block 3 is the only predecessor of Block 5} \\
\text{In}_6 &= \text{Out}_4 \quad \text{Block 4 is the only predecessor of Block 6}
\end{align*}
\]

There is no quantifier in the Out equations, so they all look the same. We can commence the iterative solving. Sets are initialized to empty. Superscripts are used to indicate time points, so Out3_2 names the value of Out2_2 at step 3.
Solving for least fixed-point, initializing with empty sets.

<table>
<thead>
<tr>
<th>Set</th>
<th>Initial</th>
<th>Step 1</th>
<th>Step 3</th>
<th>Step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Out_1)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) same</td>
<td>(\Rightarrow) same</td>
<td>(\Rightarrow) same</td>
</tr>
<tr>
<td>(Out_2)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) Gen (2 \cup (In^{2}_2 - Kill_2))</td>
<td>(\Rightarrow) Gen (2 \cup (In^{2}_2 - Kill_2))</td>
<td>(\Rightarrow) same</td>
</tr>
<tr>
<td>(Out_3)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) Gen (3 \cup (In^{3}_3 - Kill_3))</td>
<td>(\Rightarrow) Gen (3 \cup (In^{3}_3 - Kill_3))</td>
<td>(\Rightarrow) same</td>
</tr>
<tr>
<td>(Out_4)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) Gen (4 \cup (In^{4}_4 - Kill_4))</td>
<td>(\Rightarrow) Gen (4 \cup (In^{4}_4 - Kill_4))</td>
<td>(\Rightarrow) same</td>
</tr>
<tr>
<td>(Out_5)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) Gen (5 \cup (In^{5}_5 - Kill_5))</td>
<td>(\Rightarrow) Gen (5 \cup (In^{5}_5 - Kill_5))</td>
<td>(\Rightarrow) same</td>
</tr>
<tr>
<td>(Out_6)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) Gen (6 \cup (In^{6}_6 - Kill_6))</td>
<td>(\Rightarrow) Gen (6 \cup (In^{6}_6 - Kill_6))</td>
<td>(\Rightarrow) same</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set</th>
<th>Initial</th>
<th>Step 2</th>
<th>Step 4</th>
<th>Step 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(In_1)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) same</td>
<td>(\Rightarrow) same</td>
<td>(\Rightarrow) same</td>
</tr>
<tr>
<td>(In_2)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) (Out^1_{\text{In}} \cap Out^4_{\text{In}})</td>
<td>(\Rightarrow) (Out^1_{\text{In}} \cap Out^4_{\text{In}})</td>
<td>(\Rightarrow) (Out^1_{\text{In}} \cap Out^4_{\text{In}})</td>
</tr>
<tr>
<td>(In_3)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) (Out^1_{\text{In}} \cap Out^3_{\text{In}})</td>
<td>(\Rightarrow) (Out^1_{\text{In}} \cap Out^3_{\text{In}})</td>
<td>(\Rightarrow) (Out^1_{\text{In}} \cap Out^3_{\text{In}})</td>
</tr>
<tr>
<td>(In_4)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) (Out^1_{\text{In}})</td>
<td>(\Rightarrow) (Out^1_{\text{In}})</td>
<td>(\Rightarrow) (Out^1_{\text{In}})</td>
</tr>
<tr>
<td>(In_5)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) (Out^3_{\text{In}})</td>
<td>(\Rightarrow) (Out^3_{\text{In}})</td>
<td>(\Rightarrow) (Out^3_{\text{In}})</td>
</tr>
<tr>
<td>(In_6)</td>
<td>(\emptyset)</td>
<td>(\Rightarrow) (Out^4_{\text{In}})</td>
<td>(\Rightarrow) (Out^4_{\text{In}})</td>
<td>(\Rightarrow) (Out^4_{\text{In}})</td>
</tr>
</tbody>
</table>

\[Gen_1 = \{1, 2\}\]
\[Gen_2 = \{B+\text{C}, A-B\}\]
\[Gen_3 = \{\text{C'D}\}\]
\[Gen_4 = \{B+\text{C}, A-B\}\]
\[Gen_5 = \{B+\text{C}, E+1\}\]
\[Gen_6 = \{\text{C'D}, B-D\}\]
\[\{all\} = \{B+\text{C}, A-B, \text{C'D}, E+1, B-D\}\]

\[Kill_1 = \{B+\text{C}, A-B, \text{C'D}, B-D\}\] Depends on B or C
\[Kill_2 = \{\text{C'D}, A-B, B-D\}\] Depends on A or D
\[Kill_3 = \{\text{C'D}, B-D\}\] Depends on D
\[Kill_4 = \{B+\text{C}, \text{C'D}, E+1\}\] Depends on C or E
\[Kill_5 = \{\text{C'D}, B-D\}\] Depends on D or E
\[Kill_6 = \{B+\text{C}, A-B, \text{C'D}\}\] Depends on B or C

\[10: B = 1\]
\[11: C = 2\]
\[20: A = B+\text{C}\]
\[21: D = A-B\]
\[30: D = \text{C'D}\]
\[40: C = B+\text{C}\]
\[41: E = A-B\]
\[50: D = B+\text{C}\]
\[51: E = E+1\]
\[60: B = \text{C'D}\]
\[61: C = B-D\]
Solving for greatest fixed-point, initializing with large sets.

<table>
<thead>
<tr>
<th>Set</th>
<th>Initial</th>
<th>Step 1</th>
<th>Step 3</th>
<th>Step 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Out₁</td>
<td>⇒ ∅</td>
<td>⇒ same</td>
<td>⇒ same</td>
<td>⇒ same</td>
</tr>
<tr>
<td>Out₂</td>
<td>⇒ Gen₂</td>
<td>⇒ Gen₂ ∪ (In₀(^\text{1}) – Kill₂)</td>
<td>⇒ Gen₂ ∪ (In₁(^\text{2}) – Kill₂)</td>
<td>⇒ Gen₂ ∪ (In₂(^\text{1}) – Kill₂)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, A-B} ∪ ({all} – Kill₂)</td>
<td>= {B+C, A-B} ∪ {∅ – Kill₂}</td>
<td>= same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, A-B, E+1}</td>
<td>= {B+C, A-B}</td>
<td>= same</td>
</tr>
<tr>
<td>Out₃</td>
<td>⇒ Gen₃</td>
<td>⇒ Gen₃ ∪ (In₀(^\text{1}) – Kill₃)</td>
<td>⇒ Gen₃ ∪ (In₁(^\text{2}) – Kill₃)</td>
<td>⇒ Gen₃ ∪ (In₂(^\text{1}) – Kill₃)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {C*D} ∪ ({all} – Kill₃)</td>
<td>= {C*D} ∪ {B+C, A-B, E+1}</td>
<td>= {C*D} ∪ {B+C}</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {C*D, B+C, E+1, A-B}</td>
<td>= {C*D, B+C, E+1}</td>
<td>= {C*D, B+C}</td>
</tr>
<tr>
<td>Out₄</td>
<td>⇒ Gen₄</td>
<td>⇒ Gen₄ ∪ (In₀(^\text{1}) – Kill₄)</td>
<td>⇒ Gen₄ ∪ (In₁(^\text{2}) – Kill₄)</td>
<td>⇒ Gen₄ ∪ (In₂(^\text{1}) – Kill₄)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, A-B} ∪ ({all} – Kill₄)</td>
<td>= {B+C, A-B} ∪ {A-B}</td>
<td>= same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, A-B, B-D}</td>
<td>= {B+C, A-B}</td>
<td>= same</td>
</tr>
<tr>
<td>Out₅</td>
<td>⇒ Gen₅</td>
<td>⇒ Gen₅ ∪ (In₀(^\text{1}) – Kill₅)</td>
<td>⇒ Gen₅ ∪ (In₁(^\text{2}) – Kill₅)</td>
<td>⇒ Gen₅ ∪ (In₂(^\text{1}) – Kill₅)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, E+1} ∪ ({all} – Kill₅)</td>
<td>= {B+C, E+1} ∪ {B+C, E+1}</td>
<td>= same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, E+1, A-B}</td>
<td>= {B+C, E+1}</td>
<td>= same</td>
</tr>
<tr>
<td>Out₆</td>
<td>⇒ Gen₆</td>
<td>⇒ Gen₆ ∪ (In₀(^\text{1}) – Kill₆)</td>
<td>⇒ Gen₆ ∪ (In₁(^\text{2}) – Kill₆)</td>
<td>⇒ Gen₆ ∪ (In₂(^\text{1}) – Kill₆)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {C*D, B-D} ∪ ({all} – Kill₆)</td>
<td>= {C*D, B-D} ∪ {B-D}</td>
<td>= {C*D, B-D} ∪ ∅</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {C*D, B-D, E+1}</td>
<td>= {C*D, B-D}</td>
<td>= {C*D, B-D}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Set</th>
<th>Initial</th>
<th>Step 2</th>
<th>Step 4</th>
<th>Step 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>In₁</td>
<td>⇒ ∅</td>
<td>⇒ same</td>
<td>⇒ same</td>
<td>⇒ same</td>
</tr>
<tr>
<td>In₂</td>
<td>⇒ {all}</td>
<td>⇒ \text{Out}_1^1 \cap \text{Out}_2^1</td>
<td>⇒ \text{Out}_1^2 \cap \text{Out}_4^1</td>
<td>⇒ \text{Out}_1^5 \cap \text{Out}_4^1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= ∅ \cap {B+C, A-B, B-D}</td>
<td>= same</td>
<td>= same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= ∅</td>
<td>= same</td>
<td>= same</td>
</tr>
<tr>
<td>In₃</td>
<td>⇒ {all}</td>
<td>⇒ \text{Out}_1^2 \cap \text{Out}_5^2</td>
<td>⇒ \text{Out}_1^3 \cap \text{Out}_5^3</td>
<td>⇒ \text{Out}_1^5 \cap \text{Out}_5^3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, A-B, E+1} \cap {B+C, E+1, A-B}</td>
<td>= {B+C, A-B} \cap {B+C, E+1}</td>
<td>= same</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, A-B, B-D}</td>
<td>= {B+C, A-B}</td>
<td>= same</td>
</tr>
<tr>
<td>In₄</td>
<td>⇒ {all}</td>
<td>⇒ \text{Out}_2^1</td>
<td>⇒ \text{Out}_2^3</td>
<td>⇒ \text{Out}_2^5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, A-B, E+1}</td>
<td>= {B+C, A-B}</td>
<td>= same</td>
</tr>
<tr>
<td>In₅</td>
<td>⇒ {all}</td>
<td>⇒ \text{Out}_3^1</td>
<td>⇒ \text{Out}_3^3</td>
<td>⇒ \text{Out}_3^5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {C*D, B+C, E+1}</td>
<td>= {C*D, B+C}</td>
<td>= {C*D, B+C}</td>
</tr>
<tr>
<td>In₆</td>
<td>⇒ {all}</td>
<td>⇒ \text{Out}_4^1</td>
<td>⇒ \text{Out}_4^3</td>
<td>⇒ \text{Out}_4^5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>= {B+C, A-B, B-D}</td>
<td>= {B+C, A-B}</td>
<td>= same</td>
</tr>
</tbody>
</table>

\(\text{Gen₁} = \{1, 2\}\)
\(\text{Gen₂} = \{B+C, A-B\}\)
\(\text{Gen₃} = \{C*D\}\)
\(\text{Gen₄} = \{B+C, A-B\}\)
\(\text{Gen₅} = \{B+C, E+1\}\)
\(\text{Gen₆} = \{C*D, B-D\}\)
\(\text{all} = \{B+C, A-B, C*D, E+1, B-D\}\)

\(\text{Kill_1} = \{B+C, A-B, C*D, B-D\}\) Depends on B or C
\(\text{Kill_2} = \{C*D, A-B, B-D\}\) Depends on A or D
\(\text{Kill_3} = \{C*D, B-D\}\) Depends on D
\(\text{Kill_4} = \{B+C, C*D, E+1\}\) Depends on C or E
\(\text{Kill_5} = \{C*D, B-D\}\) Depends on D or E
\(\text{Kill_6} = \{B+C, A-B, C*D\}\) Depends on B or C
Initialization. We initialize to either the maximal solution (\textit{all}) or the minimal solution (\emptyset) depending on whether we want to find the greatest or least fixed-point.

\textbf{Naïve Gaussian Elimination} will not work here — for two reasons — we must solve with the iterative technique. First, there is a loop in the control-flow graph. Second, there is no ‘division’ of sets. If we attempt to substitute, because of the loop, we will end up with an equation of the form:

\[P = P \cup Q \]

But there is no ‘division’ operation that we can use to group the two \(P \)'s together. If, instead, we were working with real numbers instead of sets we could easily solve \(X = X \times Y \) by dividing both sides by \(X \) to obtain \(Y = 1 \).

\textbf{Iteration order}. In the above example, we first computed all \textit{Out} sets, then all \textit{In} sets. In an industrial compiler, a complex control-flow analysis would first be performed to determine the order in which to evaluate the sets so as to reduce the amount of computation required.

\textbf{Termination}. The domain of the sets is finite: there is a finite number of expressions in the program. There is a biggest possible solution (all expressions) and a smallest possible solution (empty set). There are a finite number of solutions between the biggest and smallest. The equations always move the current solution in the same direction (up or down). Therefore, the analysis will terminate.

\textbf{Confluence}. These equations are confluent: every computation order will produce the same fixed-point solution. Proofs of confluence are beyond the scope of ece351. All dataflow equations are confluent.

\textbf{Common Subexpression Elimination}: We look at the intersection of the \textit{In} and \textit{Gen} sets for each block, to see if a block is redundantly computing an expression that is already available.\

<table>
<thead>
<tr>
<th>Block</th>
<th>\textit{In} \cap \textit{Gen}</th>
<th>= Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>\emptyset \cap \emptyset</td>
<td>= \emptyset</td>
</tr>
<tr>
<td>2</td>
<td>\emptyset \cap {B+C, A-B}</td>
<td>= \emptyset</td>
</tr>
<tr>
<td>3</td>
<td>{B+C} \cap {C’D}</td>
<td>= \emptyset</td>
</tr>
<tr>
<td>4</td>
<td>{B+C, A-B} \cap {B+C, A-B}</td>
<td>= {B+C, A-B}</td>
</tr>
<tr>
<td>5</td>
<td>{B+C, C’D} \cap {B+C, E+1}</td>
<td>= {B+C}</td>
</tr>
<tr>
<td>6</td>
<td>{B+C, A-B} \cap {C’D, B-D}</td>
<td>= \emptyset</td>
</tr>
</tbody>
</table>

So we can change line 40 to \(C = A \), line 50 to \(D = A \), and line 41 to \(E = D \).

Gaussian elimination is the technique that you use to solve systems of equations in your other classes. In algebraic terms, Gaussian elimination only works when the values of the variables are drawn from a field. The definition of an algebraic field requires inverse elements, \textit{i.e.}, a concept of ‘division’.

There are dataflow analysis techniques that have developed concepts of ‘loop-breaking’ so that Gaussian elimination can be applied. Those techniques are sometimes limited in the programs they can analyze, and are beyond the scope of this course. The iterative technique always works.

Formally speaking, we say that the domain forms a semi-lattice with finite chains between top and bottom, and that the dataflow transfer functions are monotone.
4.2.4 Reaching Definitions

To perform Loop Invariant Code Motion we need to know which definitions reach where. If the definitions of all of the operands in some expression come from outside the loop then we can evaluate that expression outside the loop.

Let’s consider our first example. We make variables \(n \), \(x \), and \(y \) into formal parameters of a procedure to give them clear definitions sites.

\[
\text{proc p}(n, x, y) \{
 \text{for } (i=0; i < n; i++) \{
 a[i] = x + y;
 \}
\}
\]

We convert to three-address form. In doing so, we also change the structured control flow (i.e., the ‘for’ loop) of the source program into unstructured goto statements that a machine can actually execute.

We introduce names \(\text{arg1} \), \(\text{arg2} \), and \(\text{arg3} \) to talk about the binding of formal parameters \(x \), \(y \) and \(z \) to the values they are called with.

\[
1. \quad n = \text{arg1};
2. \quad x = \text{arg2};
3. \quad y = \text{arg3};
4. \quad i = 0;
5. \quad \text{start:}
6. \quad \text{if } (! (i < n)) \text{ goto end;}
7. \quad a[i] = x + y;
8. \quad i++;\n9. \quad \text{goto start;}
10. \quad \text{end:}
\]

The equation templates for Reaching Definitions are:

\[
\begin{align*}
\text{In}_s &= \bigcup_{p \in \text{predecessors}(s)} \text{Out}_p \\
\text{Out}_s &= \text{Gen}_s \cup (\text{In}_s - \text{Kill}_s)
\end{align*}
\]

Note that the sets here contain definitions of variables rather than expressions: in other words, here our sets contain focus on the \textbf{LHS} of the statement, whereas before we were focused on the \textbf{RHS}.

Let’s instantiate these equation templates for our example. We’ll use the notation \(n_1 \) to indicate the definition of variable \(n \) on line 4.

The first four statement are trivial, so let’s first state the obvious without explicitly working through all of the details:

These equation templates are the same as for Available Expressions, except the intersection (\(\cap \)) of the \(\text{In} \) equation has been changed to a union (\(\cup \)). Intuitively what this says is that an expression is available if it reaches a statement on all incoming paths. By contrast, a definition may reach a statement if it comes in on any path.

We’re going to do this on a statement basis instead of on a basic-block basis. The difference is not conceptually important.
Out₄ = \{n₁, x₂, y₃, i₄\} the initial definitions reach the end of the initial block

Things get more interesting on line 6 at the top of the loop:

Code to be analyzed:

\begin{verbatim}
1 n = arg1;
2 x = arg2;
3 y = arg3;
4 i = 0;
5 start:
6 if (!(i < n)) goto end;
7 a[i] = x + y;
8 i++; goto start;
9 end:
\end{verbatim}

Step 1

\begin{align*}
\text{In}_6 &= \text{Out}_4 \cup \text{Out}_8 & \text{line 6 has two predecessors} \\
\text{Gen}_6 &= \emptyset & \text{line 6 doesn’t define anything} \\
\text{Kill}_6 &= \emptyset & \text{line 6 doesn’t define anything} \\
\text{Out}_6 &= \text{Gen}_6 \cup (\text{In}_6 - \text{Kill}_6) & \text{this simplifies to } \text{In}_6 \text{ since the other sets are empty}
\end{align*}

Step 2

\begin{align*}
\text{In}_7 &= \text{Out}_6 & \text{line 7 has one predecessor} \\
\text{Gen}_7 &= \{i₇\} & \text{line 7 defines } a \\
\text{Kill}_7 &= \emptyset & \text{there are no other definitions of } a \\
\text{Out}_7 &= \text{Gen}_7 \cup (\text{In}_7 - \text{Kill}_7) & \text{we’ll solve for this later; simplifies to } \text{Gen}_7 \cup \text{In}_6
\end{align*}

\begin{align*}
\text{In}_8 &= \text{Out}_7 & \text{line 8 has one predecessor} \\
\text{Gen}_8 &= \{i₈\} & \text{line 8 defines } i \\
\text{Kill}_8 &= \{i₄\} & \text{the definition of } i \text{ on line 4 is no longer valid} \\
\text{Out}_8 &= \text{Gen}_8 \cup (\text{In}_8 - \text{Kill}_8) & \text{we’ll solve for this later}
\end{align*}

\begin{align*}
\text{In}_{10} &= \text{Out}_6 & \text{line 10 follows from the goto on line 6} \\
\text{Gen}_{10} &= \emptyset & \text{line 10 doesn’t define anything} \\
\text{Kill}_{10} &= \emptyset & \text{line 10 doesn’t define anything} \\
\text{Out}_{10} &= \text{Gen}_{10} \cup (\text{In}_{10} - \text{Kill}_{10}) & \text{this simplifies to } \text{Out}_6
\end{align*}

Solving for the interesting sets:

\begin{align*}
\text{In}_6 &= \{n₁, x₂, y₃, i₄\} \cup \text{Out}_8 = \{a₇, i₄, i₈, n₁, x₂, y₃\} \\
\text{Out}_7 &= \{a₇\} \cup \text{In}_6 = \{a₇, i₄, n₁, x₂, y₃\} \cup \text{Out}_8 = \{a₇, i₄, i₈, n₁, x₂, y₃\} \\
\text{Out}_8 &= \{i₈\} \cup (\text{Out}_7 - \{i₄\}) = \{i₈\} \cup \{a₇, i₄, n₁, x₂, y₃\} - \{i₄\} = \{a₇, i₈, n₁, x₂, y₃\}
\end{align*}

Now we can see that at line 7 the definitions of both \(x\) and \(y\) came from outside the loop, so we can evaluate the expression \(x+y\) outside the loop. In other words, both \(x\) and \(y\) are loop invariant: they do not change with each iteration of the loop.
4.3 Duality of Available Expressions and Reaching Definitions

<table>
<thead>
<tr>
<th>Focus</th>
<th>Available Expressions</th>
<th>Reaching Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Confluence Operation</td>
<td>intersection (∩)</td>
<td>union (∪)</td>
</tr>
<tr>
<td>Paths</td>
<td>all</td>
<td>any</td>
</tr>
<tr>
<td>Necessity</td>
<td>must</td>
<td>may</td>
</tr>
<tr>
<td>Initialize In sets</td>
<td>{all}</td>
<td>∅</td>
</tr>
<tr>
<td>Fixed point</td>
<td>greatest</td>
<td>least</td>
</tr>
</tbody>
</table>

Dataflow analyses are typically parameterized by their equation templates (including the confluence operator), and how the Gen and Kill sets are computed. Because of this regular structure it is possible to build dataflow analysis frameworks.

1. \(a = t + z;\)
2. if (c) {
3. \(t = x;\)
4. }
5. \(b = t + z;\)

Figure 4.2: An example illustrating the difference between Available Expressions and Reaching Definitions. The expression \(t + z\) from line 1 is not available on line 5 because the value of \(t\) may have changed: it may not be the same on all paths leading to line 5.

The definitions of variable \(a\) on line 1 and variable \(t\) on line 3 both reach line 5. Reaching Definitions asks whether a definition might reach a statement any path. Available expressions asks whether an expression must reach a statement on all incoming paths.
4.4 Least Fixed-Point Solutions [extra]

Consider the following recursive equation:

\[S = \{x\} \cup S \]

What is the solution to this equation? A trick question: there are many solutions (possibly an infinite number). For example, \(\{x, y\}\) is a solution:

\[\{x, y\} = \{x\} \cup \{x, y\} \]

Any set that includes \(x\) is a solution. The simplest solution then is just the set \(\{x\}\), which is known as the least fixed-point solution:

\[\{x\} = \{x\} \cup \{x\} \]

How many solutions are there for this equation? That depends on the domain from which \(S\) is drawn. If \(S\) is drawn from \(\mathcal{P}(\{x, y\})\) then the solutions are \(\{x\}\), and \(\{x, y\}\). If \(S\) is drawn from \(\mathcal{P}(\{x, y, z\})\) then the solutions are \(\{x\}\), \(\{x, y\}\), \(\{x, z\}\), and \(\{x, y, z\}\). These domains are depicted with Hasse diagrams in Figure 4.3.

\[\mathcal{P}(\{x, y\}) \quad \mathcal{P}(\{x, y, z\}) \]

If \(S\) is drawn from an infinite domain, such as the powerset of the integers, then there would be an infinite number of fixed-point solutions to the equation. However, only one of them would be the least fixed-point, which is the solution we want.

The termination of a dataflow analysis comes down to this: it must be over a lattice-structured domain with finite chains between top (\(\top\)) and bottom (\(\bot\)).

The intuitions that you have grown accustomed to for arithmetic operations do not always apply to set operations. For example, with integers/reals the result of subtraction can be less than zero. With sets, by contrast, the result of subtraction can never be less than the empty set: there is no concept of ‘negative sets’. This matters because the dataflow equation templates often involve subtracting the \textit{Kill} set from the \textit{In} set.

\(\mathcal{P}(S)\) denotes the powerset of set \(S\), which includes all subsets of \(S\) as well as the empty set and \(S\) itself.

Figure 4.3: Hasse diagrams for domains of powersets of two and three elements. Images from Wikipedia, under the GNU Free Documentation License.

Most treatments of dataflow analysis involve computing this least fixed-point solution ‘numerically’ (or ‘concretely’) by pushing values through the equations until the sets stop changing. The presentation of this solving strategy is often tangled with the construction of the equations. We are looking at constructing the equations symbolically, and so need to disentangle solving the equations from constructing them.
4.5 Summary

• Be able to perform the following optimizations by intuition:
 – Common Subexpression Elimination
 – Copy Propagation
 – Dead Code Elimination
 – Loop Invariant Code Motion
 – Live Variables

• Be able to perform the following optimizations by dataflow analysis:
 – Common Subexpression Elimination (Available Expressions)
 – Loop Invariant Code Motion (Reaching Definitions)

• Basic skills:
 – Convert to three-address form
 – Solve for least fixed-point
 – Draw a Hasse diagram for a powerset

• Function inlining: We saw a version of this in the labs, in VHDL terms ‘elaboration’.

Thought Questions

a. What order to apply optimizations in?

b. How many times to apply them?

c. Do we know that this process will converge?

d. Will it really make the program faster/smaller/etc.?

e. Will we reach an optimum?
5.1 Register Allocation

The software illusion: unbounded space in a finite machine.

<table>
<thead>
<tr>
<th>Turing Machine</th>
<th>Real Computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>infinite tape</td>
<td>registers + cache + RAM + disk</td>
</tr>
</tbody>
</table>

We see this illusion at play all over computer engineering:

- **Operating Systems**: When we run out of RAM then we swap to disk (virtual memory also sometimes has hardware support, so chip designers might be involved).

- **Databases**: One of the main sources of complexity in a database engine is managing data that are too big to fit in RAM. It is much easier to write an in-memory database engine.

- **Chips**: The chip designer determines the policy of what data are duplicated in the cache, and what are only in main memory.

- **Compilers**: The compiler engineer determines how registers are allocated to the local variables in the program, and which are spilled to main memory. The programmer has the illusion of an unbounded number of registers (local variables).

Some programming languages, such as Scheme, provide the programmer with integers of unbounded bitwidth, so the programmer never suffers from overflow. For efficient execution, the compiler engineer wants to map Scheme integers to machine integers where possible, and then transparently switch representations when the machine integer is about to overflow.

Register allocation is an NP-complete problem. Intuitively we can see that it is like bin-packing: we have a bunch of local variables

We are focused on register allocation here. The point is that the illusion of the infinite in the finite also exists elsewhere in programming languages.

The Tiger book’s chapter on register allocation is largely devoted to explaining the details of some polynomial approximations. We’re not concerned with that. You can learn it from a book later if necessary. All you need to learn now is how to model the register allocation problem as a graph colouring problem.

In class we did the example problem on page 221 (Graph 11.1).

Aside: By the four colour theorem we know that any planar graph requires at most four colours. The history of this theorem and its proof is an important and interesting story in the interplay between computers and mathematics. http://en.wikipedia.org/wiki/Four_color_theorem
that we have to pack into the available registers. The main approach for register allocation is *graph colouring*. Graph colouring is another well-known NP-complete problem for which there exist known polynomial approximations that perform reasonably well.

Variable liveness appears, on the surface, slightly different in three-Address code *vs.* assembly. The 3AC sometimes looks like it needs more registers than it does. Consider the 3AC statement \(f := g \cdot h \). How many registers does this require? 3? or 2? If we look at it in assembly it becomes clearer:

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Begin # Reg.</th>
<th>End # Reg.</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>load g</td>
<td>2: g, h</td>
<td>1: h</td>
<td>Load g on to the stack</td>
</tr>
<tr>
<td>load h</td>
<td>1: h</td>
<td>0</td>
<td>Load h on to the stack</td>
</tr>
<tr>
<td>mult</td>
<td>0</td>
<td>0</td>
<td>result on top of stack</td>
</tr>
<tr>
<td>store f</td>
<td>0</td>
<td>1: f</td>
<td>store result in f (pop off stack)</td>
</tr>
</tbody>
</table>

For some machines this might just be one instruction like `mult $4, $5, $4`, saying multiply the values in register numbers 4 and 5 and store the result in register 4: only two registers are required.

Wikipedia Excerpt. In compiler optimization, register allocation is the process of assigning a large number of target program variables onto a small number of CPU registers. Register allocation can happen over a basic block (local register allocation), over a whole function/procedure (global register allocation), or in-between functions as a calling convention (interprocedural register allocation).

In many programming languages, the programmer has the illusion of allocating arbitrarily many variables. However, during compilation, the compiler must decide how to allocate these variables to a small, finite set of registers. Not all variables are in use (or ‘live’) at the same time, so some registers may be assigned to more than one variable. However, two variables in use at the same time cannot be assigned to the same register without corrupting its value. Variables which cannot be assigned to some register must be kept in RAM and loaded in/out for every read/write, a process called spilling. Accessing RAM is significantly slower than accessing registers and slows down the execution speed of the compiled program, so an optimizing compiler aims to assign as many variables to registers as possible.

Register *pressure* is the term used when there are fewer hardware registers available than would have been optimal; higher pressure usually means that more spills and reloads are needed.

Through liveness analysis, compilers can determine which sets of variables are live at the same time, as well as variables which are involved in move instructions. Using this information, the compiler can construct a graph such that every vertex represents a unique variable
in the program. Interference edges connect pairs of vertices which are live at the same time, and preference edges connect pairs of vertices which are involved in move instructions. Register allocation can then be reduced to the problem of K-coloring the resulting graph, where K is the number of registers available on the target architecture. No two vertices sharing an interference edge may be assigned the same color, and vertices sharing a preference edge should be assigned the same color if possible. Some of the vertices may be precolored to begin with, representing variables which must be kept in certain registers due to calling conventions or communication between modules. As graph coloring in general is NP-complete, so is register allocation. However, good algorithms exist which balance performance with quality of compiled code.

5.1.1 Liveness Analysis

Liveness analysis tells us, for each statement, which variables are currently holding values that might be used in the future (i.e., which variables are live). Liveness analysis is the first step in register allocation. A statement uses a variable that appears on the rhs of the statement, and defines a variable that appears on the lhs. The dataflow equation templates for liveness analysis are:

\[
\begin{align*}
In_s &= \text{Use}_s \cup (\text{Out}_s - \text{Def}_s) \\
Out_s &= \bigcup_{x \in \text{successors}(s)} \text{In}_x
\end{align*}
\]

Consider, for example, the following block of code, accompanied by the columns on the right that indicate when each variable is live.

<table>
<thead>
<tr>
<th>live-in</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>j</th>
<th>k</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>live-in</td>
<td>k, j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>g := mem[j+12]</td>
<td>\</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h := k - 1</td>
<td>\</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f := g * h</td>
<td>\ \ / \</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>e := mem[j + 8]</td>
<td>\ \</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m := mem[j+16]</td>
<td>\ \</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>b := mem[f]</td>
<td>\ \</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>c := e + 8</td>
<td>\ \</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>d := c</td>
<td>\ \</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>k := m + 4</td>
<td>\ \</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>j := b</td>
<td>\</td>
<td>\ \</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>live-out</td>
<td>d, k, j</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 5.1: Liveness analysis example. The code block starts with the statement assigning g and ends with the statement assigning j. We are told that variables k and j are live coming into the block; variables d, k, and j are live going out of the block. The columns on the right show the results of our liveness analysis by intuition. A backslash (\) indicates the statement on which a variable is defined. A bar (|) indicates a statement on which a variable is live. A forward slash (/) indicates a statement on which a definition is last used. The reason for this notation is to show, for example, that in the statement \(k = m + 4 \) that k and m do not interfere with each other (i.e., they can share the same register).

[Adapted from Tiger §11.1]
5.1.2 Interference Graph Colouring

From the liveness analysis we construct an interference graph, with a node for each variable, and an edge between variables that are live at the same time. We then colour this graph, with each colour representing a register.
5.2 Garbage Collection

We reviewed the basic ideas of reference counting, mark and sweep, copying collection, and generational collection using the examples from the Tiger book.

Generational collection enables faster object allocation (which is well described in the Tiger book).

```java
/** It's awful: nothing happens twice. */
public class Beckett {

    public static void main() {
        act1();
        System.out.println("Waiting");
        act2();
        System.out.println("Godot");
    }

    static void act1() {
        Person vladimir = new Person();
        Person estragon = new Person();
        vladimir.friend = estragon;
        estragon.friend = vladimir;
    }

    static void act2() {
        Person lucky = new Person();
        Person pozzo = new Person();
        pozzo.friend = lucky;
        // what is the existential status
        // of Vladimir and Estragon at
        // the end of Act 2?
        System.out.println("for");
    }
}

class Person {
    Person friend;
    Person() {
        super();
        friend = null;
    }
}
```

Figure 5.3: Garbage collection in action. First we draw the stack and the heap, as we have done on the board many times throughout the term, and as is done by PythonTutor.com and Jeliot (for Java programs).

There is no frame for act1() on the stack, because act1() is not currently executing (the point of execution pictured is at the existential status comment).

The local variables lucky and pozzo refer to the objects Person3 and Person4, respectively. The objects Person3 and Person4 have no knowledge that they are pointed to by local variables named lucky and pozzo. We see that Person4 (pozzo) has a friend, but that Person3 (lucky) does not.

The objects Person1 and Person2 were formerly known by the local variables vladimir and estragon, respectively, when act1() was executing (i.e., had an active frame on the stack).

Every garbage collection strategy except for reference counting starts from the pointers on the stack and traverses the heap to determine which objects are reachable (i.e., live). In this case we see that Person3 and Person4 are reachable, whereas Person1 and Person2 are not reachable. The unreachable objects are garbage and can be collected.

Reference counting, by contrast, looks at each object and its count of incoming pointers. Person1 and Person2 both have one incoming pointer, so reference counting would not identify them as garbage. Cyclic structures such as this are the main weakness of reference counting. Reference counting is the easiest garbage collection strategy to implement, but is the worst performing.

An old MIT AI Lab Koan: One day a student came to David Moon and said: ‘I understand how to make a better garbage collector. We must keep a reference count of the pointers to each cons (object).’ Moon patiently told the student the following story: ‘One day a student came to Moon and said: ‘I understand how to make a better garbage collector..."
5.3 Object Allocation

5.4 DieHard: Probabilistic Memory Safety for C

A memory-unsafe language is one in which programs can read and write to arbitrary memory locations, like C. A memory-safe language is one in which programs can read and write only objects, and only in pre-defined ways (e.g., reading or writing to a field).

Memory-unsafe languages are required for certain operating system and device driver kinds of programs: programs whose entire point is to manipulate a machine.

Memory-safe languages, by contrast, are arguably better for programs whose purpose is to manipulate symbolic or numerical data (i.e., most application programs). Memory-safe languages are better for these tasks because they prevent entire classes of bugs that can occur in memory-unsafe languages: buffer overflows, dangling pointers, double deletes, reads of uninitialized data, etc..

Suppose we have a program written in C. This program has some memory errors. We don’t want to debug it, and we don’t want to rewrite it in a memory-safe language (which would remove these errors). What can we do? DieHard.

DieHard: Probabilistic Memory Safety for Unsafe Languages

Emery D. Berger
Dept. of Computer Science
University of Massachusetts Amherst
Amherst, MA 01003
emery@cs.umass.edu

Benjamin G. Zorn
Microsoft Research
One Microsoft Way
Redmond, WA 98052
zorn@microsoft.com

Abstract

Applications written in unsafe languages like C and C++ are vulnerable to memory errors such as buffer overflows, dangling pointers, and reads of uninitialized data. Such errors can lead to program crashes, security vulnerabilities, and unpredictable behavior. We present DieHard, a runtime system that tolerates these errors while probabilistically maintaining soundness. DieHard uses randomization and replication to achieve probabilistic memory safety by approximating an infinite-sized heap. DieHard’s memory manager randomizes the location of objects in a heap that is at least twice as large as required. This algorithm prevents heap corruption and provides a probabilistic guarantee of avoiding memory errors. For additional safety, DieHard can operate in a replicated mode where multiple replicas of the same application are run simultaneously. By initializing each replica with a different random seed and requiring agreement on output, the replicated version of DieHard increases the likelihood of correct execution because errors are unlikely to have the same effect across all replicas. We present analytical and experimental results that show DieHard’s resilience to a wide range of memory errors, including a heap-based buffer overflow in an actual application.

Categories and Subject Descriptors D.3.3 [Programming Languages]: Dynamic storage management; D.2.0 [Software Engineering]: Debugging; D.1.3 [Software Engineering]: Software development environments.

DieHard uses randomization and replication to achieve probabilistic memory safety by approximating an infinite-sized heap. DieHard’s memory manager randomizes the location of objects in a heap that is at least twice as large as required. This algorithm prevents heap corruption and provides a probabilistic guarantee of avoiding memory errors. For additional safety, DieHard can operate in a replicated mode where multiple replicas of the same application are run simultaneously. By initializing each replica with a different random seed and requiring agreement on output, the replicated version of DieHard increases the likelihood of correct execution because errors are unlikely to have the same effect across all replicas. We present analytical and experimental results that show DieHard’s resilience to a wide range of memory errors, including a heap-based buffer overflow in an actual application.

DieHard eliminates or avoids all of the memory errors described above with high probability.

Dangling pointers: If the program mistakenly frees a live object, the allocator may overwrite its contents with a new object or heap metadata.

Buffer overflows: Out-of-bound writes can corrupt the contents of live objects on the heap.

Heap metadata overwrites: If heap metadata is stored near heap objects, an out-of-bound write can corrupt it.

Uninitialized reads: Reading values from newly-allocated or unallocated memory leads to undefined behavior.

Invalid frees: Passing illegal addresses to `free` can corrupt the heap or lead to undefined behavior.

Double frees: Repeated calls to `free` of objects that have already been freed cause freelist-based allocators to fail.

Tools like Purify [18] and Valgrind [28, 35] allow programmers to pinpoint the exact location of these memory errors (at the cost of a 2-25X performance penalty), but only reveal those bugs found during testing. Deployed programs thus remain vulnerable to crashes or attack. Conservative garbage collectors can, at the cost of increased runtime and additional memory [12, 20], disable calls to `free` and eliminate three of the above errors (invalid frees, double frees, and dangling pointers). Assuming source code is available, a
5.5 Memory Safety and Language Selection

We say that a programming language is memory safe if it permits reads and writes of memory only where objects have been defined. We say that a programming language is memory unsafe if it permits reads and writes of arbitrary locations of memory. For example, in C we can write a program that asks the user for an integer, and then writes data to that location in memory.

The most common unsafe languages are C and C++. Almost all other popular languages are memory safe: Java, C#, Python, Javascript, Ruby, Perl, Haskell, ML, Basic, Pascal, VisualBasic, Lisp, etc. Having said that, almost all programs written in C/C++ are intended to behave in a memory safe manner: that is, the programs are not expected to write past the end of their arrays (buffer overflow), or read uninitialized memory, etc. There are a wide variety of tools for trying to catch these memory errors in C/C++ programs.

Memory safety usually incurs some runtime overhead to ensure that array operations are within bounds, that casts are legal, etc. — and, of course, automatic garbage collection. The perceived runtime cost of memory safety is often the crux of contention in language selection.

There are five main reasons usually given for choosing a particular language for a project:

- what kinds of errors the language admits or prevents;
- the imagined runtime performance;
- the convenience of expressing the required computation;
- the computing environment (including available libraries);
- and the skills of the available programmers.

The last two factors are extrinsic to the language and so are not part of our discussion here. On another day in this course we might be concerned with the convenience of expression. Our focus here is on the first two criteria: errors and performance.

There are very few programs that need to perform memory unsafe operations: operating system kernels, device drivers, and garbage collectors are three main kinds of what we might call systems programs. The vast majority of programs are applications that are expected to behave in a memory safe manner. If a program is intended to behave in a memory-safe manner then, all other things being equal, it is better to write it in a memory-safe language in order to guarantee that the program does not have memory errors.

When Java first came out it was 10–100x slower than C. That is no longer true.
Sometimes the imagined runtime cost of memory safety is cited as a reason to use a memory unsafe language for application programming. I will give the following arguments against that position:

- **Practical Economics:** The major costs of producing software are testing and maintenance. For example, Microsoft hires testers and developers in equal measure. Maintenance is the most expensive part of the software life cycle. Writing in a memory safe language reduces these costs because it eliminates entire classes of bugs. In Tony Hoare’s 1980 Turing Award acceptance speech\(^1\) he talked about how he had written a compiler in the 1960’s that inserted dynamic array bounds checks, and how even at that time his customers felt the reduction in bugs was well worth the runtime cost.

- **Theoretical Economics:** Greenspun’s Tenth Rule states that ‘Any sufficiently complicated C or Fortran program contains an ad hoc, informally-specified, bug-ridden, slow implementation of half of Common Lisp.’ For example, one of the students in the s2013 offering of this course who has worked on Microsoft PowerPoint reports that PowerPoint contains its own smart-pointer implementation. *Division of labour* has, arguably, been the basis of economic advancement in the west for the last 250 years or so. On this general economic theory, compiler engineers should work hard to make memory safety less expensive, and application programmers should use memory safe languages. Having application programmers attempt to build memory safety onto an unsafe language for each project is economically inefficient.

- **Performance will be parallel.** Several years ago we hit the upper bound of single-core performance. Performance gains of the future will come from multi-core parallelism, just as the main performance gains of the 90’s came from instruction-level parallelism within a single core. Application programmers should focus their efforts on high-level parallelization (and use languages and libraries that reduce the probability of parallelization errors).

- **Memory hierarchy is the bottleneck.** In modern computers the bottleneck is the memory hierarchy: the CPU sits around idle waiting for data to come in from main memory. The runtime overhead of memory safety typically does not antagonize this situation: *i.e.*, we can have it for free. For example, the Varnish HTTP accelerator program used by Facebook and other large websites makes extensive use of assertions: approximately 10% of the non-comment source lines are protected by an assertion. Varnish’s author Poul-Henning Kamp (a longtime FreeBSD contributor) recently argued\(^2\) that these runtime checks incur almost no runtime performance penalty because (a) modern compilers are good at statically remov-

http://en.wikipedia.org/wiki/Greenspun’s_tenth_rule

ing these runtime checks, and (b) the CPU is sitting idle much of the time waiting for data from main memory, so it might as well perform some safety checks on the data it already has in registers.

- **Performance is empirical.** Until you have a working system to profile, you don’t know where the real performance problems are. The assumption that the real problems are caused by the overhead of language features is likely wrong. Disk I/O, network latency, and algorithmic deficiencies all cause much larger overhead.

One possible approach is to write a prototype in a memory safe language to think through all of the conceptual issues, and then write a production version in a memory unsafe language. Gerwin Klein’s team did this for their L4 microkernel operating system and found that it reduced their development costs as compared to other teams developing L4 microkernels.

Is there ever a time when performance concerns make it worthwhile to forego memory safety? Maybe, in the following cases:

- The program does not require dynamic memory allocation *(i.e., all allocation is done on the stack).* A more restrictive form of this rule is that the program does not require objects, just primitive `int` and `float` values, and perhaps arrays.

- The program is batch-mode *(i.e., not interactive)* and short-running. If the program simply reads an input, computes an output, and terminates, then garbage collection might not be necessary. Any interactive program, whether via a GUI or via the web, will likely require dynamic memory allocation and garbage collection.

- The program implements a single, well-understood algorithm.

- The program does not accept inputs from unknown adversaries *(i.e., does not accept inputs on the web).* Lack of memory safety creates all kinds of security vulnerabilities, such as buffer overflow, so if the program is running in a dangerous environment then it should be written in a memory safe language.

A SAT solver is an example of a non-systems program that can reasonably be written in a memory unsafe language: it implements a well-known algorithm; it operates in batch mode; it does not accept inputs from adversarial users; it has restricted memory usage; it is typically small enough to be well understood by a single person (less than 5,000 lines of code); and there are well-defined ways to measure performance (an annual international competition with multiple categories). Data compression programs are a similar example.

Take ECE 459 Programming for Performance if you really care about performance.

SAT is an exception

Appendix A
Bibliography

