
D E R E K R AY S I D E & E C E 3 5 1 S TA F F

ECE 3 5 1 C O U R S E N O T E S

U N I V E R S I T Y O F W AT E R L O O

2 derek rayside & ece351 staff

Copyright © 2018 Derek Rayside & ECE351 Staff
Compiled December 12, 2018

acknowledgements:

• Jon Eyolfson [ta s2012; Lab Instructor w2013 & s2013]

• Students of w2012: David Choi, Michael Lin, Aman Muthrej, Atulan Zaman

• Student Parul Arora from w2018.

Licensed under Creative Commons Attribution-ShareAlike (CC BY-SA) version 2.5 or greater.
http://creativecommons.org/licenses/by-sa/2.5/ca/
http://creativecommons.org/licenses/by-sa/3.0/

http://creativecommons.org/licenses/by-sa/2.5/ca/
http://creativecommons.org/licenses/by-sa/3.0/

Contents

0 Engineering a Compiler 11

0.1 What is a Compiler? 11

0.2 Stages of Compilation 12

0.3 Engineering Design 13

1 Program Understanding 15

1.1 Object Diagrams 16

1.1.1 Learning Object Diagrams from Superheros 16

1.1.2 Harry Potter’s Origin Story 17

1.1.3 Superman’s Origin Story 18

1.1.4 Aliasing 19

1.1.5 Mutation and Aliasing with JDK LinkedList 21

1.1.6 Mutation and Aliasing with Parboiled ImmutableList 21

1.1.7 The keyword ‘final’ prevents re-assignment 23

1.2 Algorithmic Complexity 24

1.2.1 NP-Completeness and Boolean satisfiability 24

1.2.2 Undecidability and The Halting Problem 25

1.2.3 Easy, Hard, and Impossible 26

1.3 Four Variants of Linear Search 28

1.4 Programming ‘Paradigms’ 34

2 Regular Languages & Finite Automata 37
Tiger: §2.3–5

2.1 Kinds of Machines and Computational Power 37

2.1.1 Turing Machines and Programming Languages 38

4 derek rayside & ece351 staff

2.2 Regular Expressions 38

2.3 Finite State Machines 40

2.4 Regex→ nfa 41
Tiger: p.25

2.5 nfa → dfa 42
Tiger: p.27

2.6 dfa Minimization 42
Tiger: not covered.

2.7 Example regex→ nfa → dfa → minimized dfa 43

2.8 dfa Minimization with an Explicit Error State 44

2.9 Another Example 45

2.9.1 Regex→ NFA 45

2.9.2 NFA→ DFA 45

2.9.3 DFA→ minimized DFA 45

2.10 Finite Automata in ece351 vs. ece327 46

2.11 Additional Exercises 47

3 Classifying Grammars by Complexity 57

3.1 Always choose the simplest possible complexity class 59

3.1.1 Refactoring and the Equivalence of Grammars 59

3.2 Is this grammar context-free? 59

3.3 Is this grammar regular? 60

3.3.1 Common cases outside the regular class 60

3.3.2 Proving a grammar is regular 60

3.4 Is this grammar ambiguous? 61

3.4.1 Removing ambiguity using precedence 62

3.4.2 Removing ambiguity using associativity 63
Tiger: p.84

3.5 Is this grammar ll(1)? Simple tests 66

3.5.1 Remove common prefixes with left-factoring 66

3.5.2 Remove left recursion 66

3.6 Is this grammar ll(1)? Full test 67

3.6.1 Convert ebnf to bnf 68

3.6.2 Which nonterminals are nullable? 69

3.6.3 first sets 69

3.6.4 follow sets 70

3.6.5 predict sets 71

ece351 course notes 5

3.7 Is this a peg? (Parsing Expression Grammar) 72

3.8 Grammar Design 72

3.9 Additional Exercises 76

4 Midterm — What you should know so far 85

5 Case Studies 87

5.1 Git 87

5.2 llvm 89

5.3 Java Virtual Machine & Common Language Runtime 91

5.3.1 Comparison with VMWare, VirtualBox, etc. 92

5.3.2 Structure of the Call Stack 93

5.3.3 Object Header and Type Information Block 94

5.4 Cfront: Translating C++ to C 96

5.4.1 Optimizing Polymorphic Calls 101

Tiger: §14.7

5.4.2 Why have polymorphism as a language feature? 101

5.4.3 Subtype Polymorphism and Parametric Polymorphism 101

6 Optimization 105
Tiger: §10.0–1, §17.0, §17.2–3

6.1 A Learning Progression Approach to Dataflow Analysis 105

6.2 Optimization by Intuition 106

6.3 Optimization Step By Step 107

6.4 Convert to Three-Address Form 107

6.5 Available Expressions Dataflow Analysis on Straightline Code 109

6.6 Dataflow Analysis on Programs With Loops & Branches 111

6.6.1 Iteration to a Fixed Point 111

6.7 Available Expressions Dataflow Analysis (with loops) 114

6.8 Reaching Definitions Dataflow Analysis (with loops) 119

6.9 Duality of Available Expressions and Reaching Definitions 121

6.10 Summary 122

6 derek rayside & ece351 staff

7 Storage Management 123

7.1 Register Allocation 123
Tiger: §11.0, 21.0

7.1.1 Liveness Analysis 125

7.1.2 Interference Graph Colouring 126

7.2 Garbage Collection 127
Tiger: §13.0–4, §13.7.1

7.3 Three options for cleanup 128

7.4 Reference Counting 129

7.5 Mark & Sweep 129

7.6 Semi-Space Copying Collection 130

7.7 Generational Collection 130

7.8 Discussion 130

7.9 Object Allocation with Free Lists 131

7.10 Fast Object Allocation 131

7.11 DieHard: Probabilistic Memory Safety for C 132

7.12 Memory Safety and Language Selection 133

B Bibliography 137

J Jokes on Engineering Practice vs. Theory 139

J.1 A theoreticians’s salary 139

J.2 British vs. French Engineers 140

J.3 Engineer’s Induction 140

J.4 Close enough for practical purposes 142

List of Figures

1 A compiler transforms a string to a tree to another string 11

2 Stages of compilation (simplified) 12

3 Stages of compilation (typical C compiler) 12

1.1 Aliasing in The Brothers Karamazov 19

1.2 Aliasing and mutation in Where The Wild Things Are 20

1.3 Mutation and aliasing with jdk LinkedList 21

1.4 Mutation and aliasing with Parboiled ImmutableList 22

1.5 Correct usage of the ‘final’ keyword 23

1.6 Incorrect usage of the ‘final’ keyword 23

1.7 Summary of some big-O related terminology 24

1.8 Truth table for x · y · z 25

1.9 Four different implementations of linear search. 29

1.10 Object diagram for iterative array variant of linear search 30

1.11 Object diagram for recursive array variant of linear search 31

1.12 Object diagram for iterative linked-list variant of linear search 32

1.13 Object diagram for recursive linked-list variant of linear search 33

1.14 Programming paradigms 35

2.1 Terminology for FSA/FSM/etc. 37

2.2 Grep is a compiler 39

2.3 Grep is an interpreter 39

2.4 Grep is an interpreter 39

2.5 Rules for converting regex to nfa [Tiger f2.6] 41

2.6 Rules for converting regex to nfa [plp f2.7] 41

2.7 Example of converting regex to nfa [plp f2.8]. The regex is: d∗(.d | d.) d∗ 43

2.8 Example of nfa to dfa conversion and dfa minimization [plp f2.9
& f2.10] 43

2.9 An nfa and corresponding non-minimal dfa for the regular expres-
sion f?g*, as well as a bogus minimized dfa. 44

2.10 dfa with an explicit error state X. 44

2.11 Minimizing a dfa with an explicit error state. 44

2.12 Comparison of finite state machine notations in ece351 and in ece327 46

8 derek rayside & ece351 staff

2.13 A simple ece327 machine translated into an equivalent ece351 ma-
chine 46

3.1 Chomsky hierarchy of grammatical complexity 57

3.2 Kinds of grammars and the machines needed to parse them 57

3.3 Language notation examples 58

3.4 Context-sensitive grammar for {anbncn | n ≥ 1} 59

3.5 An ebnf grammar for F , from lab4 67

3.6 bnf version of F grammar from Figure 3.5. We’ve converted both
the Kleene stars (‘*’) and the alternative bars (‘|’). Converting the stars
resulted in the introduction of three new nonterminals: FList, TermTail,
and FactorTail. Converting the ‘|’ just results in multiple lines with
the same left-hand side (lhs). 68

5.1 Flipbook of skeleton Git repository 87

5.2 Flipbook of student Git repository 88

5.3 General structure of a simple compiler 89

5.4 General structure of a retargetable compiler 89

5.5 Structure of llvm 89

5.6 Link-time optimization with llvm 90

5.7 Virtual Machine 91

5.8 Structure of call stack (PLP f8.10) 93

5.9 Visualization of call stack and heap from PythonTutor.com 93

5.10 (PLP f9.3) 95

5.11 (PLP f9.4) 95

5.12 (Tiger f14.3) 95

5.13 Simple C++ to C translation 97

5.14 Simple C++ to C translation with VTables and with switch statements 98

5.15 C++ to C translation using VTables, with a polymorphic call 99

5.16 C++ to C translation using switch statements 100

6.1 Hasse diagrams for domains of powersets of two and three elements.
Images from Wikipedia, under the GNU Free Documentation License. 112

6.2 Example flow graph 114

6.3 An example illustrating the difference between Available Expressions
and Reaching Definitions. 121

7.1 Liveness analysis example 125

7.2 Interference graph example 126

7.3 Garbage collection in action. 127

PythonTutor.com

Todo list

See http://www.jflap.org/ for software for converting a dfa to
an equivalent regular grammar 60

Incorporate material from http://theory.stanford.edu/\protect\
unhbox\voidb@x\penalty\@M\{}amitp/yapps/yapps-doc/node3.
html . 63

Piazza post from Ryan . 70

Student confusion about why this production doesn’t add (see sup-
pressed text) . 70

gcc, Eclipse, edg, gdb, ghc, HipHop, v8, XUL, CLR, WAM 103

See the Tiger §13 excerpt in the ece351 notes repo. 129

See the Tiger §13 excerpt in the ece351 notes repo. 130

See the Tiger §13 excerpt in the ece351 notes repo. 130

See the Tiger §13 excerpt in the ece351 notes repo. 131

See the Tiger §13 excerpt in the ece351 notes repo. 131

http://www.jflap.org/
http://theory.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ {}amitp/yapps/yapps-doc/node3.html
http://theory.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ {}amitp/yapps/yapps-doc/node3.html
http://theory.stanford.edu/\protect \unhbox \voidb@x \penalty \@M \ {}amitp/yapps/yapps-doc/node3.html

Engineering a Compiler

0.1 What is a Compiler?

What is a compiler? There are several common answers, such as:

• a program that transforms source code to binary code
• a program that transforms byte code to binary code
• a program that transforms source code to source code
• a program that transforms strings into trees, then back into strings

Consider the small program x=2+3. Figure 1 depicts this program as
an input string, a tree (an abstract syntax tree, or ast), and finally as
some resulting assembly code.

source AST parsing

 x=2+3

assembly codegen

 =

mov eax, 2
mov ebx, 3
add eax, ebx
push eax

x +

2 3

Figure 1: A compiler transforms a
string to a tree to another string

12 ece351 course notes [december 12, 2018]

0.2 Stages of Compilation Figure 2: Stages of compilation (simpli-
fied)

source

AST

 parsing

binary

 codegen

Compilers typically have a linear organization, with each stage pro-
ducing data for the next stage. Figure 0.2 and Figure 0.2 depict some
common stages as edges in a graph, where the nodes represent the
kinds of data that are input and output for each stage (arrow). Fig-
ure 0.2 is a simplified view of compilation, whereas Figure 0.2 shows
the stages in a typical C compiler. Modern Just-In-Time (JIT) compil-
ers have some other stages, which we will discuss later in the term.

Simplified view: compiling = parsing + codegen. At this
high level, parsing transforms the input source string into a tree (the
abstract syntax tree, or ast); and code generation transforms the ast

into the output string (perhaps a binary string of bits).
At this level we can see compilers as a metaphor for any program

that reads structured text input, analyzes and transforms the input,
and finally produces output. A surprisingly wide variety of pro-
grams can be thought of in this way, and techniques from compilers
can be helpful in designing and implementing such programs.

Figure 3: Stages of compilation (typical
C compiler)

source pre-processing

tokens

 lexing

AST

 parsing

AnnotatedAST

 semantic analysis

IntermediateLanguage

 translation to IL

 optimization

Assembly

 codegen

MachineCode

 assembling

Executable

 linking

Expanded view. A typical C compiler expands our simplified view
with additional stages, as depicted in Figure 0.2. The stages that we
will focus on in ece351 are highlighted in the figure:

a. Lexing: chunk the input into a list of tokens (i.e., words). Typically
removes whitespace. Also known as scanning or tokenizing.

• lab1

• §2

b. Parsing: build an ast from the sequence of tokens.

• lab1

• lab3

• lab5

• lab6

• lab9

• §2

• §3

c. Optimization:

• lab4: term-rewriting
• §6 data-flow analysis based optimizations

d. CodeGen: we will study generating a variety of output forms,
including some assembly codes.

• lab11?: jvm assembly
• lab12?: x86 assembly
• §7: register allocation + object allocation
• §??: dynamic dispatch

[chapter 0] engineering a compiler 13

0.3 Engineering Design

ece351 is an engineering design course. In engineering design we are
concerned with questions such as the following:

• Will technique T work for problem P?
• How expensive is technique T?
• What kind of machine is required to solve problem P?
• What is easy? What is hard? What is impossible?
• When to use approximation?
• Making tradeoffs between available resources.

Throughout ece351 we will consider these questions in a variety of
contexts. As compiler engineers, the main resource trade-offs that we
are concerned with are: Consider the programming language

feature of automatic array bounds
checking. This costs the compiler
engineer some time and cognition,
makes the compiler run a little longer
and use a bit more space, makes the
resulting executable program a bit
slower and require a bit more space
(to remember the runtime size of every
array) — but, it saves the programmer
some time and cognition, and it saves
the user from security holes (a buffer
overlow attack is only possible against
programs written in languages without
automatic array bounds checking).

Resources

engineer time & cognition

compiler time & space

executable time & space

programmer time & cognition

user time & security

By engineer here we mean the person writing the compiler. By exe-
cutable we mean the compiled program. By programmer we mean the
person who will use the compiler. By end user we mean the person
who will run the program written by the programmer and compiled
by the compiler.

Engineering design decisions about resource tradeoffs are in-
formed by both theoretical understanding and empirical experience.
Compilers are a fascinating and industrially relevant area with both
deep theory and significant empirical experience to draw on.

Chapter 1
Program Understanding

If we understand a program, then we know some things about it,
including:

• Inputs
• Outputs (including errors)
• Static Structure:

– data structures
– class diagrams
– design patterns

• Dynamic Execution:
– control structures / call graph
– pointers and aliasing
– object diagrams (visualizations of program execution)
– mutation (what data changes during execution)
– invariants (data relationships that are always true)

• Algorithms:
– runtime (both asymptotic/big-O and constant factors)
– space usage (both asymptotic/big-O and constant factors)
– termination conditions (when will the program end?)

• Programming paradigm/style

Some of these topics you will have been introduced to previously;
some of these topics might be new to you. Understanding programs
to this kind of depth is important for writing compilers, from two
perspectives: first, compilers typically analyze the programs they
are compiling in some of these ways; second, a compiler is typically
a large and sophisticated program in itself, and it is very helpful to
understand the programs that you are writing.

This chapter will introduce some of these topics, and others will Topics that will be discussed later in
the course include design patterns,
mutation, and invariants.

be discussed as the course progresses.

16 ece351 course notes [december 12, 2018]

1.1 Object Diagrams
These ece351 object diagrams are
inspired by the box-and-pointer dia-
grams from mit’s classic textbook The
Structure and Interpretation of Computer
Programs, which is available online
under a Creative Commons license.

The name ‘object diagram’ has also
been used in the uml community and
in other contexts. uml object diagrams
are similar to ece351 object diagrams,
but uml object diagrams just depict the
heap, whereas ece351 object diagrams
additionally include the call stack.
PythonTutor.com, by Prof Philip

Guo in the Cognitive Science Depart-
ment at the University of California
San Diego, draws these kinds of dia-
grams for your program as it executes.
PythonTutor.com supports other lan-
guages, including Java. You can run
the example programs from this chap-
ter in PythonTutor.com to see how it
visualizes their execution.

In ece351 we will use object diagrams to visualize the state of an exe-
cuting program. These diagrams will depict the objects, stack frames,
heap, and pointers at a specific time point during the program execu-
tion. We will use the following notation:

Icon Description

PC: 3

Program Counter (PC; the
current line number in the
execution).

main()

var1

var2

Stack frame, with slots for vari-
ables. There might be a special
frame for statics / globals.

Object1

An object (in the heap), named
by it’s class name plus a unique
index number.

Object1 Object2field A field from Object1 referencing
Object2 (label is optional).

main()

var1 Object1

A variable in a stack frame re-
ferring/pointing to an object in
the heap.

We consider that, conceptually, all
objects are allocated on the heap. Our
view is that the compiler (not the
programmer) will control whether
allocation happens on the heap or on
the stack. C++ is just about the only
language where the programmer has
control over this decision: in almost
all other languages it is under the
compiler’s control.

1.1.1 Learning Object Diagrams from Superheros
These kinds of patterns in literature and
mythology are well-studied: e.g., Joseph
Campbell’s classic book The Hero With a
Thousand Faces.

Super-hero origin stories often follow a predictable pattern:

a. the hero is young, and perhaps special, but without superpowers
b. tragedy befalls the hero’s family (often in the form of a villain)
c. the hero acquires superpowers, and perhaps an alias

We can write programs about superhero origin stories. These pro-
grams have no computational purpose: they have no input, no out-
put, and no algorithm. Their purpose is pedagogigcal: hopefully
anthropomorphizing program state and its transformations will help
us learn how to conceptualize program execution more generally.

PythonTutor.com
PythonTutor.com
PythonTutor.com

[chapter 1] program understanding 17

1.1.2 Harry Potter’s Origin Story

1 class HarryPotterOriginStory {

2 static Person Harry;

3 static Person Voldemort;

4

5 public static void main(String[] args) {

6 book1();

7 }

8 static void book1() {

9 Harry = new Person();

10 Person James = new Person();

11 Person Lily = new Person();

12 Harry.father = James;

13 Harry.mother = Lily;

14 James.spouse = Lily;

15 Lily.spouse = James;

16 // object diagram 1

17 Voldemort = new Person();

18 Voldemort.attack(Harry);

19 // object diagram 2

20 }

21 }

22 class Person {

23 Person mother;

24 Person father;

25 Person spouse;

26 void attack(Person p) {

27 p.mother = null;
28 p.father = null;
29 }

30 }

The Potter Family Object Diagram

PC: 16

statics
Harry

Voldemort

main()

Person1

book1()
James
Lily

Person2 Person3

father

mother

spouse

After the Attack

PC: 19

statics
Harry

Voldemort

main()

Person1

Person4

book1()
James
Lily

Person2 Person3spouse

18 ece351 course notes [december 12, 2018]

1.1.3 Superman’s Origin Story

1 public class SupermanOriginStory {

2 public static void main(String[] args) {

3 // the universe

4 Planet Krypton = new Planet();

5 Planet Earth = new Planet();

6 // parents

7 Person JorEl = new Person(null,null,null,Krypton);

8 Person Lara = new Person(null,null,JorEl,Krypton);

9 JorEl.spouse = Lara;

10 // KalEl is born

11 Person KalEl = new Person(JorEl,Lara,null,Krypton);

12 // object diagram 1

13 // Planet Krypton explodes

14 // JorEl and Lara launch KalEl towards earth

15 Krypton = null; JorEl = null; Lara = null;
16 KalEl.father = null;
17 KalEl.mother = null;
18 KalEl.planet = null;
19 // object diagram 2

20 // KalEl lands on earth

21 KalEl.planet = Earth;

22 // KalEl is adopted by the Kent family

23 Person JonathanKent =

24 new Person(null,null,null,Earth);

25 Person MarthaKent =

26 new Person(null,null,JonathanKent,Earth);

27 JonathanKent.spouse = MarthaKent;

28 Person ClarkKent = KalEl;

29 ClarkKent.father = JonathanKent;

30 ClarkKent.mother = MarthaKent;

31 KalEl = null;
32 // object diagram 3

33 // Clark Kent creates his Superman alias

34 Person SuperMan = ClarkKent;

35 // object diagram 4

36 }

37 }

38 class Planet {}

39 class Person {

40 Person father, mother, spouse;

41 Planet planet;

42 Person(Person f, Person m, Person s, Planet p) {

43 father = f; mother=m; spouse=s; planet=p;

44 }

45 }

The El Family Object Diagram

main()

Krypton

Earth

JorEl

Lara

KalEl

ClarkKent

Superman

JonathanKent

MarthaKent

Person1 Planet1

Person2

Person3

Planet2

PC: 12

Planet Krypton Explodes

main()

Krypton

Earth

JorEl

Lara

KalEl

ClarkKent

Superman

JonathanKent

MarthaKent

Person1 Planet1

Person2

Planet2

Person3

PC: 19

Kal-El is adopted by the Kent family

main()

Krypton

Earth

JorEl

Lara

KalEl

ClarkKent

Superman

JonathanKent

MarthaKent

Person1 Planet1

Person2

Planet2

Person4

Person5

Person3

PC: 32

Clark Kent creates Superman alias

main()

Krypton

Earth

JorEl

Lara

KalEl

ClarkKent

Superman

JonathanKent

MarthaKent

Person1 Planet1

Person2

Planet2

Person4

Person5

Person3

PC: 35

[chapter 1] program understanding 19

1.1.4 Aliasing

Aliasing is when multiple variables all refer to the same object. We
saw this above in Superman’s origin story: the three variables KalEl,
ClarkKent, and SuperMan all refer to the same Person3 object. The
situation is even more extreme in Fyodor Dostoevsky’s classic novel
The Brothers Karamazov, where each brother has multiple aliases (as
was common in nineteenth-century Russia, where the novel is set).

Aliasing can make fiction more colourful, but can make programs
harder to read and understand.

1 /** Each brother has multiple aliases. Makes reading hard. */

2 public class TheBrothersKaramazov {

3 public static void main(String[] args) {

4 // first brother has 5 aliases

5 Brother Dmitri = new Brother();

6 Brother Mitya = Dmitri;

7 Brother Mitka = Dmitri;

8 Brother Mitenka = Dmitri;

9 Brother Mitri = Dmitri;

10 // second brother has 4 aliases

11 Brother Ivan = new Brother();

12 Brother Vanya = Ivan;

13 Brother Vanka = Ivan;

14 Brother Vanechka = Ivan;

15 // third brother has 8 aliases

16 Brother Alexei = new Brother();

17 Brother Alyosha = Alexei;

18 Brother Alyoshka = Alyosha;

19 Brother Alyoshenka = Alyoshka;

20 Brother Alyoshechka = Alyoshenka;

21 Brother Alexeichik = Alyoshechka;

22 Brother Lyosha = Alexeichik;

23 Brother Lyoshenka = Lyosha;

24 }

25 }

26 class Brother {}

PC: 24

main()
Dmitri
Mitya
Mitka

Mitenka
Mitri
Ivan

Vanya
Vanka

Vanechka
Alexei

Alyosha
Alyoshka

Alyoshenka
Alyoshechka
Alexeichik

Lyosha
Lyoshenka

Brother1

Brother2

Brother3

Figure 1.1: Aliasing in The Brothers Kara-
mazov (novel by Fyodor Dostoevsky)

Aliasing occurs all the time in regular programs. The example
above of The Brothers Karamazov was intentionally gratuitious. The
next story, Where The Wild Things Are by Maurice Sendak, is a more
realistic program, where we see that aliasing inevitably occurs due
to procedure calls, and also sometimes is used to make the program
easier to understand.

20 ece351 course notes [december 12, 2018]

1 public class WhereTheWildThingsAre {

2 public static void main(String[] args) {

3 Person Mother = new Person(false, false);

4 Person Max = new Person(true, false);

5 Person MaxInWolfSuit = Max;

6 Mother.say("Wild thing!");

7 MaxInWolfSuit.say("I’ll eat you up!");

8 sailAway(MaxInWolfSuit);

9 Max.eatSupper(); // and it was still hot

10 Max.isLonely = false;

11 }

12 static void sailAway(Person p) {

13 p.isLonely = true; // who is p?

14 WildThing[] wildthings = new WildThing[]{

15 new WildThing(), new WildThing(), new WildThing()};

16 for (WildThing w : wildthings) {

17 w.roar(); w.gnash(); w.claw(); }

18 if (p.canStareWithoutBlinking) {

19 Person King = p;

20 King.say("be still!");

21 King.say("let the wild rumpus start!");

22 King.rumpus();

23 for (WildThing w : wildthings) {

24 w.rumpus(); }

25 King.say("now stop!");

26 if (King.isLonely) {

27 wildthings[0].say("Oh please don’t go!");

28 wildthings[1].say("We’ll eat you up!");

29 wildthings[2].say("We love you so!");

30 King.say("No!");

31 for (WildThing w : wildthings) {

32 w.roar(); w.gnash(); w.claw(); }

33 return;

34 } else { sailAway(King); }

35 }

36 }

37 }

38 class Person {

39 boolean canStareWithoutBlinking, isLonely;

40 Person(boolean blink, boolean lonely) {

41 canStareWithoutBlinking = blink;

42 isLonely = lonely; }

43 void rumpus() {}; void eatSupper() {};

44 void say(String s) {System.out.println(s);}

45 }

46 class WildThing {

47 void roar() {}; void gnash() {}; void claw() {}; void rumpus() {};

48 void say(String s) {System.out.println(s);}

49 }

PC: 33

main()
Mother

Max
MaxInWolfSuit

sailAway()
p

King
wildthings

Person1

Person2

array1

WildThing1

WildThing2

WildThing3

Aliasing occurs in this program:

• The variable p illustrates that procedure pa-
rameters are unavoidable aliases.

• The variables MaxInWolfSuit and King are aliases
that are added to the program to aid under-
standing.

Mutation occurs in this program:

• Line 13 mutates p.isLonely:

– Who is p? Which object does p refer to?

• Line 10 mutates Max.isLonely:

– The story reader knows this matches line 13.
– Hard for the compiler to know. Must per-

form an inter-procedural pointer analysis,
which is essentially constructing our object
diagram (but for every possible program
point, and every possible input).

– Even harder for a programmer to find these
matches in large programs that are not
based on famous fictions.

– Be careful about mutation and aliasing!

Figure 1.2: Aliasing and mutation in
Where The Wild Things Are (story by
Maurice Sendak)

[chapter 1] program understanding 21

1.1.5 Mutation and Aliasing with JDK LinkedList

The standard data structures that ship with the Java Development Kit
(jdk) are mutable, as illustrated in Figure 1.3. As we saw above, when
mutation is combined with aliasing it can make the program harder
to understand. In Figure 1.3, the variables list and alias both refer to
the same object (LinkedList1), so lines 8 and 9 both mutate that same
object, resulting in the output [hello, world].

1 import java.util.List;

2 import java.util.LinkedList;

3

4 public class MutableListExample {

5 public static void main(String[] args) {

6 List list = new LinkedList();

7 List alias = list;

8 list.add("hello");

9 alias.add("world");

10 System.out.println(list); // ???

11 }

12 }

PC: 10

main()
list

alias

Output: [hello, world]

LinkedList1

Node1

Node2

String1:
 hello

String2:
 world

Figure 1.3: Mutation and aliasing with
jdk LinkedList

1.1.6 Mutation and Aliasing with Parboiled ImmutableList

Because procedure calls introduce necessary aliases, and because
compilers are typically large programs with many procedure calls,
some compiler engineers make the design choice to use immutable
data structures: the objective is to make the compiler code easier Mutable means ‘can be changed’ or

‘can be mutated’. Immutable means
‘unchangeable’.

to reason about, to reduce the introduction of bugs, and to make
debugging easier. A trade-off is that adding new objects into an
immutable data structure can feel different for the programmer.

In the ece351 labs we will eventually use a parser generator
named Parboiled. Parboiled comes with, and makes extensive use
of, a class called ImmutableList. Figure 1.4 shows a small example of
using this immutable data structure. The key concept is that when
a new object is ‘added’ to an immutable data structure, a new data
structure is created that contains both the original contents and the
new object. The method that does this here is called append.

22 ece351 course notes [december 12, 2018]

1 import org.parboiled.common.ImmutableList;

2

3 public class ImmutableListExample {

4 public static void main(String[] args) {

5 ImmutableList list = ImmutableList.of();

6 ImmutableList alias = list;

7 list.append("hello");

8 alias.append("world");

9 System.out.println(list); // ???

10 list = list.append("hello");

11 alias = alias.append("world");

12 System.out.println(list); // ???

13 }

14 }

PC: 9

main()
list

alias

Output: []

ImmutableList1

ImmutableList2

ImmutableList3

String1:
 hello

String2:
 world

PC: 12

main()
list

alias

Output: [hello]

ImmutableList1

ImmutableList2

ImmutableList3

ImmutableList4

ImmutableList5

String1:
 hello

String2:
 world

Figure 1.4: Mutation and aliasing with
Parboiled ImmutableList

[chapter 1] program understanding 23

1.1.7 The keyword ‘final’ prevents re-assignment

In Java the keyword final prevents re-assignment. When the program- The Java keyword final is similar to, but
not exactly the same as, the C/C++
keyword const.

mer uses ‘final’, the compiler is obliged to prove that the variable is
assigned exactly once on every program path. Figure 1.5 illustrates We will learn how the compiler does

this proof — using dataflow analysis —
after the midterm.

four different correct usages of the final keyword, whereas Figure 1.6
illustrates an incorrect usage. Combining immutable data structures
with the final keyword can make it easier to reason about the pro-
gram, because we will know that the values were set in exactly one
place and didn’t change after that.

1 public class Final {

2 // procedure parameters can also be declared final

3 public static void main(final String[] args) {

4 final String s = "known";

5 // the javac compiler will prove that msg is

6 // assigned exactly once on every program path

7 final String msg;

8 if (args.length == 0) { msg = "no args"; }

9 else { msg = "some args"; }

10 final C c = new C(msg);

11 System.out.println(c.f);

12 }

13 }

14 class C {

15 final String f; // compiler will prove that f is assigned exactly once in every constructor

16 C(final String p) { this.f = p; }

17 }

PC: 11

main()
args

s
msg

c

Output: no args

array1

String1:
 known

String2:
 no args

C1

f

String3:
 some args

Figure 1.5: Correct usage of the ‘final’
keyword

1 public class Bogus {

2 public static void main(String[] args) {

3 final String s = "setting it now";

4 s = "trying to re−assign it −−− won’t work!";

5 }

6 }

1 $ javac Bogus.java

2 Bogus.java:4: error: cannot assign a value to final variable s

3 s = "trying to re−assign it −−− won’t work!";

4 ^

5 1 error

Figure 1.6: Incorrect usage of the ‘final’
keyword

24 ece351 course notes [december 12, 2018]

1.2 Algorithmic Complexity

Big-O notation is used to express the asymptotic complexity of an
algorithm, usually in terms of time, but sometimes in terms of space.
Big-O notation is sometimes referred to as computational complexity or
asymptotic complexity. Let n be a measurement of the size of the input.

Big-O Name Example
O(1) constant (polynomial) hash-table lookup
O(lg n) logarithmic (polynomial) binary search
O(n) linear (polynomial) bucket sort
O(n lg n) log-linear (polynomial) quick sort
O(n2) quadratic (polynomial) bubble sort
O(n3) cubic (polynomial) Early’s parsing algorithm
O(2n) NP-complete (exponential) sat

— undecidable the halting problem

Figure 1.7: Summary of some big-O
related terminology. Anything less than
exponential we refer to as polynomial.
In ece250 you learned a variety of
polynomial time algorithms, mostly
for sorting and searching. In that
context, the difference between O(n2)
(e.g., bubble sort) and O(n lg n) (e.g.,
quick sort) is important. In ece351

we are primarily concerned with
the difference between polynomial
and exponential (and undecidable).
From the perspective of ece351, all
polynomial time problems are easy.

The dominant term is all that matters in big-O notation. For example,
O(n2 + n) is just written as O(n2) because the n2 term dominates the
n term.

1.2.1 NP-Completeness and Boolean satisfiability

NP stands for non-deterministic polynomial time:

a. If we have a solution, then we can verify it in polynomial time on
a single-core deterministic machine.

b. If we have a magical (i.e., non-determinisitic) single-core ma-
chine that can always guess the right next step (i.e., has ‘non-
deterministic powers’), then we can compute a solution in a poly-
nomial number of magically correct guesses.

c. If we have a massively parallel deterministic computer that has
an exponential number of cores, then we can compute a solution
in polynomial time: every core tries a different path, and some
of them will find a solution (if a solution exists) in a polynomial
number of steps.

d. If we have a single-core deterministic computer, then we can
compute a solution in exponential time.

The canonical example of an NP-complete problem is the Boolean
satisfiability problem, commonly known as sat. Given a boolean A boolean formula here is essentially an

F program: the variables have only
boolean (true/false) values, and the
only operators are conjunction (logical
and), disjunction (logical or), and
negation (logical not).

formula, find values for the variables that make the formula true.
The brute force way to solve this problem is to enumerate the truth
table for the function and look for a row that evaluates to true. The

[chapter 1] program understanding 25

truth table is exponential in the number of variables in the formula:
e.g., a formula with three variables will have 23 rows in its truth
table. Consider, for example, the boolean formula x · y · z depicted in
Figure 1.8.

x ·y ·z = f
0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

Figure 1.8: Truth table for x · y · z.
The formula has 3 variables and the
table has 23 rows, only one of which
evaluates to true (the shaded row at the
bottom of the table).

A non-deterministic machine could
‘magically’ (non-deterministically)
choose the right row in a single step.
You can think of non-deterministic
powers as parallelism here. If a ma-
chine had eight cores it could evaluate
all eight rows of the truth table in par-
allel and thereby determine which rows
evaluated to true in a small amount of
clock time.

A single core (i.e., deterministic)
machine would have to evaluate each
row of the table in sequence, which in
the worst case could take an exponen-
tial amount of time (because there are
an exponential number of rows in the
table).

A defining feature of NP-complete problems is not just that they take
an exponential amount of time on a deterministic machine, but that
the answer to such a problem can be verified in polynomial time. For
example, if someone tells us that 〈1, 1, 1〉 is a solution to the formula
x · y · z, we can easily verify that by substituting the values into the
formula.

While sat is the canonical example of an NP-complete problem,
there are other common examples, including: travelling salesman,
scheduling, knapsack/bin packing, and graph colouring. All of these
kinds of problems can be used to encode sat (which is the standard
technique for proving that a problem is NP-complete). When faced
with a new problem of unknown complexity you want to think if it is
similar to any of these known NP-complete problems. For example,
register allocation appears similar to bin packing.

In this course we will see a number of NP-complete problems:
register allocation by graph colouring; circuit equivalence by graph
isomorphism, etc.

1.2.2 Undecidability and The Halting Problem

There are limits to what can be computed. Problems that cannot be
solved on a computer are known as undecidable. Prof Craig Kaplan in CS has a nice web

page about the Halting Problem with
code examples at http://www.cgl.
uwaterloo.ca/~csk/halt/

The Wikipedia page is also good
http://en.wikipedia.org/wiki/
Halting_problem

The canonical example of an undecidable problem is The Halting
Problem: given a program P and an input for that program i, prove
that P will not get stuck in a loop when it executes with i. In other
words, prove that program P will halt on input i.

In the 1930’s Alan Turing famously devised a program P and in-
put i for that program where he proved that it was impossible to
prove that P would halt on i. Because there exists one case it which

http://www.cgl.uwaterloo.ca/~csk/halt/
http://www.cgl.uwaterloo.ca/~csk/halt/
http://en.wikipedia.org/wiki/Halting_problem
http://en.wikipedia.org/wiki/Halting_problem

26 ece351 course notes [december 12, 2018]

this problem is undecidable we say that it is undecidable in general.
There are lots of programs for which it easy to prove termination
(i.e., that they will halt on all possible inputs). For example, the clas-
sic hello world program, or any other program without loops and
without recursion, will always halt for any input.

An important corollary to the Halting Problem proof is that given
two programs P and Q (written in some Turing Complete language), Turing Completeness is defined in §2.1.1.

we cannot decide, in general, if P and Q are equivalent. This has
important implications for compilers. How can we test our compilers
if we cannot compute equivalence of their outputs? Suppose you
add a new optimization to your compiler: how can you know that
it is correct if you can’t compute the equivalence of the optimized
program to the original program?

In practice what compiler engineers do is check that the compiled
programs compute the same outputs. Let’s name our two source
programs P and Q. Let P′ and Q′ name the compiled versions of P
and Q (i.e., the output of our compiler). Then we run P′ on input i
to get output p, and we run Q′ on input i to get output q, and finally
we check that p and q are equivalent. This is not as good as directly
checking P and Q for equivalence, because there might be some
input x that we did not test for which P′ and Q′ compute different
outputs.

1.2.3 Easy, Hard, and Impossible

For the purposes of this course, polynomial time algorithms are easy,
exponential time algorithms are hard, and undecidable problems are
impossible. Note that this classification is about the amount of time
that the computer must spend running the algorithm, not about how
much time and cognition the engineer must expend implementing
the algorithm. For example, quick sort is a tricky algorithm to imple-
ment, but it runs quickly, so here we would say that it is ‘easy’.

There are a number of hard (NP-complete) problems in compiler
engineering. There are at least three ways to solve such problems:

a. Use a polynomial time approximation algorithm. This is the ap- In this course we will not study any
polynomial time approximation algo-
rithms, because we will not implement
any solutions to hard problems in the
labs. Humans can solve small NP-
complete problems on paper, which is
what we will do on the exam. Once you
understand the hard problem you can
always go and learn some polynomial
approximation for it on your own later.

proach most commonly used in practice. Any compiler textbook
will describe a number of polynomial approximations for a hard
problem.

b. Implement an NP-complete algorithm yourself. This is never done
in compilers, and almost never done anywhere else.

c. Translate the problem into a boolean formula and ask a sat solver
for the answer. This is the direction that research is heading in,
and it is what we recommend that you do in your future career

[chapter 1] program understanding 27

if faced with an NP-complete problem for which there is not a We compute equivalence of F pro-
grams by translating them to sat and
asking a sat-solver for the answer.

well-accepted polynomial time approximation algorithm.

There has been several decades of intense research on sat-solvers,
including annual competitions with various prize categories. sat-
solvers are used in a variety of areas in industry, but especially in
digital hardware design tools. It is highly unlikely that a future
you, working under time and budget constraints, will be able to
write a solver for an NP-complete problem that runs more quickly
than one of the existing open-source sat-solvers.

28 ece351 course notes [december 12, 2018]

1.3 Four Variants of Linear Search

Figure 1.9 lists four different implementations of linear search. The
input, output, and algorithm are the same for all:

• Input: a list of strings, where the first one is the token to search for
in the rest of the list.

• Output:

– Normal: prints “found it!” or “didn’t find it”
– Errors: if the list is not provided

• Algorithm: linear search

– Runtime: O(n)
– Space consumption: O(n)
– Termination: either the token is found or the end of the list is

reached.

So what’s differs between these four programs?

• Static Structure:

– Data Structures: arrays vs. linked lists

• Dynamic Execution:

– Control Structures / Call Graph: iteration vs. recursion

Exercise: draw an object diagram of the state of each program
when it finds a match given the input ‘Moe Larry Curly Moe’. So-
lutions given on subsequent pages in Figures 1.10, 1.11, 1.12, 1.13.

[chapter 1] program understanding 29

1 public class LinearSearch_Array_Iterative {

2 public static void main(String[] args) {

3 String toFind = args[0];

4 for (int i = 1; i < args.length; i++) {

5 if (toFind.equals(args[i])) {

6 System.out.println("found it!");

7 System.exit(0);

8 }

9 }

10 System.out.println("didn’t find it");

11 System.exit(1);

12 }

13 }

1 public class LinearSearch_Array_Recursive {

2 public static void main(String[] args) {

3 String toFind = args[0];

4 search(toFind, args, 1);

5 System.out.println("didn’t find it");

6 System.exit(1);

7 }

8 static void search(String toFind, String[] a, int i) {

9 if (toFind.equals(a[i])) {

10 System.out.println("found it!");

11 System.exit(0);

12 } else {

13 if (i < a.length−1) search(toFind, a, i+1);

14 }

15 }

16 }

1 public class LinearSearch_Objects_Iterative {

2 public static void main(String[] args) {

3 String toFind = args[0];

4 // copy array to linked list

5 Node head = null;
6 for (int i = args.length−1; i > 0; i−−) {

7 head = new Node(head, args[i]);

8 }

9 // now search

10 Node n = head;

11 while (n != null) {

12 if (toFind.equals(n.data)) {

13 System.out.println("found it!");

14 System.exit(0);

15 } else {

16 n = n.next;

17 }

18 }

19 // search is over: unsuccessfull

20 System.out.println("didn’t find it");

21 System.exit(1);

22 }

23 }

1 public class LinearSearch_Objects_Recursive {

2 public static void main(String[] args) {

3 String toFind = args[0];

4 // copy array to linked list

5 Node head = null;
6 for (int i = args.length−1; i > 0; i−−) {

7 head = new Node(head, args[i]);

8 }

9 // now search

10 search(toFind, head);

11 // search is over: unsuccessfull

12 System.out.println("didn’t find it");

13 System.exit(1);

14 }

15 static void search(String toFind, Node n) {

16 if (n == null) { return; }

17 else {

18 if (toFind.equals(n.data)) {

19 System.out.println("found it!");

20 System.exit(0);

21 } else {

22 search(toFind, n.next);

23 }

24 }

25 }

26 }
Figure 1.9: Four different implementa-
tions of linear search.

30 ece351 course notes [december 12, 2018]

1 public class LinearSearch_Array_Iterative {

2 public static void main(String[] args) {

3 String toFind = args[0];

4 for (int i = 1; i < args.length; i++) {

5 if (toFind.equals(args[i])) {

6 System.out.println("found it!");

7 System.exit(0);

8 }

9 }

10 System.out.println("didn’t find it");

11 System.exit(1);

12 }

13 }

PC: 6

main()
args

toFind
i = 3

array1

Moe
0
3

Larry

1
Curly

2

Figure 1.10: Object diagram for iterative
array variant of linear search when it
finds ‘Moe’ in ‘Larry Curly Moe’.

[chapter 1] program understanding 31

1 public class LinearSearch_Array_Recursive {

2 public static void main(String[] args) {

3 String toFind = args[0];

4 search(toFind, args, 1);

5 System.out.println("didn’t find it");

6 System.exit(1);

7 }

8 static void search(String toFind, String[] a, int i) {

9 if (toFind.equals(a[i])) {

10 System.out.println("found it!");

11 System.exit(0);

12 } else {

13 if (i < a.length−1) search(toFind, a, i+1);

14 }

15 }

16 }

PC: 10

main()
args

toFind

search()
toFind

a
i = 1

array1

Moe

search()
toFind

a
i = 2

search()
toFind

a
i = 3

0
3

Larry
1

Curly

2

Figure 1.11: Object diagram for recur-
sive array variant of linear search when
it finds ‘Moe’ in ‘Larry Curly Moe’.

32 ece351 course notes [december 12, 2018]

1 public class LinearSearch_Objects_Iterative {

2 public static void main(String[] args) {

3 String toFind = args[0];

4 // copy array to linked list

5 Node head = null;
6 for (int i = args.length−1; i > 0; i−−) {

7 head = new Node(head, args[i]);

8 }

9 // now search

10 Node n = head;

11 while (n != null) {

12 if (toFind.equals(n.data)) {

13 System.out.println("found it!");

14 System.exit(0);

15 } else {

16 n = n.next;

17 }

18 }

19 // search is over: unsuccessfull

20 System.out.println("didn’t find it");

21 System.exit(1);

22 }

23 }

PC: 13

main()
args

toFind
head

i
n

array1

Moe

Node1

Node3

0

3

Larry

1

Curly

2

Node2

Figure 1.12: Object diagram for iterative
linked-list variant of linear search when
it finds ‘Moe’ in ‘Larry Curly Moe’.

[chapter 1] program understanding 33

1 public class LinearSearch_Objects_Recursive {

2 public static void main(String[] args) {

3 String toFind = args[0];

4 // copy array to linked list

5 Node head = null;
6 for (int i = args.length−1; i > 0; i−−) {

7 head = new Node(head, args[i]);

8 }

9 // now search

10 search(toFind, head);

11 // search is over: unsuccessfull

12 System.out.println("didn’t find it");

13 System.exit(1);

14 }

15 static void search(String toFind, Node n) {

16 if (n == null) { return; }

17 else {

18 if (toFind.equals(n.data)) {

19 System.out.println("found it!");

20 System.exit(0);

21 } else {

22 search(toFind, n.next);

23 }

24 }

25 }

26 }

PC: 10

main()
args

toFind
toFind
i = 0

search()
toFind

n

array1

Moe

Node3

search()
toFind

n

search()
toFind

n

Node2 Node1

0

3

Larry

1

Curly

2

Figure 1.13: Object diagram for recur-
sive linked-list variant of linear search
when it finds ‘Moe’ in ‘Larry Curly
Moe’.

34 ece351 course notes [december 12, 2018]

1.4 Programming ‘Paradigms’

There are different styles of programming languages. These have The term paradigm shift was coined
by historian of science Thomas Kuhn
in his book The Structure of Scientific
Revolutions. His hypothesis was that,
for example, Newton’s account of
planetary motion was so different
from Ptolemy’s account that the two
scientists wouldn’t even be able to talk
to each other to compare notes, because
they were mentally in two different
paradigms.

The term ‘programming paradigm’
was coined at a time when it seemed (to
some people at least) that Lisp/Scheme
programmers and C programmers
would never be able to understand each
other, and there would be no way to
combine ideas from the two languages.

The view today is best summed up
by Erik Meijer, architect of Microsoft’s
linq technology, in his paper Confes-
sions of a used programming language
salesman: ‘functional programming has
finally reached the masses, except that
it is called Visual Basic 9 instead of
Haskell 98.’

historically been referred to as programming paradigms because lan-
guages tended to fit neatly into one or the other category. Many
modern languages, however, have features from a variety of styles.
One of the major trends of the last decade is that mainstream object-
oriented languages are acquiring features historically associated with
functional languages.

In this course we will write in Java, an imperative object-oriented
language with some functional features. You will learn more ad-
vanced object-oriented programming techniques (such as design pat-
terns) and functional programming techniques (such as immutable
data) than you have been previously exposed to.

Imperative languages have two distinctive features:

a. Sequential composition. Statements are executed one after the other.
Other kinds of languages might not even have statements, and the
evaluation order of the expressions might be determined by the
compiler, rather than being specified by the programmer as in an
imperative languages.

b. Re-assignment. The value of variables can be changed. Here is
an example program exhibiting both sequential composition and
re-assignment:

x = 7; // initial assignment to x
print(x); // print 7 to console

x = 2; // re−assignment: change the value of x to 2

print(x); // print 2 to console

The theoretical model for imperative languages is Turing Machines.

[chapter 1] program understanding 35

Functional languages are characterized by three things: There is sometimes some confusion
about the intended meaning of the
term functional. The intended meaning
is from mathematics: a mathematical
function computes a single output
based solely on the values of its (im-
mutable) input arguments. In English,
the word functional also means useful,
and while that connotation is intended
it is not what defines functional pro-
gramming languages in contrast to
other kinds of languages.

a. Immutable Data. Variables cannot be re-assigned.

b. Anonymous Functions. Often denoted with lambda (λ). Java 8 and
C++ 11 have both added anonymous functions. For example, here

You are welcome to use lambda ex-
pressions in your code. We have not
included any lambdas in the skeleton
code because some students are not yet
familiar with it, and also because it is
difficult to trace in the debugger.

is an anonymous function that takes two arguments (x and y) and
returns ‘true’ if x is less than y:

λ x, y . x < y

c. Higher-Order Functions. A higher-order function is a function that
takes a function pointer as an argument. A common example
is the sort function, which often takes two arguments: the list
to be sorted and a comparator function (that defines if the sort
should be ascending or descending). In a language with anony-
mous functions we could call sort and specify ascending order
with an anonymous function like so:

comparator = λ x, y . x < y;

sort(list, comparator);

The theoretical model for functional languages is the λ calculus. This
is theoretically equivalent to Turing Machines, but emphasizes a style
based on expressions and immutable values (like math), rather than
on manipulating the state of a machine (imperative languages).

Paradigm Characteristics Example Languages
Imperative has assignment Pascal, Basic, Turing, C, Java, C++, C#

has sequential composition
Object-oriented has objects Java, C++, C#, Scala, Python, Javascript,

might have classes Smalltalk, OCaml, Ruby
might have inheritance
might have dynamic dispatch

Functional has higher-order functions Lisp/Scheme, Haskell, OCaml, F#,
has anonymous functions (lambda λ) Python, Scala
data are immutable by default

Logic has logical equations/expressions Prolog, sql

engine to evaluate equations
(e.g., iteration to a fixed point)

Figure 1.14: Programming paradigms

Chapter 2
Regular Languages & Finite Automata

Pragmatics: §2.2.1 + §2.4.1
Tiger: §2.3–5

Regular languages are important

theory simplest kind of formal language

practice

easy implemented with finite automata

useful for many tasks

Finite automata are the simplest kinds of machines: they have no More sophisticated machines, that we
will study later, have richer storage.storage capability beyond their current state. More sophisticated ma-

chines have additional storage, such as a stack (pushdown automata)
or a tape (Turing Machine, Linear Bounded Automata).

Regex Regular expression
Automata Machine
dfa Deterministic Finite Automaton
nfa Nondeterministic Finite Automaton

Figure 2.1: Terminology for FSA/F-
SM/etc.

2.1 Kinds of Machines and Computational Power

The computational power of a machine is the set of problems that it
can compute. We say machine X is more powerful than machine Y if
there are some problems that X can solve that Y cannot solve.

There are four kinds of theoretical machines that are of interest
to us. Their computational power grows along with the amount of
storage available to them, and the flexibility in accessing that storage.
In all cases the machine’s controller has a finite number of states.

Finite State Machines (fsm): You should be familiar with these from
other courses (e.g., ece327). fsms always run in linear time, be-
cause at each step they consume one token of the input. fsms are
what we use to recognize regular languages.

Deterministic fsms (dfas) are equiv-
alent in power and speed to non-
deterministic fsms (nfas): both run
in linear time. An nfa might have
exponentially fewer states than a dfa.

38 ece351 course notes [december 12, 2018]

Push-down automata (pda): A pda is a fsm plus an (infinite) stack
for storing values. Push-down automata are the kind of machines
needed to recognize context-free languages. Push-down automata
always run in polynomial time.

Non-deterministic pdas are more
powerful than deterministic pdas,
although we will not exploit that
fact in this course. Some context-
free grammars cannot be parsed by
a deterministic pda and require a
non-deterministic pda.Linear-bounded automata (lba): A lba is a fsm plus a finite tape. The

physical computers we use every day are, from a strict theoretical
perspective, lbas, even though we often think of them as Turing
Machines. The idea of a Turing Machines is a

thought experiment that Alan Turing
came up with in the 1930s. These are
not machines that existed as such. At
that time a ‘computer’ was a person
who worked with a slide rule, pencil,
and paper.

Turing Machine tm: A Turing Machine is a fsm plus an (infinite)
tape. We usually conceptualize the computers we use every day as
Turing machines, even though technically they are lbas.

Non-determinism gives a Turing Machine speed but not power.
The set of problems that can be computed is the same, but the
non-deterministic machine can compute some of them exponen-
tially faster. These are the np-complete problems: non-deterministic
polynomial time, or exponential time on a deterministic machine.

2.1.1 Turing Machines and Programming Languages

We say a programming language is Turing complete if it can be used
to describe any computation that can be done by a Turing Machine.
Roughly speaking, if the programming language has conditionals (if
statements), loops or recursion, and a potentially unlimited number
of variables then it is Turing complete.

Almost everything that you think of as a ‘programming language’
is Turing complete. Languages like html and sql are not Turing
complete, and for that reason are sometimes considered to not be
programming languages.

The Turing tar-pit refers either to programming languages that 54. Beware of the Turing tar-pit in which
everything is possible but nothing of
interest is easy. — Alan Perlis, Epigrams
on Programming, 1982

lack higher level constructs, or to the argument that such constructs
are unnecessary because the programming language under consider-
ation is already Turing complete. Higher-level constructs do not add
to the theoretical expressive power of a language that is already Tur-
ing complete, but they might make a person writing in that language
more productive.

2.2 Regular Expressions
You might be familiar with regular
expressions from co-op work.Regular expressions are the simplest class of formal languages, and

define what can be computed by a finite automaton. A regular ex-
pression is defined over some alphabet, named Σ. There are three
operations that can be used to compose smaller regular expressions
into larger ones: In practice, there are some extensions

that can be defined in terms of these
three base operations. For example,
+ as one or more can be defined with
concatenation and star: A+ = AA∗.

[chapter 2] regular languages & finite automata 39

Concatenation One thing followed by another: e.g., AB.
Alternation One of two alternatives: e.g. A|B means A or B.
Repetition Zero or more: A∗

The expressive power of regular languages is exactly the same as
what can be computed with finite automata.

Grep is a Compiler. From a user’s perspective, grep is a program
that searches for a string in a text file. Really, it’s a compiler in dis-
guise. A compiler transforms a source program into an executable
program. Grep transforms a regular expression (its source program)
into a finite state machine (which can be executed). In this chapter
we will learn the basic theory behind how grep (and similar tools) do
this compilation.

compiler executablesource grep FSMregex
Figure 2.2: A compiler transforms
a source program to an executable
program. Grep transforms a regex to a
finite state machine.

Grep is an Interpreter. Does grep actually return the executable
finite state machine? No. What it returns is the set of lines in the in-
put text file that match the regular expression. So it is more accurate
to say that grep is an interpreter.

interpreter output

source

input

grep matches

regex

text

Figure 2.3: An interpreter evaluates
(i.e., interprets) a source program on a
specific input and returns the output
computed by the source program.

Grep is a Just-In-Time Compiler. An interpreter evaluates the
source program directly: it does not translate it into an executable
form. Grep, internally, produces an executable finite state machine
(fsm). So grep is really more like a just-in-time (jit) compiler: it
produces executable code from an input program, runs that code
on a particular input, returns the output and discards the generated
code. This is what modern virtual machines, such as Oracle’s jvm

or Microsoft’s clr, do. So it is most accurate to say that grep is a
just-in-time compiler.

JIT

code output

input

source grep

FSM matches

text

regex

Figure 2.4: An interpreter evaluates
(i.e., interprets) a source program on a
specific input and returns the output
computed by the source program.

40 ece351 course notes [december 12, 2018]

2.3 Finite State Machines

A finite state machine (i.e., finite automata) reads characters from Example input tape:

D B F M Q
an input tape. When it reaches the end of the input tape, it returns
one of two results: either it accepts or rejects the string on the input
tape. The string on the input tape will contain characters from the
machine’s alphabet.

Finite state machines are commonly visualized with circles for
states and labelled edges for transitions between states.

 1Initial State. A state with an incoming arrow that has no origin.
There will be just one initial state for each machine.

2
Accepting State. A double circle. There might be multiple accepting

states. Note that execution of the machine does not terminate
when an accepting state is reached: it terminates when the end of
the input is reached. If the machine happens to be in an accepting
state at that time, then the machine accepts that input.

1 2ATransition. An arrow between two states, labelled with the input
character that causes the machine to take that transtion. In this
example, if the machine is in state 1 and the next character in the
input is an ‘A’, then it will transition to state 2.

1 2eEpsilon Transition. Non-deterministic finite state machines include
epsilon (ε) transitions. This is a transition that the machine can take
without consuming an input character. There might be multiple
outgoing epsilon transitions from a single state. It is understood
that the machine will ‘magically’ choose the epsilon transition that
will eventually lead to accepting the input — if it is possible for
the machine to accept the given input.

In our diagrams we will sometimes label epsilon transitions with Crafting uses lambda (λ) instead of
epsilon (ε). Most books use ε.a lower-case e rather than with an ε.

Deterministic finite automata do not have epsilon transitions.

Implicit Error State. There is, implicitly, a distinguished error state
that the machine transitions to when the next character of the in-
put does not match any of the available transitions. Consider, for

 1

2
A

ErrorB

A,B
A,B

example, a machine that accepts the string ‘A’, from the alphabet
{A, B}. What happens if this machine receives the input string ‘B’?
It rejects, of course — it goes to the Error state. We can explicitly
draw this Error state, and then add transitions to it from every
other state in the machine, labelled with every character of the
alphabet that they do not already have a transition for. This tends
to make the diagrams very cluttered, so typically the Error state is
left implicit (i.e., not visualized).

Finite state machines are the simplest kind of theoretical machine.
They have no storage beyond their current state. More sophisticated
kinds of machines, such as push-down automata and Turing Ma-
chines, add more storage to the foundational finite automata model.

[chapter 2] regular languages & finite automata 41

2.4 Regex→ nfa

Pragmatics: p.56

Tiger: p.25

Crafting: §3.8.1. Note that Crafting uses
λ for the empty string, whereas the
other two books use ε.

This material is covered well in all compiler text books. The conver-
sion rules from the Tiger book and the plp books are reproduced
here for your convenience in Figure 2.5 and Figure 2.6. Crafting has
equivalent figures with slightly different visual notation.

Figure 2.5: Rules for converting regex to
nfa [Tiger f2.6]

(a) base case

(b) concatenation

(c) alternation

(d) Kleene closure

c

A

AB

B

A

B A|B

ǫ

ǫ

ǫ

ǫ

A

A*

ǫ

ǫ

ǫ ǫ

Figure 2.6: Rules for converting regex to
nfa [plp f2.7]

42 ece351 course notes [december 12, 2018]

2.5 nfa → dfa

Pragmatics: p.57–58

Tiger: p.27

Crafting: §3.8.2

All three textbooks use the standard ‘set of subsets’ approach. Craft-
ing describes the approach in words and pseudo-code, whereas the
other two books just use words.

In the worst case, the output dfa might be exponentially larger
than the input nfa. This case rarely happens in practice.

a. Create initial DFA state A, which comprises the NFA start state ε∗

plus all NFA states that are reachable from its initial state by ε

transitions.

b. For each letter x in the NFA’s alphabet, see which DFA states it xε∗ (not ε∗x)

transitions to from the DFA states included in A. Which states can
those states get to via ε? Note that the originating NFA states to be
considered here are just the ones that consume x (for each x).

2.6 dfa Minimization
Pragmatics: p.59

Crafting: §3.8.3
Tiger: not covered.

The dfa produced in the above procedure is often not as small as it
could be. We can use the following procedure to attempt to minimize
it. In following this procudure, we will, during intermediate steps,
construct machines that are not legal dfa’s. However, at the end of
the procudure we will have a legal dfa, and one that is hopefully
smaller than what we started with.

a. Merge all final states into a new final state. Merge all non-final
states into a new non-final state. This machine is likely not a legal
dfa, because it will have states with multiple transitions with the
same label; call these ambiguous transitions.

b. Pick an ambiguous transition. Split its start state so that transition
is no longer ambiguous. Repeat until all ambiguities have been
removed.

In the example from Figure 2.8b:

a. Merge all non-final states: ABC. Merge all final states: DEFG.

b. ABC has an ambiguous transition on ‘d’: split it into AB and C to
remove the ambiguity. We know that A and C must be split from
each other by looking at the dfa: A and C both accept d but have
different targets (B and D, respectively). Must we also split B to
its own state? No, we can group it with A because they share the
same target when accepting a d, namely B.

c. AB has an ambiguous transition on ‘.’: split it into A and B to
remove the ambiguity. No ambiguities remain. Done.

[chapter 2] regular languages & finite automata 43

2.7 Example regex→ nfa → dfa → minimized dfa

Pragmatics: p.59

Start Start Start

dd.

d*. d ǫ

ǫ

ǫ ǫ

Start

d

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ

ǫ
ǫ ǫ d

ǫ

ǫ

ǫ ǫ

Start

.

Start .d |d.

d

.d Start

d .

d.

. d

d .

. d

d .

1 2 3 4

5 6 7

8 9 10

11 12 13 14

Figure 2.7: Example of converting
regex to nfa [plp f2.8]. The regex is:
d∗(.d | d.) d∗

Start

G[11, 12, 13, 14]

A[1, 2, 4, 5, 8] B[2, 3, 4, 5, 8, 9]

C[6] D[6, 10, 11, 12, 14]

E[7, 11, 12, 14] F[7, 11, 12, 13, 14]

d d

d

d d

. .

dd
. .

Start

DEFGC

A B
d

d d

d

Start

DEFGABC

d,.

d,. d
. .

Start

DEFGC

AB

d d

d(b)

(a)

(c)

(a) nfa → dfa

Error: nfa state 11 should not be in dfa

state G. http://www.cs.rochester.edu/
u/scott/pragmatics/3e/errata.shtml

(b) dfa minimization

Figure 2.8: Example of nfa to dfa

conversion and dfa minimization [plp

f2.9 & f2.10]

http://www.cs.rochester.edu/u/scott/pragmatics/3e/errata.shtml
http://www.cs.rochester.edu/u/scott/pragmatics/3e/errata.shtml

44 ece351 course notes [december 12, 2018]

2.8 dfa Minimization with an Explicit Error State

The above presentation of dfa minimization works most of the time,
but not always. There is one more pre-step that is sometimes needed:
adding a distinguished error state to the dfa before minimization.

Consider the regular expression f?g*, for zero or one f s followed
by any number of gs. We could derive the following nfa, where e
edges are ε edges, and the corresponding non-minimal dfa:

. 1

2
f

3e

e

4

e
g
e

. A: 1, 3, 4

B: 2, 3, 4

f

C: 3, 4g

g

g

. ABC

f
g

Figure 2.9: An nfa and corresponding
non-minimal dfa for the regular
expression f?g*, as well as a bogus
minimized dfa.

This is not good, this is not right: this ‘minimized’ dfa is not equiva-
lent to the original language — it accepts any number of f s and and
number of gs in any order. What gives? We need to explicitly repre-
sent error transitions in the non-minimal dfa before minimizing.

What happens to the non-minimal dfa if it gets an f while in state
B? It rejects. We can model this explicitly by introducing a terminal
non-accepting state X, like so:

A: 1, 3, 4

B: 2, 3, 4

f

C: 3, 4
g

g
X

f

g

f

Figure 2.10: dfa with an explicit error
state X.

Now we have explicitly specified what every state does for each letter
of the input alphabet (i.e., f and g). If we apply our minimization
procedure to this error-explicit dfa we will get the right answer:

ABC

f
g

Xf
A BCf

g

g

Xf
A BCf

g

g

(a) merge final and non-final states (b) split A from BC to remove ambiguity on f (c) drop explicit error state X

Figure 2.11: Minimizing a dfa with an
explicit error state.

[chapter 2] regular languages & finite automata 45

2.9 Another Example
From a previous midterm.

Recall theW language for Boolean waveforms from the labs. Imagine
that we extend this language for a three-valued logic: true, false,
and unknown. Here is a regular expression for this new language.
Complete each construction and transformation.

(U|F|T)*

2.9.1 Regex→ NFA
Dotted, unlabelled edges are epsilon
edges.

1 8

2

3

4

5U

6F

7T

2.9.2 NFA→ DFA

A: 1,
2, 3,
4, 8

B: 5,
8, 1, 2,

3, 4
 U

C: 6,
8, 1, 2,

3, 4
 F

D: 7,
8, 1, 2,

3, 4

 T

 U

 F

 T

 U

 F

 T

 U

 F

 T

2.9.3 DFA→ minimized DFA

ABCD U F T

46 ece351 course notes [december 12, 2018]

2.10 Finite Automata in ece351 vs. ece327

The finite state machines that you see in ece327 and in ece351 are,
in theory, the same. Just as Java and assembler are, in theory, the
same: both Java and assembler are Turing-complete languages. Sim-
ilarly, the finite automata notations you learn in ece351 and ece327

can be converted back and forth to each other because they represent
the same theoretical concepts. In this case, the notation in ece351 is
the lower-level notation (i.e., lacks many features that make it conve-
nient for human usage), whereas the ece327 notation is the higher-
level notation. Figure 2.12 summarizes the similarities and differences
between the two notations.

ece351 ece327

finite number of states finite number of states
finite alphabet finite alphabet
labelled states labelled states

one input stream multiple input streams
no internal variables internal variables

no assignment assignment to internal variables
condition on next token condition on arbitrary expressions

multiple guards per transition single guard per transition

Figure 2.12: Comparison of finite state
machine notations in ece351 and in
ece327

How do we show that these two notations are equivalent? The same
way that we show Java is equivalent to assembler, and that nfa’s are
equivalent to dfa’s: we translate one into the other.

ece351 ; ece327 The only feature that ece351 machines have Suppose the ece351 machine has a
transition guarded by x and y (meaning
that the input token must be an x or a
y). An equivalent ece327 machine that
names the input stream i would have a
transition guarded with i = x ∨ i = y.

that ece327 machines do not is multiple guards per transition. But
ece327 machines have a richer language for conditions that can
easily accommodate this.

ece327 ; ece351 There are a number of features to consider:

• multiple input streams: multiplex them down to one stream
• internal variables: incorporate into state labels
• assignment to internal variables: incorporate into transitions
• complex conditions: incorporate into states and transitions

S0 S1i / x=0
!i / x=1

S0

S1_x0t

S1_x1

f

(a) simple ece327 machine (b) equivalent ece351 machine

Figure 2.13: A simple ece327 machine
translated into an equivalent ece351

machine. Let i name the single input
variable in the ece327 machine. In the
ece351 machine we simply check if the
next token is t (true) or f (false). The
ece351 machine has multiple states
that correspond to a single state in the
ece327 machine.

[chapter 2] regular languages & finite automata 47

2.11 Additional Exercises

Exercise 2.11.1 Consider a language where real numbers are defined
as follows: a real constant contains a decimal point or E notation,
or both. For example, 0.01, 2.7834345, 1.2E12, and 7E 5, 35. are real
constants. The symbol " " denotes unary minus and may appear
before the number or on the exponent. There is no unary "+" opera-
tion. There must be at least one digit to the left of the decimal point,
but there might be no digits to the right of the decimal point. The
exponent following the "E" is a (possibly negative) integer. Write a
regular expression (RE) for such real constants. You may use any of
the EBNF extended notation.

Solution 2.11.1 Constraints on real constant:

• contains a decimal point, E notation , or both
• unary minus may appear before the number or an exponent
• no unary plus
• at least one digit to the left of decimal point
• zero or more digits to the right of the decimal point

• exponent following ‘E’ is an integer

Therefore, a regular expression that matches this definition is as
follows:

∼? [0− 9]+((.[0− 9]∗(E ∼? [0− 9]+)?) | (E ∼? [0− 9]+))

Exercise 2.11.2 Draw NFA for the following notations used in ex-
tended regular expressions:

a. R? that matches zero or one copy of R

b. R+ that matches one or more copies of R

Solution 2.11.2 Source: Question 4 at from-students/omortaza_
problem_set.pdf

Exercise 2.11.3 Draw an NFA for (a|b)∗a(a|b)3

Solution 2.11.3 Source: Question 4 at from-students/sj2choi-dfa-nfa.
pdf

Exercise 2.11.4 In a certain (fictional) programming language, as-
signment statements are described as: an assignment statement may
have an optional label at the start of the statement. The assignment
statement itself consists of an identifier, followed by the assignment

from-students/omortaza_problem_set.pdf
from-students/omortaza_problem_set.pdf
from-students/sj2choi-dfa-nfa.pdf
from-students/sj2choi-dfa-nfa.pdf

48 ece351 course notes [december 12, 2018]

operator, followed by an arithmetic expression and ending with the
statement termination operator.

A label consists of one or more letters (no digits), followed by a
colon (:).

An identifier starts with a ltter which may be followed by any
number of letters or digits.

The assignment operator is the equal sign (=).
Arithmetic expressions consist of one or more identifiers, sepa-

rated by arithmetic operators.
The arithmetic operators are: +,−,×,÷.
The statement termination operator is the semicolon (;).
Write a regular expression to recognize assignment statements for

this language.

Solution 2.11.4 L = a|b|c|...|z
D = 0|1|2|3|4|5|6|7|8|9
(LL∗ : |ε)L(L|D)∗ := L(L|D)∗((+| − | × |÷)L(L|D)∗)∗

Exercise 2.11.5 Consider the following NFA, whose final state is state
8. Convert the NFA into a DFA, and draw the resulting DFA. Indicate
which state(s) of the DFA are final states. Dotted edges are epsilon (ε)
edges.

1 2 53a 6a

b
4b 7b 8a

b

Solution 2.11.5

Y

Wa
b

Z

b

X

a
b

a

b

Exercise 2.11.6 Minimize the number of states in the following DFA.
Draw the resulting optimized DFA. All states of the initial DFA are
final states. Dotted edges are epsilon (ε) edges.

[chapter 2] regular languages & finite automata 49

1 2b 4

a

3a 5b
b

a 6a,b

a,b

Solution 2.11.6

X

Z
a

Y

b
a Wb

a,b

Exercise 2.11.7 Construct (draw) a Non-deterministic Finite Automa-
ton (NFA) to recognize the regular expression:

(((a|b)bb∗)∗|aa∗)((a|b)ab)∗

Solution 2.11.7 Source: Question 2.b at ece251/ECE251MS00P.pdf

Exercise 2.11.8 List two differences between NFAs and DFAs.

Solution 2.11.8

a. DFAs cannot have edges labelled ε , NFAs can,

b. DFAs must have different labels on all edges leaving a given
state while NFAs can have several edges leaving the same state
with the same label .

Exercise 2.11.9 What kind of machine is required to recognize a
regular language?

ece251/ECE251MS00P.pdf

50 ece351 course notes [december 12, 2018]

Solution 2.11.9 Finite automata (finite state machine)

Exercise 2.11.10 How long does it take for a finite state machine to
run?

Solution 2.11.10 O(n) / linear time

Automata Question. Consider the following NFA that starts at
state 1 and accepts at state 3 (but gets stuck at state 2):

zero 1

2x

3

x

Exercise 2.11.11 If we assume angelic non-determinism, and the
machine receives input string ‘x’, which state will it transition to?

Solution 2.11.11 3

Exercise 2.11.12 If we assume demonic non-determinism, and the
machine receives input string ‘x’, which state will it transition to?

Solution 2.11.12 2

Exercise 2.11.13 If we assume arbitrary non-determinism, and the
machine receives input string ‘x’, which state will it transition to?

Solution 2.11.13 either 2 or 3

Exercise 2.11.14 Write a regular expression that describes floating
point numbers. These examples should be accepted by your solution:
1.2, 0.004, .5, 0, -76.45, -.12, 87, +2.2, +.3

Solution 2.11.14 (−|+)?[0−9]*\.?[0−9]* Note: do not require the
backslash before the period in student solutions

Exercise 2.11.15 HTML is the standard language for describing web
pages. Can a regular expression for recognizing HTML be written?
Why or why not? Here is an example fragment of HTML:

<html>
<head><title>Web Page Title</title></head>

<body>

[chapter 2] regular languages & finite automata 51

It’s a web page!

</body>

</html>

Solution 2.11.15 No, HTML is not a regular language because it has
nested tags.

Exercise 2.11.16 Consider the usual string representation of binary
integers. The most significant bit is on the left, and the least signifi-
cant bit is on the right. For example, ‘10’ is 2, and ‘100’ is 4. Leading
zeros are permitted, e.g. ‘0010’ is also 2. Write a regular expression
that accepts all binary integers that are divisible by 5.

The general technique for writing
a dfa to check if a binary number
is divisible by n is available online,
e.g.: http://stackoverflow.
com/questions/21897554/
design-dfa-accepting-binary-strings-divisible-by-a-number-n

http://stackoverflow.com/questions/21897554/design-dfa-accepting-binary-strings-divisible-by-a-number-n
http://stackoverflow.com/questions/21897554/design-dfa-accepting-binary-strings-divisible-by-a-number-n
http://stackoverflow.com/questions/21897554/design-dfa-accepting-binary-strings-divisible-by-a-number-n

52 ece351 course notes [december 12, 2018]

Solution 2.11.16
This question is too hard. It should have been phrased to write a dfa,

instead of a regex. If you know the technique it is not hard to make the dfa.
Set states to be the remainders. Define the transition function δ(s, α) to be
δ(s, 0) = (2s)%5 and δ(s, 1) = (2s + 1)%5. Solid lines are 1-transitions
and dotted lines are 0-transitions.

0

1

2

3

4

Different people have come up with different regexs that are equivalent to
this dfa. Converting a dfa to a regex is not hard in principle, but this one
is large in practice.

http://cs.stackexchange.com/questions/2016/how-to-convert-finite-automata-to-regular-expressions
Here is the short one: [0 + 1 (11 + 0) (01*01)* 1]*
Here is the full derivation of the long one:

Q0 = 0Q0 ∪ 1Q1 (2.1)

Q1 = 0Q2 ∪ 1Q3 (2.2)

Q2 = 0Q4 ∪ 1Q0 (2.3)

Q3 = 0Q1 ∪ 1Q2 (2.4)

Q4 = 1Q4 ∪ 0Q3 (2.5)

First simplify 2.5,

Q4 = 1∗ ∪ 0Q3 (2.6)

Apply 2.4 and 2.6 to 2.3

Q2 = 0Q4 ∪ 1Q0

= 01∗ ∪ 00Q3 ∪ 1Q0

= 01∗ ∪ 000Q1 ∪ 001Q2 ∪ 1Q0

= 01∗ ∪ (001)∗ ∪ 000Q1 ∪ 1Q0 (2.7)

http://cs.stackexchange.com/questions/2016/how-to-convert-finite-automata-to-regular-expressions

[chapter 2] regular languages & finite automata 53

Apply 2.7 and 2.4 to 2.2

Q1 = 0Q2 ∪ 1Q3

= 0Q2 ∪ 10Q1 ∪ 11Q2

= (10)∗ ∪ (0∪ 11)Q2

= (10)∗ ∪ (0∪ 11)[01∗ ∪ (001)∗ ∪ 000Q1 ∪ 1Q0]

= (10)∗ ∪ (0∪ 11)[01∗ ∪ (001)∗ ∪ 1Q0] ∪ (0∪ 11)000Q1

= (10)∗ ∪ [(0∪ 11)000]∗ ∪ (0∪ 11)[01∗ ∪ (001)∗ ∪ 1Q0] (2.8)

Apply 2.8 to 2.1

Q0 = 0Q0 ∪ 1Q1

= 0∗ ∪ 1(10)∗ ∪ 1[(0∪ 11)000]∗ ∪ 1(0∪ 11)[01∗ ∪ (001)∗ ∪ 1Q0]

= 0∗ ∪ 1(10)∗ ∪ 1[(0∪ 11)000]∗ ∪ 1(0∪ 11)[01∗ ∪ (001)∗] ∪ 1(0∪ 11)1Q0

= [1(0∪ 11)1]∗ ∪ 0∗ ∪ 1(10)∗ ∪ 1[(0∪ 11)000]∗ ∪ 1(0∪ 11)[01∗ ∪ (001)∗]

Automata Question. Recall theW language for Boolean wave-
forms from the labs. Imagine that we extend this language for a
three-valued logic: true, false, and unknown. Here is a regular ex-
pression for this new language. Complete each construction and
transformation.

(U|F|T)*
Exercise 2.11.17 Regex→ NFA

Solution 2.11.17 Dotted, unlabelled edges are epsilon edges.

1 8

2

3

4

5U

6F

7T

54 ece351 course notes [december 12, 2018]

Exercise 2.11.18 NFA→ DFA

Solution 2.11.18

A: 1,
2, 3,
4, 8

B: 5,
8, 1, 2,

3, 4
 U

C: 6,
8, 1, 2,

3, 4
 F

D: 7,
8, 1, 2,

3, 4

 T

 U

 F

 T

 U

 F

 T

 U

 F

 T

Exercise 2.11.19 DFA→ minimized DFA

Solution 2.11.19

ABCD U F T

Exercise 2.11.20 Are NFAs more powerful than DFAs? Why?

Solution 2.11.20 No. They can be converted to each other.

Exercise 2.11.21 Are ece327 finite state machines more powerful
than ece351 finite state machines?

Solution 2.11.21 TBD

Exercise 2.11.22 Are ece327 finite state machines more convenient
for people to use to describe hardware circuits?

Solution 2.11.22 TBD

More Automata Questions. Produce NFAs that recognize the
following regular expressions. Convert the NFAs to DFAs and mini-
mize them.

Exercise 2.11.23 xy∗(z|cw)ab?

Solution 2.11.23 TBD

[chapter 2] regular languages & finite automata 55

Exercise 2.11.24 (rmb|c)?(ns f)∗

Solution 2.11.24 TBD

Chapter 3
Classifying Grammars by Complexity

Pragmatics: §2.4.3

As engineers we are concerned with practical design questions such See §0.3 of these notes.

as how hard is this problem? and what kind of machine is needed to solve The seminal work in the analysis of
grammars was done by linguist Noam
Chomsky. Starting from his ideas,
computer scientists and engineers
have developed the ideas, focusing on
the simpler classes of grammars that
are useful for machines but not for
linguists, and determining the answers
to our engineering design questions.

this problem? and what kinds of techniques are applicable for this problem?.
In this chapter we will learn to analyze grammars to answer these
kinds of questions.

We are primarily concerned with three classes of languages: regu-
lar, ll(1), and context-free (cfg). Regular languages are the simplest
kind of formal languages, and they are also useful in practice. ll(1)
is the class of languages that we can easily write parsers for by hand,
using the recursive descent technique. ll(1) stands for Left-to-right,
Leftmost derivation, 1 token of lookahead. Context-free languages are
the most sophisticated kind of languages that computer engineers
are typically concerned with. Natural languages fall outside of the
context-free class. We will learn some simple tests to show that a
grammar is outside of a particular class, as well as some sophisticated
techniques to prove that a gramamr is inside a particular class:

Figure 3.1: Venn diagram relating gram-
mar complexity classes. Sometimes
referred to as the Chomsky hierarchy.
This diagram includes the classes that
we will focus on, and excludes others.

Regular LL(1)

Context Free (CFG)

Context Sensitive

Unrestricted

• outside of Regular §3.3.1 inside of Regular §3.3.2

– counting two things
– balanced parentheses
– nested expressions

• outside of ll(1) inside of ll(1) §3.6

– common prefixes §3.5.1
– left recursion §3.5.2
– ambiguity §3.4

• outside of cfg §3.2

– counting three things
– multiple symbols on lhs of grammar

Kind of Grammar Time Required Machine
regular O(n) finite automata

ll(1) O(n) deterministic pushdown automata
context-free O(n3) nondeterministic pushdown automata

context-sensitive ? linear bounded automata
unrestricted ? Turing Machine

Figure 3.2: Kinds of grammars and
the machines needed to parse them.
A question mark in the time column
indicates that there is no reasonable
limit on the time required to parse this
kind of grammar.

58 ece351 course notes [december 12, 2018]

What is a Language? How do we specify one?

A language is a set of strings. A language is the set of strings
that are in the language. A recognizer is a program that checks if an
input string is in the language’s set of strings.

If the language comprises a finite set of strings, we could just write
them down. For example, suppose our language is the set of strings
{a, ab, abc}. This example is a finite language with three strings in it.

What if the set is infinite? Almost all languages are infinite.
So we cannot just write down the set of strings in the language (at
least not in finite space and time). We need some finite notation for
specifying the languae. There are multiple such notations that are in
common use:

• grammars
• regular expressions (for regular langauges only)
• set comprehensions
• words

Some languages are easier to specify in one notation than in others.
Some languages are impossible to specify in some notations. Let’s
consider some examples:

L Words RegEx Set Comprehension Grammar Example Strings

1 any number of xs x∗ {xn | n ≥ 0} S → x S
| ε

ε, x, xx, xxx, ...

2 x followed by some ys xy+ {xyn | n ≥ 1}
S → x y T
T → y T

| ε

xy, xyy, xyyy, ...

3 counting two things {xnyn | n ≥ 0}
S → x S y

| xy
| ε

ε, xy, xxyy, xxxyyy, ...

4 counting three things {xnynzn | n ≥ 1} see Figure 3.4 xyz, xxyyzz, xxxyyyzzz, ...

5 nested subtractions

S → E
E → E - T

| T
T → ’(’ E ’)’

| int

9− 2, 9− 5− 2, 9− (5− 2), ...

Figure 3.3: Language notation examples

[chapter 3] classifying grammars by complexity 59

3.1 Always choose the simplest possible complexity class

When designing a language, always choose the simplest possible
grammatical complexity class. Simpler grammars take less time and
machinery to parse and are easier to work with. Almost all gram- kiss

mars that computer engineers would want to work with are at most
peg’s. Do engineers always follow this kiss rule? No. And it causes
unnecessary trouble. Some notable examples of poor language design
include:

• The full grammar for vhdl is at least ambiguous because ‘a(i)’
could be an array access or a function call.

• The language that the airline industry uses to encode ticket infor-
mation uses an unrestricted grammar. The only defence for this http://www.scribd.

com/doc/66040686/
ITA-Software-Travel-Complexity

incredible blunder is that these ticket codes were designed before
grammatical complexity and formal languages were well under-
stood. This poor design decision is still creating unnecessary pain
for engineers decades later.

3.1.1 Refactoring and the Equivalence of Grammars
Equivalence

{
weak same strings
strong same treesTwo grammars are said to be weakly equivalent if they accept exactly

the same set of input strings. Two grammars are said to be strongly
equivalent if they accept exactly the same set of input strings and
produce the same parse trees. A main technique that engineers use is
to refactor a complex grammar to an equivalent simpler grammar.

3.2 Is this grammar context-free?
Crafting: §4.1, §4.2

Context-free grammars have only one non-terminal on the lhs of
each production. The canonical example of a language that is not
context-free is {anbncn | n ≥ 1}. In other words, the letter a repeated {anbncn | n ≥ 1}
n times, followed by the letter b repeated n times, followed by the
letter c repeated n times. Figure 3.4 lists a grammar for this language.
Note that all but the top two productions have multiple symbols on Multiple symbols on lhs =⇒ not cfg

the lhs (left-hand side): sometimes multiple non-terminals (e.g., CB),
and in other cases a mixture of non-terminals and terminals (e.g., aB).

S → aSBC
S → aBC
CB → HB
HB → HC
HC → BC
aB → ab
bB → bb
bC → bc
cC → cc

Figure 3.4: Context-sensitive grammar
for {anbncn | n ≥ 1}.
[http://en.wikipedia.org/wiki/
Context-sensitive_grammar]

http://www.scribd.com/doc/66040686/ITA-Software-Travel-Complexity
http://www.scribd.com/doc/66040686/ITA-Software-Travel-Complexity
http://www.scribd.com/doc/66040686/ITA-Software-Travel-Complexity
http://en.wikipedia.org/wiki/Context-sensitive_grammar
http://en.wikipedia.org/wiki/Context-sensitive_grammar

60 ece351 course notes [december 12, 2018]

3.3 Is this grammar regular?

3.3.1 Common cases outside the regular class

The three important things that engineers want to do in practice that
cannot be done with regular grammars are: These are the three main features that

we will look for to determine that a
grammar is not regular.• (unlimited) balanced parenthesis, e.g. {(na)n | n ≥ 1}

• expression nesting
E → (E)
E → E + E
E → x

• indefinite counting (e.g., {anbn | n ≥ 1}) https://en.wikipedia.org/wiki/
Formal_grammar

S → aSb
S → ab

3.3.2 Proving a grammar is regular

Context-free grammars restrict the left-hand side to be a single non- https://en.wikipedia.org/wiki/
Formal_grammarterminal. Regular grammars, as a subset of context-free grammars,

inherit this left-hand side restriction, and further restrict the right-
hand side to one of the following three cases:

• the empty string (ε)
• a single terminal symbol
• either left linear or right linear:

– right: a single terminal followed by a single nonterminal
– left: a single nonterminal followed by a single terminal

Note that all the rules in a regular grammar must be either left linear
or right linear: if the two forms are mixed then the grammar might
not be regular.

See http://www.jflap.org/
for software for converting a
dfa to an equivalent regular
grammar

See http://www.jflap.org/
for software for converting a
dfa to an equivalent regular
grammar

https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar
https://en.wikipedia.org/wiki/Formal_grammar
http://www.jflap.org/
http://www.jflap.org/

[chapter 3] classifying grammars by complexity 61

3.4 Is this grammar ambiguous?
Crafting: §4.2.2, §6.4.1

A grammar is ambiguous if there exists a legal input string that has
multiple valid derivations.

Test: for a given input string, do two derivations; if they are both
accepting and different then the grammar is ambiguous.

Challenge: coming up with the input string that will reveal the
ambiguity. In theory this is impossible (undecidable): in other words,
there exists a grammar for which we cannot compute an ambibuity-
revealing input string. In practice a little bit of human intuition is
usually sufficient (certainly for any grammars that we will consider
in this class).

Consider the following grammar, where INT means any integer:

S → E
E → E + E
E → INT

Is it ambiguous? Consider the input string ‘1+2+3’. It can parse either
as ‘(1+2)+3’ or as ‘1+(2+3)’, so yes, the grammar is ambiguous.

We can remove this ambiguity by refactoring the grammar. Our
refactored grammar will accept the same set of input strings, but for
each (legal) input string will produce exactly one parse.

The problem with this example grammar is that it does not specify
whether addition is left-associative or right-associative: it allows
both parses. From an arithmetic standpoint this is fine, because both
parses are arithmetically correct. But from an engineering standpoint
we would like to choose one associativity over the other for a few
reasons. First, an ambiguous cfg is definitely not ll(1), nor is it a
peg. Therefore, we need more machinery (nondeterministic pda vs.
deterministic pda), more complex parsing algorithms (Earley vs.
recursive descent), and more time to parse (O(n3) vs. O(n)). Second,
it makes testing easier if there is only one acceptable output.

Operator associativity and precedence are potential sources of
ambiguity that we can design (or refactor) grammars to avoid. There
is an equivalent ll(1) grammar for this language.

62 ece351 course notes [december 12, 2018]

3.4.1 Removing ambiguity using precedence
Pragmatics: p.50 + §6.1.1

In grade school we learn the order of operations and the acronym
bedmas, which stands for brackets, exponents, division, multipli-
cation, addition, subtraction. This is operator precedence, and it is
something that needs to be designed in to a grammar. How we en-
force precedence:

a. Each level of precedence should be its own non-terminal
b. The lowest level of precedence should be the top level production

(highest level of precedence is the last production)
c. Each production should use the next highest level of precedence
d. The highest level of precedence includes the operands

Consider the following ambiguous grammar, where S is the top-level:

S → E
E → E + E
E → E ∗ E
E → INT

This grammar will parse ‘1+2*3’ either as ‘(1+2)*3’ or as ‘1+(2*3)’,
but only the second parse is arithmetically correct. How can we de-
sign the grammar to produce only this second parse? By introducing
operator precedence into the grammar.

The first rule above says that each level of precedence should be its
own non-terminal. We have two operators (*, +), and we want each of
them to have their own level of precedence, so therefore two levels of
precedence. Let’s name them E and F:

E → E + E
F → F ∗ F

We want F to be the highest level of precedence (multiplication
comes first), so from the last rule above we add the production:

F → INT

We want E to be the lowest level of precedence, so from the second
rule above we keep the production:

S → E

Now we apply the third rule above to connect things:

E → F

S → E
E → E + E
E → F
F → F ∗ F
F → INT

The input ‘1+2*3’ now unambiguously parses as ‘1+(2*3)’. The
input ‘4+5+6’ still parses ambiguously, so the grammar is still am-
biguous. From an arithmetic standpoint this doesn’t matter because
addition and multiplication are associative: ‘4+(5+6)’ sums to 15, as
does ‘(4+5)+6’.

[chapter 3] classifying grammars by complexity 63

3.4.2 Removing ambiguity using associativity
Pragmatics: p.50 + §6.1.1

Let’s change the operators in our grammar to subtraction and divi-
sion, for which the associativity matters (they are left associative), so
the remaining ambiguity matters. Here’s our modified grammar:

S → E
E → E− E
E → F
F → F / F
F → INT

Consider that ‘8-6-2’ evaluates to 4 if parsed as ‘8-(6-2)’ (right-associative
parse; incorrect), but evaluates to 0 if parsed as ‘(8-6)-2’ (left-associative
parse; correct). The problem is in this production:

E → E− E
Subtraction is left-associative:

x− y− z = (x− y)− z
∴ grammar should be left-recursive:

E→ E− F

Exponentiation is right-associative:
x ˆ y ˆ z = x ˆ (y ˆ z) = x(y

z)

∴ grammar should be right-recursive:
E→ F ˆ E

We can expand E on either the left side or the right side of the sub-
traction operator. Subtraction is a left-associative, so we should
change this production to be left-recursive only:

E → E− F

Similarly, division is left-associative, so we should change its produc-
tion to be left recursive only:

F → F / INT

Our resulting grammar is: Derivation of ‘8-6-2’:

S → E
→ E− F
→ [E− F]− F
→ [F− 6]− 2
→ [8− 6]− 2

S → E
E → E− F
E → F
F → F / INT
F → INT

This grammar parses ‘8-6-2’ unambiguously and correctly in a left-
associative manner as ‘(8-6)-2’.

Incorporate material from
http://theory.stanford.
edu/~amitp/yapps/
yapps-doc/node3.html

Incorporate material from
http://theory.stanford.
edu/~amitp/yapps/
yapps-doc/node3.html

It’s left-associative, but not LL(1) due to left recursion

This is a fundamental problem with bnf and ll(1): expressing left-
associativity in bnf requires using left recursion; if we refactor to
remove the left recursion, we also end up changing the associativity.
There is no simple solution.

But we can write a (weakly) equivalent grammar in ebnf using
repetition that does not constrain the associativity, and then imple-
ment as we want (this is what we did in lab3).

http://theory.stanford.edu/~amitp/yapps/yapps-doc/node3.html
http://theory.stanford.edu/~amitp/yapps/yapps-doc/node3.html
http://theory.stanford.edu/~amitp/yapps/yapps-doc/node3.html
http://theory.stanford.edu/~amitp/yapps/yapps-doc/node3.html
http://theory.stanford.edu/~amitp/yapps/yapps-doc/node3.html
http://theory.stanford.edu/~amitp/yapps/yapps-doc/node3.html

64 ece351 course notes [december 12, 2018]

Dangling Else: A classic problem

Tiger: p.84

The dangling-else problem originates
with the algol-60 language. algol-60

was an influential academic language.
For example, the bnf notation for
specifying grammars was developed
in connection with algol-60. The
C language is considered to be an
industrial descendant of algol-60.

Consider the following pseudo-code snippet that summarizes the
enrollment conditions for ece351:

if (Dept == ECE) if (Term == 3A) Enroll = Y; else Enroll = Override;

Clearly 3a ece students can enroll in ece351. But who can use an
override to get into the course? Students from outside ece? Or stu-
dents from within ece who are in a different term? It depends on the
parse: is the else associated with the inner or outer if ? Let’s look at
the typical grammar for an optional else:

stmt → ...
| conditional

conditional → if (expr) stmt
| if (expr) stmt else stmt

The grammar is ambiguous. Both parses are possible:

else associated with inner-if:

if (Dept == ECE) {

if (Term == 3A) {

Enroll = Yes;

} else { // other−term ECE

Enroll = Override;

}

}

else associated with outer-if:

if (Dept == ECE) {

if (Term == 3A) {

Enroll = Yes;

}

} else { // outsiders

Enroll = Override;

}

.

This problem is usually resolved in one of four ways in practice:

• Require every if to have a corresponding endif statement vhdl

• Require every if to have a corresponding else Haskell

• Introduce indenting to the grammar Python

• Add a note to the language specification C, Java, etc., attach to the inner if

Exercise 3.4.1 Which of the above approaches change the grammar to
remove the ambiguity?

Solution 3.4.1 The first three. Adding a note to the language spec-
ification leaves the grammar ambiguous, and requires the parser
implementer to deal with this case specially.

[chapter 3] classifying grammars by complexity 65

Exercise 3.4.2 For the approaches that remove ambiguity from the
grammar, write the new unambiguous grammar.

Solution 3.4.2 TBD

Exercise 3.4.3 Recall that pegs do not permit ambiguity. Write a peg

that expresses the desired behaviour of C/Java/etc. languages. Use
pseudo-Parboiled syntax: i.e., Sequence(), FirstOf(), etc.

Solution 3.4.3 FirstOf(IfAlone, IfElse)

66 ece351 course notes [december 12, 2018]

3.5 Is this grammar ll(1)? Simple tests
Crafting: §5.2

Any grammar that is left recursive or has common prefixes is not Refactoring means to change some
code (or grammar) to a different form
that is easier to work with but that is
computationally equivalent.

ll(1). Both of these problems can usually be removed by refactoring
the grammar. The refactored grammar might be ll(1). To know for
sure we’ll still need to perform the full test described in the next
section.

3.5.1 Remove common prefixes with left-factoring
Crafting: §5.5.1
Pragmatics: p.83 + j2

There is an algorithm for this (see Crafting a Compiler). The general
pattern presented here will show you the idea and be good enough
for you to do exam questions.

Problem: Solution:
Goal → Prefix Suffix1

| Prefix Suffix2
Goal → Prefix Tail
Tail → Suffix1

| Suffix2
Example Problem: Solution:

stmt → id := expr
| id (expr)

stmt → id Tail
Tail → := expr

| (expr)

3.5.2 Remove left recursion
Crafting: §5.5.2
Pragmatics: p.84 + j2

There is an algorithm for this (see Crafting a Compiler). The general
pattern presented here will show you the idea and be good enough
for you to do exam questions.

Problem: Solution:
Goal → Goal Suffix

| Prefix
Goal → Prefix Tail
Tail → Suffix Tail

| ε

Example Problem: Solution:
List → List , id

| id
List → id Tail
Tail → , id Tail

| ε

[chapter 3] classifying grammars by complexity 67

3.6 Is this grammar ll(1)? Full test
Pragmatics: pp.79–82 + j2

The analysis that we will do here is
similar to what you have been doing in
your other engineering courses:

a. Construct a system of equations
b. Solve the equations

The differences are: here our variables
are sets (rather than real numbers); the
operations on these variables are things
like union (∪) and intersection (∩)
(rather than addition, multiplication,
etc.); and we solve the equations by
iteration to a fixed point.

If a grammar is ll(1) then we can predict which alternative to choose
based on one token of lookahead.

Let’s think about the grammar from the labs reproduced in Fig-
ure 3.5 intuitively: which nonterminals have alternatives? Apparently
Factor and Constant. When we are expecting a Constant, and we
lookahead one token will we be able to determine which alternative?
Yes, because the alternatives are just one token: either ‘0’ or ‘1’. Fac-
tor is almost as simple: in one case we see a ‘!’, in the next a ‘(’, then
an identifier, and finally a ‘0’ or a ‘1’. So as long as ‘!’, ‘(’, ‘0’, and
‘1’ are not valid identifiers then we will know which alternative to
choose based on one token of lookahead.

Is it really that simple? Almost, but not quite. The intuition is
correct: are the predict sets disjoint? Can we predict which alter-
native to choose based on one token of lookahead? The technical
detail we’ve glossed over is the Kleene star (‘*’) used in the grammar
of Figure 3.5. We need to convert this grammar from ebnf (which
allows the ‘*’ and the bar ‘|’) to basic bnf, which has neither the star Some sources claim that regular bnf in-

cludes the bar ‘|’. Scott says it doesn’t.
In either case, we want to remove the
bar for the following computations.

(‘*’) nor the bar (‘|’). When we convert the stars we will get some
new nonterminals, and we won’t be as confident in our intuitive as-
sessment of those nonterminals: we’ll want a more rigourous formal
analysis to determine if this grammar is ll(1).

Program → Formula* $$
Formula → Var ‘⇐’ Expr ‘;’
Expr → Term (‘+’ Term)*
Term → Factor (‘.’ Factor)*
Factor → ‘!’ Factor | ‘(’ Expr ’)’ | Var | Constant
Constant → ‘0’ | ‘1’
Var → id

Figure 3.5: An ebnf grammar for F ,
from lab4

68 ece351 course notes [december 12, 2018]

3.6.1 Convert ebnf to bnf

Pragmatics: §2.1.2, p.47

Need to get rid of star and bar (repetition and alternation). Bar is
easy: just break up into multiple productions. Star is a bit harder:
need to introduce new non-terminals and do the repetition by recur-
sion. Will also need epsilon to terminate the recursion.

Program → FList $$
FList → Formula FList
FList → ε

Formula → Var ‘⇐’ Expr ‘;’
Expr → Term TermTail
TermTail → ‘+’ Term TermTail
TermTail → ε

Term → Factor FactorTail
FactorTail → ‘.’ Factor FactorTail
FactorTail → ε

Factor → ‘!’ Factor
Factor → ‘(’ Expr ’)’
Factor → Var
Factor → Constant
Constant → ‘0’
Constant → ‘1’
Var → id

Figure 3.6: bnf version of F grammar
from Figure 3.5. We’ve converted
both the Kleene stars (‘*’) and the
alternative bars (‘|’). Converting the
stars resulted in the introduction
of three new nonterminals: FList,
TermTail, and FactorTail. Converting
the ‘|’ just results in multiple lines with
the same left-hand side (lhs).

The intuitive questions now are whether we can predict which
alternative to choose for our new nonterminals FList, TermTail, and
FactorTail. In practice this is not too hard for TermTail and FactorTail.
If we’re expecting a TermTail and we lookahead and see a ‘+’ then we
do that alternative, else the TermTail goes to ε. In theory, however,
we would like to know which tokens might predict the TermTail→
ε production, rather than counting on the ‘else’ clause that we could
exploit here in practice.

For the FList→ Formula FList production we can intuitively see
that a Formula begins with an id (derived from Var), and if the next
FList is empty we’ll expect to see the end-of-input (‘$$’).

So we could implement a recursive descent parser for this simple
grammar by hand without really requiring any theory, which is what
we did in lab2. But to really know that this grammar is ll(1), or to
make that determination for a more sophisticated grammar, we need
some theory.

[chapter 3] classifying grammars by complexity 69

3.6.2 Which nonterminals are nullable?
Pragmatics: pp.79–82

Crafting: §4.5.2‘Nullable’ means that the nonterminal can derive ε. The standard
notation for this (used by Scott) is eps(A), where ‘eps’ is short for
‘epsilon’. When constructing the equation there are three cases:

• Derives ε directly = 1 (nullable).
• Contains a terminal = 0 (cannot be nullable).
• Sum-of-products: one product for each alternative, where the

product comprises eps(Ai) for each nonterminal Ai in the produc-
tion.

Nonterminal Equation Solution Comment
eps(Program) = 0 = 0 contains a terminal ($$)
eps(FList) = 1 = 1 derives ε directly
eps(Formula) = 0 = 0 contains terminals ‘⇐’ and ‘;’
eps(Expr) = eps(Term) . eps(TermTail) = 0 sum-of-products (but only one alternative)
eps(TermTail) = 1 = 1 derives ε directly
eps(Term) = eps(Factor) . eps(FactorTail) = 0 sum-of-products (but only one alternative)
eps(FactorTail) = 1 = 1 derives ε directly
eps(Factor) = 0 + 0 + eps(Var) + eps(Constant) = 0 one product for each alternative
eps(Constant) = 0 + 0 = 0 both alternatives are terminals
eps(Var) = 0 = 0 derives a terminal

3.6.3 first sets
Pragmatics: pp.79–82

Crafting: §4.5.3We need the nullability information in order to construct the first

sets. Some treatments put ε in the first sets. We are following
Scott’s treatment with an explicit nullability predicate (eps); this
treatment is also widely used.

Nonterminal Equation Solution Comment
first(Program) = first(FList) ∪ {$$} = {id, $$} FList is nullable.
first(FList) = first(Formula) = {id} See note about ε above.
first(Formula) = first(Var) = {id}
first(Expr) = first(Term) = {!, (, 0, 1, id}
first(TermTail) = {+} = {+} See note about ε above.
first(Term) = first(Factor) = {!, (, 0, 1, id}
first(FactorTail) = {.} = {.} See note about ε above.
first(Factor) = {!, (} ∪ first(Var) ∪ first(Constant) = {!, (, 0, 1, id} Factor has four alternatives.
first(Constant) = {0, 1} = {0, 1}
first(Var) = {id} = {id}

70 ece351 course notes [december 12, 2018]

3.6.4 follow sets

Crafting: §4.5.4
Pragmatics: pp.79–82

Common Notation:
ABC non-terminals
abc terminals
XYZ nonterminals or terminals
xyz token strings
αβγ strings of arbitrary symbols
lhs Left Hand Side
rhs Right Hand Side

The intuition of follow(A) is ‘what tokens might come after A?’ We
need the nullability information and the first sets to compute the
follow sets. The specification for Follow sets is (Scott p.80):

follow(A) ≡ { c : S⇒+ α A c β }

This specification is given as a set comprehension: it specifies the set
of all c’s such that some property is true of c (the property, or pred-
icate, is the part after the colon). The property here is that there is
some nonterminal (or terminal) S that can eventually derive a string
in which c follows A, perhaps surrounded by some other arbitrary
symbols (α and β). We construct the equations like so:1 1 Adapted from the algorithm on p.82.

follow(A) =
⋃

{first(β) : D→ α A β}
{follow(D) : D→ α A} where D 6= A

{follow(D) : D→ α A β} where D 6= A and eps(β) is true

In other words, look at all of the productions and see if they match
any of these three patterns (the part after the colon): if so, then add
(union, ∪) either first(β) or follow(D), as appropriate.

Nonterminal Equation Solution Comments
follow(Program) = ∅ = ∅ ∅ is the empty set
follow(FList) = {$$} = {$$}
follow(Formula) = first(FList) ∪ follow(FList) = {id, $$} FList is nullable
follow(Expr) = {),;} = {),;}
follow(TermTail) = follow(Expr) = {),;}
follow(Term) = first(TermTail) ∪ follow(Expr) = {+,),;} TermTail is nullable.
follow(FactorTail) = follow(Term) = {+,),;}
follow(Factor) = first(FactorTail) ∪ follow(Term) = {.,+,),;} FactorTail is nullable.
follow(Constant) = follow(Factor) = {.,+,),;}
follow(Var) = {⇐} ∪ follow(Factor) = {⇐,.,+,),;} Var occurs in two rhs’s

Piazza post from RyanPiazza post from Ryan

Student confusion about why
this production doesn’t add
(see suppressed text)

Student confusion about why
this production doesn’t add
(see suppressed text)

[chapter 3] classifying grammars by complexity 71

3.6.5 predict sets

Pragmatics: pp.79–82

Common Notation:
ABC non-terminals
abc terminals
XYZ nonterminals or terminals
xyz token strings
αβγ strings of arbitrary symbols
lhs Left Hand Side
rhs Right Hand Side

We need the nullability information, first sets, and follow sets to
compute the predict sets.

predict(A→ β) = first(β)
⋃follow(A) if eps(β) is true

∅ otherwise

Production Equation Solution

predict(Program→ FList $$) = first(FList $$) = first(FList) ∪ {$$} = {id, $$} [β = FList $$]

predict(FList→ Formula FList) = first(Formula) = {id}
}

disjoint
∴ ll(1)predict(FList→ ε) = follow(FList) = {$$}

predict(Formula→ Var ‘⇐’ Expr ‘;’) = first(Var) = {id}

predict(Expr→ Term TermTail) = first(Term) = {!, (, 0, 1, id}

predict(TermTail→ ‘+’ Term TermTail) = {+} = {+}
}

disjoint
∴ ll(1)predict(TermTail→ ε) = follow(TermTail) = {),;}

predict(Term→ Factor FactorTail) = first(Factor) = {!, (, 0, 1, id}

predict(FactorTail→ ‘.’ Factor FactorTail) = {.} = {.}
}

disjoint
∴ ll(1)predict(FactorTail→ ε) = follow(FactorTail) = {+,),;}

predict(Factor→ ‘!’ Factor) = {!} = {!} disjoint
∴ ll(1)

predict(Factor→ ‘(’ Expr ‘)’) = {(} = {(}
predict(Factor→ Var) = {id} = {id}
predict(Factor→ Constant) = {0,1} = {0,1}

predict(Constant→ ‘0’) = {0} = {0}
}

disjoint
∴ ll(1)predict(Constant→ ‘1’) = {1} = {1}

predict(Var→ id) = {id} = {id}

Since the predict sets for productions with the same lhs are all
disjoint then we can conclude that this grammar is ll(1).

Note: β here refers to the entire rhs. So technically:
predict(FList→ Formula FList) = first(Formula FList)
Since Formula is not nullable this is equal to first(Formula).
Also, for the productions that go directly to ε we have elided the

‘first(ε)’ from their formula:
predict(FList→ ε) = first(ε) ∪ follow(FList) = follow(FList)

72 ece351 course notes [december 12, 2018]

3.7 Is this a peg? (Parsing Expression Grammar)

peg’s and cfg’s largely overlap: many (if not most) of the languages
that computer engineers are concerned with fall in the intersection.
Some points of interest outside the intersection include:

• peg’s cannot represent ambiguity; cfg’s can.
• peg’s can count three things; cfg’s cannot. {anbncn | n ≥ 1}
• cfg’s can have left-recursion; peg’s cannot. There has been research into extending

peg’s to support left-recursion: http:
//www.vpri.org/pdf/tr2007002_
packrat.pdf3.8 Grammar Design

In the summer of 2015 an ece351 student was asked a language
design question in a co-op job interview. After the interview he came
to ask the ece351 instructor how to solve the problem. Since then
it has become one of the instructor’s favourite questions, because it
exercises so much of what we learn in the first half of the course. It
goes something like this:

The company is interested in exponential growth, and so needs a
program to evaluate exponential expressions. The input language has
integers, exponentiation, and parentheses for expression nesting. Here
are some example inputs and outputs:

Input Output
2 2

2 ˆ 0 1

2 ˆ 1 2

2 ˆ 2 4

2 ˆ 3 8

2 ˆ 3 ˆ 2 512

2 ˆ 2 ˆ 3 256

(2 ˆ 2) ˆ 3 64

Different variants of the question have different operators. How to
solve these questions? There are some patterns:

a. What is the associativity of the operator?

• Not associative: choose a right-recurisve grammar.
• Right associative: needs a right-recursive grammar.
• Left associative: needs left-recursive grammar (in bnf). But a left-recursive grammar is not

ll(1). In this case, write the grammar
in ebnf (not bnf), using repetition (∗).
Such an ebnf grammar is not clearly
specifying the associativity. You can
implement left associativity in the code.

b. It’s an expression language, so the first production is always:

S → E

c. It’s a language of integers and nested expressions, so the last non-
terminal is always of the form:

X → ‘(’ E ‘)’
| int

http://www.vpri.org/pdf/tr2007002_packrat.pdf
http://www.vpri.org/pdf/tr2007002_packrat.pdf
http://www.vpri.org/pdf/tr2007002_packrat.pdf

[chapter 3] classifying grammars by complexity 73

You just need to figure out what goes in the middle. In this case, ex-
ponentiation is right-associative, so we want a right-recursive gram-
mar. A solution might look like this: The Number→ Base production is

what accepts an expression of a single
integer, with no operator.

The Number→ Base ˆ Number produc-
tion is where we see the right-recursion.

S → Number
Number → Base ˆ Number

| Base
Base → ’(’ Number ’)’

| int

That solution has a problem: it is not ll(1) due to common prefixes.
We can easily left-factor the grammar like so:

S → Number
Number → Base Tail
Tail → ˆ Number

| ε

Base → ’(’ Number ’)’
| int

After the left-factoring we have an ll(1) grammar, but its right-
recursive nature is not as obvious as in the original.

Coding up the solution uses the technique we learned in labs 1 and
3: recursive descent. First, let’s think about what we actually need to
write: what are the inputs and outputs?

Recognizer Boolean

String

Parser

Compiler

Interpreter

AST

Executable

Value

The input (in ece351) is always a string. For this problem, the out-
put is a value (an integer), so we just need to write an interpreter
(evaluator).

Following the recursive descent technique we learned in the labs:

• Make a procedure for each non-terminal in the grammar.
• Make an if statement for each alternation (|) in the grammar.
• Make a loop for each repetition (∗) in the grammar.

To make this an interpreter, we do two things over writing a recog-
nizer: have each method return a value (an integer, in this case); the
actual computation.

74 ece351 course notes [december 12, 2018]

// This code is derived from the grammar using the technique we

// learned in labs 1 and 3. It is an evaluator: it returns the result

// of evaluating the input expression, without constructing an AST.

public class JobInterviewExp2 {

static int pos = 0; // lexer position

static String[] a; // token stream (command line args)

public static void main(final String[] args) {

a = args; // new String[]{"2", "^", "2", "^", "3"};

System.out.println(S());

}

static int S() { return Number(); }

static int Number() {

int base = Base();

int exp = Tail();

return (int) Math.pow(base, exp);

}

static int Tail() {

if (pos < a.length && a[pos].equals("^")) {

pos++; // consume exponentiation sign

return Number();

} else {

return 1; // epsilon case

}

}

static int Base() {

if (a[pos].equals("(")) {

pos++; // consume open paren

int result = Number();

pos++; // consume close paren

return result;

} else {

return new Integer(a[pos++]);

}

}

}

Common mistakes include:

• Grammar does not accept single integers with no operator.
• Getting the operator associativity wrong.
• Grammar not ll(1) due to common prefixes.
• Constructing an explicit ast. That is unnecessary here: we just

need to evaluate (i.e., interpret) the expression. Constructing an
explicit ast makes the code larger and more complicated.

[chapter 3] classifying grammars by complexity 75

Script for running above programs on test inputs:

#!/bin/bash

javac −g JobInterview*.java

function job() {

echo $*
java JobInterviewExp2 $*
echo ""

}

job 2

job 2 ^ 0

job 2 ^ 1

job 2 ^ 2

job 2 ^ 3

job 2 ^ 3 ^ 2

job 2 ^ 2 ^ 3

job "(" 2 ^ 2 ")" ^ 3

Results of script:

2

2

2 ^ 0

1

2 ^ 1

2

2 ^ 2

4

2 ^ 3

8

2 ^ 3 ^ 2

512

2 ^ 2 ^ 3

256

(2 ^ 2) ^ 3

64

76 ece351 course notes [december 12, 2018]

3.9 Additional Exercises

Exercise 3.9.1 The following grammar is not suitable for a top-down
predictive parser. Fix the problems by rewriting the grammar (with
any required changes) and then construct the ll(1) parsing table for
your new grammar. We did not study ll(1) parsing tables.

It’s just a tabular representation of the
predict sets.

L → R‘a’
L → Q‘ba’
R → ‘aba’
R → ‘caba’
R → R‘bc’
Q → ‘bbc’
Q → ‘bc’

Solution 3.9.1
There are a few issues with this grammar that we should resolve:

• Left recursion of the production R→ Rbc
• Unpredictability of Q given one look ahead token because of com-

mon prefix

Left Recursion:
R → ‘aba’
R → ‘caba’
R → R‘bc’

Introduce additional non-terminal R′:
R’ → ‘bc’R’ | ε

and rewrite the productions for R:
R → ‘aba’R’
R → ‘caba’R’

Common Prefix:
Q → ‘bbc’
Q → ‘bc’

We can left factor Q to remove the common prefix b by introduc-
ing the non-terminal Qtail :

Q → ‘b’Qtail

Qtail → ‘bc’ | ‘c’
Our final grammar is:

[chapter 3] classifying grammars by complexity 77

L → R‘a’
L → Q‘ba’
R → ‘aba’R’
R → ‘caba’R’
R’ → ‘bc’R’
R’ → ε

Q → ‘b’Qtail

Qtail → ‘bc’
Qtail → ‘c’

Exercise 3.9.2
Consider the grammar given below, with S as the start symbol,

and a, b, c, d, f and g as terminals.
S → XYZ $$
X → ‘a’ | Z‘b’ | ε

Y → ‘c’ | ‘d’XY | ε

Z → ‘f’ | ‘g’
Compute the FIRST and FOLLOW sets for each non-terminal in

the grammar.

Solution 3.9.2
Recall that EPS, FIRST, FOLLOW, and PREDICT sets are defined

as follows:

EPS(α) ≡ if α =⇒∗ ε then true else false

FIRST(α) ≡ {c : α =⇒∗ cβ}
FOLLOW(A) ≡ {c : S =⇒+ αAcβ}

PREDICT(A→ α) ≡ FIRST(α) ∪ (if EPS(α) then FOLLOW(A) else ∅)

Non-terminal Equation Solution Comment
eps(S) = 0 = 0 contains a terminal ($$)
eps(X) = 1 = 1 derives ε directly
eps(Y) = 1 = 1 derives ε directly
eps(Z) = 0 = 0 derives terminals

Non-terminal Equation Solution Comment
first(S) = first(X) ∪ first(Y) ∪ first(Z) = {‘a′, ‘c′, ‘d′, ‘f′, ‘g′} X and Y are nullable

first(X) = {‘a′} ∪ first(Z) = {‘a′, ‘f′, ‘g′} two non-ε options

first(Y) = {‘c′, ‘d′} = {‘c′, ‘d′} two non-ε options

first(Z) = {‘f′, ‘g′} = {‘f′, ‘g′} two non-ε options

78 ece351 course notes [december 12, 2018]

Non-terminal Equation Solution Comment
follow(S) = ∅ = ∅

follow(X) = first(Y) ∪ follow(Y) = {‘c′, ‘d′, ‘f′, ‘g′} S→ XYZ $$; Y → ‘d′XY (Y is nullable)

follow(Y) = first(Z) = {‘f′, ‘g′} S→ XYZ $$

follow(Z) = {‘b′, $$} = {‘b′, $$} S→ XYZ $$; X → Z‘b′

Exercise 3.9.3
Assume the grammar shown below, with expr as the start sym-

bol, and that terminal id can be any single letter of the alphabet (a
through z).

expr → ‘id’ “:=” expr
expr → term term_tail
term_tail → “+” term term_tail | ε

term → factor factor_tail
factor_tail → “*” factor factor_tail | ε

factor → “(” expr “)” | ‘id’
In two or three sentences, explain why the grammar cannot be

parsed by an LL(1) parser.

Solution 3.9.3 The problem originates from the non-terminal expr. The
productions

expr → ‘id’ “:=” expr
expr → term term_tail

actually have common prefixes (The latter production for expr
may derive ‘id’ as its first terminal: expr→term. . . term→factor. . .
factor→‘id’), so an LL(1) parser cannot predict the production to take
for the non-terminal expr.

Exercise 3.9.4 Consider the expression represented by the following
expression tree. Assume that A, B, C, D and E are binary operators.
Consider the following infix expression: 3 C 4 B 1 A 2 D 6 B 7 E 5.

Tree [.A [.B [.C 3 4] 1] [.D 2 [.E [.B 6 7] 5]]]
Assume this expression generates the tree shown. Given that all

operators have different precedences, and that the operators are non-
associative, list the operators A, B, C, D and E in order from highest
to lowest precedence. If there is more than one possible answer list
them all.

Solution 3.9.4 Precedence:

• C has higher precedence than B
• B has higher precedence than A
• B has higher precedence than E
• E has higher precedence than D
• D has higher precedence than A

[chapter 3] classifying grammars by complexity 79

Highest to lowest precedence:

C B E D A

Exercise 3.9.5 Refactor the following grammar to ll(1) form.
S → id ‘(’ A ‘)’

| id ‘[’ A ‘]’
A → A ‘,’ id

| id

Solution 3.9.5
S → id T
T → ‘(’ A ‘)’

| ‘[’ A ‘]’
A → id U
U → ‘,’ id U

| ε

Consider the following ambiguous grammar:
E → E ‘+’ E

| E ‘*’ E
| int

Exercise 3.9.6 Give an input string with two different legal parse
trees in this grammar. Show the parse trees.

Solution 3.9.6 1 + 2 * 3 could parse two ways (as could 1+2+3):
(1 + 2) * 3 1 + (2 * 3)

*

+ 3

1 2

+

1 *

2 3

Exercise 3.9.7 Refactor this grammar to have the normal arithmetic
precedence and to be right associative. Show the parse tree for your
input string above.

Solution 3.9.7
This solution has the precedence correct, but is not right associative, and

is ambiguous.

80 ece351 course notes [december 12, 2018]

E → E ’+’ E
E → F
F → F ’*’ F
F → int

1 + 2 * 3 7→ 1 + (2 * 3)
1 + 2 + 3 7→ 1 + (2 + 3)

or 7→ (1 + 2) + 3

This solution is correct on precedence and associativity. It is not ll(1),
due to common prefixes, but being ll(1) is not required here.

E → F ’+’ E
E → F
F → int’*’ F
F → int

1 + 2 * 3 7→ 1 + (2 * 3)
1 + 2 + 3 7→ 1 + (2 + 3)

This solution is correct on precedence and associativity, and is also ll(1).

S → E $$
E → F P
P → + E

| ε

F → int Q
Q → * F

| ε

1 + 2 * 3 7→ 1 + (2 * 3)
1 + 2 + 3 7→ 1 + (2 + 3)

predict(P → ε) = follow(P)
= follow(E)
= {$$} disjoint from {+}

predict(Q → ε) = follow(Q)
= follow(F)
= first(P) ∪ follow(P)
= {+, $$} disjoint from {*}

Is the following grammar ll(1)? Prove your answer by com-
puting the eps, first, follow and predict sets. Provide both the
equations and their solutions, as we studied in class.

Note: You may start from the predict sets and work backwards,
computing only the first and follow sets that you need.

S → (AB|Cx)$$
A → y∗

B → Cq
C → pC|ε

Exercise 3.9.8 Convert to bnf

Solution 3.9.8

G → AB$$
G → Cx$$
A → yA
A → ε

B → Cq
C → pC

C → ε

[chapter 3] classifying grammars by complexity 81

Exercise 3.9.9 eps

Solution 3.9.9

Nonterminal Result Reason
eps(G) = 0 $$ is a terminal
eps(A) = 1 goes to ε directly
eps(B) = 0 q is a terminal
eps(C) = 1 goes to ε directly

Exercise 3.9.10 first

Solution 3.9.10

Nonterminal Equation Solution
first(G) = first(A) ∪ first(B) ∪ first(C) ∪ {x} = {p,q,x,y}
first(A) = {y} = {y}
first(B) = first(C) ∪ {q} = {p,q}
first(C) = {p} = {p}

Exercise 3.9.11 follow

Solution 3.9.11

Nonterminal Equation Solution
follow(G) = ∅ = ∅
follow(A) = first(B) = {p,q}

follow(B) = {$$} = {$$}
follow(C) = {q,x} = {q,x}

Exercise 3.9.12 predict

Solution 3.9.12

Production Equation Solution
predict(G→ AB$$) = first(AB$$) = first(A) ∪ first(B) = {p,q,y}
predict(G→ Cx$$) = first(Cx) = first(C) ∪ {x} = {p,x}

predict(A→ yA) = {y} = {y}
predict(A→ ε) = follow(A) = {p,q}
predict(B→ Cq) = first(Cq) = first(C) ∪ {q} = {p,q}

predict(C→ pC) = {p} = {p}
predict(C→ ε) = follow(C) = {q,x}

Exercise 3.9.13 Is this grammar ll(1)? Why or why not?

Solution 3.9.13 No. We can predict A, B, and C with one token of
lookahead, but not G: the two G productions both have ‘p’ in their
predict sets. Consider the input strings ‘pq’ and ‘px’: we need to
lookahead two characters to the ‘q’ or the ‘x’ to determine which G
production to use.

Exercise 3.9.14 What kind of machine is required to recognize a
LL(1) language?

82 ece351 course notes [december 12, 2018]

Solution 3.9.14 Pushdown automata

Exercise 3.9.15 What grammar class is required for the language
{anbn | n > 0}?

Solution 3.9.15 CFG
LL(1) is also a correct answer, since this grammar falls in the LL(1)

subset of CFGs.

Exercise 3.9.16 What grammar class is required for the language
{anbncn | n > 0}?

Solution 3.9.16 Context-sensitive (or PEG, but we won’t learn that
until after the midterm)

Exercise 3.9.17 How do we show that a grammar is ambiguous?

Solution 3.9.17 Show an input string that has multiple parse trees
with the given grammar

Exercise 3.9.18 How do we show that a grammar is unambiguous?

Solution 3.9.18 Mathematically beyond the scope of ECE351. We just
say that we cannot think of an input string with multiple parses. As
long as nobody else in class can think of such an input string then
you are in luck.

In some countries, such as Bangladesh, there is a practice to give
sons the formal first name Mohammed, but then always refer to
them by a middle name. In these cases, the formal first name might
be abbreviated as ‘Md’ to indicate that it is not for common use.
Suppose that we have the following grammar for boys names:

S → Md Anwar Sadat
S → Md Hosni Mubarak
S → Md Siad Barre
S → Md Zia-ul-Haq
S → Md Ayub Khan
S → Md Nawaz Sharif

(Referring to people by their middle name is also common in
families of British ancestry. In many Hispanic countries it is common
to name boys ‘Jesus’. The English abbreviation for ‘William’ is ‘Wm’,
as in ‘Wm Shakespeare’.)

Exercise 3.9.19 Is this grammar LL(1)? Why? Why not?

Solution 3.9.19 No, this grammar is not LL(1) because of common prefixes .
If we are expecting to derive S and we look ahead one token and see
‘Md’ then we will not know which rule we are in.

[chapter 3] classifying grammars by complexity 83

Exercise 3.9.20 Refactor to an equivalent grammar that is LL(1).

Solution 3.9.20

S → Md Tail
Tail → Anwar Sadat
Tail → Hosni Mubarak
Tail → Siad Barre
Tail → Zia-ul-Haq
Tail → Ayub Khan
Tail → Nawaz Sharif

Exercise 3.9.21 Prove this grammar is LL(1). Start with the Predict
sets, and compute other sets as necessary. Construct equations sym-
bolically before providing concrete answers.

Solution 3.9.21
Predict(S→ Md Tail) = {Md}
Predict(Tail→ Anwar Sadat) = First(Anwar Sadat) = {Anwar}
Predict(Tail→ Hosni Mubarak = First(Hosni Mubarak) = {Hosni}
Predict(Tail→ Siad Barre) = First(Siad Barre) = {Siad}
Predict(Tail→ Zia-ul-Haq) = First(Zia-ul-Haq) = {Zia-ul-Haq}
Predict(Tail→ Ayub Khan) = First(Ayub Khan) = {Ayub}
Predict(Tail→ Nawaz Sharif) = First(Nawaz Sharif) = {Nawaz}

Consider the following grammar.
S → E
E → E - E

| INT

Exercise 3.9.22 Show that this grammar is ambiguous.

Solution 3.9.22 Input string ‘3 - 2 - 1’ parses as either ‘(3-2)-1’ or
‘3-(2-1)’.

Exercise 3.9.23 Refactor the grammar to remove the ambiguity (and
to produce arithmetically correct results with the AST is evaluated).

Solution 3.9.23

S → E
E → E - F

| F
F → F / INT

| INT

Exercise 3.9.24 What is something that can be expressed in a CFG
that cannot be expressed in a PEG?

Solution 3.9.24 ambiguity

Chapter 4
Midterm — What you should know so far

a. Program Understanding

• State §1

– program counter
– call stack (including static types of vars) Illustrate with object diagram

– heap (including dynamic types of objects)
– mutation

• Structure

– uml class diagram As drawn on board in class.

– design patterns lab6

• Branching lab3

– which call sites are monomorphic and which are polymorphic
– potential targets for the polymorphic sites

• Output

b. Recursive Descent Parsing lab1 + lab3

• Given a grammar, write pseudo-code for a parser.

c. Regex→ nfa → dfa §2

d. ll(1) proofs §3.6

•

e. Short Answer Questions

Chapter 5
Case Studies

Poetry is more perfect than history, because
poetry gives us the universal in the guise of
the singular, whereas history is merely the
narration singular events.

– Aristotle, Poetics

5.1 Git
Inspired by http://gitolite.
com/gcs/ and http://
eagain.net/articles/
git-for-computer-scientists/

If you want to know more, for
your own interest, see http:
//www.aosabook.org/en/git.html

In Git commits are immutable objects and branches are like variables
that can be re-assigned to different commit objects. A commit object
contains all of the files in the repository at that time. We are not con-
cerned with the internal structure of commit objects here. Figure 5.1
shows a hypothetical history of the skeleton repository as it evolves
from initial state to Lab2 release.

Skel1pre

Skel1

dev

Skel2pre

master

Skel2

init

Skel1pre

Skel1

dev

Skel2pre

master

Skel2

init

Skel1pre

Skel1

dev

Skel2pre

master

Skel2

init

Skel1pre

Skel1

dev

Skel2pre

master

Skel2

init

(a) Initial state (b) Lab1 pre-release on dev (c) Lab1 release on dev (d) dev merged to master

Skel1pre

Skel1

dev

Skel2pre

master

Skel2

init

Skel1pre

Skel1

dev

Skel2pre

master

Skel2

init

Skel1pre

Skel1

dev

Skel2pre

master

Skel2

init

(e) Lab2 pre-release on dev (f) Lab2 release on dev (g) dev merged to master

Figure 5.1: Flipbook of skeleton Git
repository

http://gitolite.com/gcs/
http://gitolite.com/gcs/
http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/
http://eagain.net/articles/git-for-computer-scientists/
http://www.aosabook.org/en/git.html
http://www.aosabook.org/en/git.html

88 ece351 course notes [december 12, 2018]

hours0

Merge1

master

Skel1pre

Skel1

Skel2pre

Soln1a

Soln1b

Merge2

Skel2

Soln2a

init

hours0

Merge1

master

Skel1pre

Skel1

Skel2pre

Soln1a

Soln1b

Merge2

Skel2

Soln2a

init

hours0

Merge1

master

Skel1pre

Skel1

Skel2pre

Soln1a

Soln1b

Merge2

Skel2

Soln2a

init

hours0

Merge1

master

Skel1pre

Skel1

Skel2pre

Soln1a

Soln1b

Merge2

Skel2

Soln2a

init

(a) Initial state (b) hours.txt for prelab (c) Merging Lab1 skeleton (d) Lab1 soln first draft

hours0

Merge1

master

Skel1pre

Skel1

Skel2pre

Soln1a

Soln1b

Merge2

Skel2

Soln2a

init

hours0

Merge1

master

Skel1pre

Skel1

Skel2pre

Soln1a

Soln1b

Merge2

Skel2

Soln2a

init

hours0

Merge1

master

Skel1pre

Skel1

Skel2pre

Soln1a

Soln1b

Merge2

Skel2

Soln2a

init

(e) Lab1 soln second draft (f) Merging Lab2 skeleton (g) Lab2 soln first draft

Figure 5.2: Flipbook of student Git
repository

[chapter 5] case studies 89

5.2 llvm

Figures here are from http://www.
aosabook.org/en/llvm.htmlllvm is a compiler toolkit originally developed at the University of

Illinois at Urbana-Champaign (uiuc), but now largely developed by
Apple (Apple hired Chris Lattner from uiuc). llvm is an alternative
to gcc (the Gnu Compiler Collection). llvm’s main advantage over
gcc is its clean modular design, which makes it easier test and to to
add new features. llvm forms the core of Apple’s development tools
for both the Mac and the iPhone. It is also widely used in research
and industry.

Figure 5.3: General structure of a
simple compiler

Figure 5.4: General structure of a
retargetable compiler

Figure 5.5: Structure of llvm

http://www.aosabook.org/en/llvm.html
http://www.aosabook.org/en/llvm.html

90 ece351 course notes [december 12, 2018]

Figure 5.6: Link-time optimization with
llvm

Exercise 5.2.1 Suppose there are L programming languages and M
kinds of machines. If compilers were structured according to the
architecture pictured in Figure 5.3, how many optimizers would the
compiler engineer need to write?

Solution 5.2.1 L×M

Exercise 5.2.2 Suppose there are L programming languages and M
kinds of machines. If compilers were structured according to the
architecture pictured in Figure 5.4, how many optimizers would the
compiler engineer need to write?

Solution 5.2.2 1

Exercise 5.2.3 Apple is the only personal computer company to http://www.storiesofapple.net/
the-68k-ppc-transition-and-snow-leopard-comparing-apples-to-oranges.
html
https://en.wikipedia.org/wiki/
Apple%27s_transition_to_Intel_
processors

have successfully switched machine architectures, and they have
done it twice: around 1995 they migrated from Motorola 68k to
PowerPC, and ten years later they migrated from PowerPC to x86.
What about compiler architectures facilitated these transitions?

Solution 5.2.3 Re-targetable compilers facilitate cross-compilation: A student answer would not need
to be so long. Simply saying that
re-targetable compilers facilitate cross-
compilation would be enough.

producing code for machine y while running on machine x. So Apple
could develop and compile their software on, for example, PowerPC,
and target compilation for x86. The produced x86 binaries could
then be run on a new x86 machine.

http://www.storiesofapple.net/the-68k-ppc-transition-and-snow-leopard-comparing-apples-to-oranges.html
http://www.storiesofapple.net/the-68k-ppc-transition-and-snow-leopard-comparing-apples-to-oranges.html
http://www.storiesofapple.net/the-68k-ppc-transition-and-snow-leopard-comparing-apples-to-oranges.html
https://en.wikipedia.org/wiki/Apple%27s_transition_to_Intel_processors
https://en.wikipedia.org/wiki/Apple%27s_transition_to_Intel_processors
https://en.wikipedia.org/wiki/Apple%27s_transition_to_Intel_processors

[chapter 5] case studies 91

5.3 Java Virtual Machine & Common Language Runtime
Crafting: §10.2

Whenever you execute a program in a memory-safe language it runs
in a virtual machine. In other words, any program written in a lan-
guage other than C. Many languages that you are familiar with, such

These statements are not strictly true:
there are other memory-unsafe lan-
guages besides C, but they are not
popular; there are also memory-safe
languages that run outside of a vm,
but they will have most of this runtime
support compiled into them.

as C#, Javascript, Java, Python, etc., run inside a vm. The description
here applies equally to Google’s v8 Javascript ‘engine’ (vm) as it does
to Sun’s Java vm or Microsoft’s clr (Common Language Runtime).

javac
Ahead Of Time

Bytecode
Compiler

Just In Time
Native Code

Compiler

Scheduler Collector

Heap

Stack
Thread1

Stack
Thread2

Native
Code

PC

OS

Allocator

.class

.java

TIB

Locals Fields

.scala

scalac
Ahead of Time

Bytecode
Compiler

JVM

Control flow

Points to

Manipulates

RAM

Disk

Compiler

Component

Data flow

Figure 5.7: This picture has some jvm

specific labels, but the ideas are the
same for any programming language
vm, e.g. Microsoft’s clr.

Stack here is the runtime stack of the
executing program (thread) — not the
stack of the parser (which is the stack
we spoke of previously).

Multiple source languages can
be compiled to the same bytecode
intermediate form, as shown. What is
not shown is that the jit compiler will
also have its own intermediate form(s).

The jit will also be linking together
code from multiple class files.

pc = Program Counter. The in-
struction that the thread is currently
executing.

tib = Type Information Block
pointer. Every object needs to know
what its type is.

Most high-speed industrial vms
have multiple jit compilers and an
interpreter, although the figure here
just shows one. The different compilers
trade-off compilation time against
execution time. The vm dynamically
monitors which code is executed
the most frequently (dataflow edge
from native code to jit) and then
recompiles that code more aggressively.
If a method is just executed once then
using the interpreter is probably best.
If a method is executed a million times
then it’s worth the time to compile and
optimize it.

The scheduler juggles three main
things: the jit compiler, and garbage
collector, and the threads. Different de-
signs and different levels of delegation
to the os scheduler are possible. For
example, a simple design with a high
level of delegation is to just run the jit

compiler when classes are loaded, just
run the gc when allocation fails due to
lack of space, and create an os thread
for every vm thread. High performance
industrial vms are not written this way.

92 ece351 course notes [december 12, 2018]

5.3.1 Comparison with VMWare, VirtualBox, etc.

You might have heard the term virtual machine with respect to prod-
ucts like VMWare, VirtualBox, Xen, kvm, etc., that let you run a guest
os in a separate window on a host os. We’ll call those operating sys-
tem virtual machines, and what’s described above a programming lan-
guage virtual machine. These are two variations of the same idea.

A virtual machine is a software implementation of some real or
imaginary machine that executes programs in some kind of isolation.

The Java virtual machine, for example, has an instruction set, just
like a real machine. The job of the Java vm is to translate (and exe-
cute) programs written to this imaginary instruction set (Java byte-
code) to programs in the instruction set of the underlying hardware
(e.g., x86).

An operating system vm might also be doing some translation,
if the guest architecture and the host architecture are different (e.g.,
running arm code on x86), or if the underlying hardware does not
provide sufficient isolation protection (as was the case with x86 chips
until recently).

An operating system vm is not concerned with object allocation
and collection. A programming language vm is less concerned with
enforcing isolation on poorly behaved programs, because the pro-
grams it executes are known to be memory-safe.

[chapter 5] case studies 93

5.3.2 Structure of the Call Stack

sp

1

Space to build

argument lists

Local variables

and

temporaries

Saved registers

Arguments

fp (if used)

Direction

of stack growth

(lower addresses)

Current frame

Previous (calling)

frame

n

8 bytes/64 bits Figure 5.8: Structure of the call stack
[PLP f8.11, which is essentially the same
as Tiger f6.2]. By historical convention,
the call stack grows from higher ad-
dresses to lower addresses. PLP draws
the stack growing up (which is the nor-
mal way to visualize a stack), whereas
the Tiger book draws the stack growing
down (which would be the normal
way to visualize growth from higher to
lower addresses).

Stack frames are sometimes called
activation records.

Figure 5.9: Visualization of call stack
and heap from PythonTutor.com

PythonTutor.com

94 ece351 course notes [december 12, 2018]

5.3.3 Object Header and Type Information Block
Crafting: §8.5.2

Object Header

Pointer to the Type Information Block: Each object has a type, and each
object header (usually) has a pointer to a record (‘information
block’) about that type. The TIB may contain the virtual method
dispatch table.

Identity HashCode: In Java (and many other languages) each object
has an identity hashcode: a unique integer that is associated with
it. (These are unique for all of the live objects at any given point
in time; however, it is possible for a number to be reused for a
different object that is created later in the execution.)

Lock: Locks are used to ensure disciplined mutation of data in a
multi-threaded program.

GC bits: The garbage collector may want to associate some infor-
mation with each object. A GC based on reference counting will
include an integer counting the number of incoming pointers to
the object. A mark-sweep GC will include some bits (usually two)
to indicate that the object is still live during the mark phase (the
sweep phase then collects unmarked objects).

Array length: If the object is an array, then its header will also include
an integer indicating how long the array is. This is used to ensure
that the array is accessed only within bounds.

By contrast, arrays in C (a memory
unsafe language) are just chunks of
memory and do not have an object
header. How does one know how long
the array is? By convention there is
a null in the last position. The buffer
overflow problem you may have heard
of is about running off the end of the
array and clobbering whatever happens
to be in the next memory location. This
can happen because of incompetence
or because of malfeasance. There is
no way for C to prevent this from
happening because arrays do not have
an object header, and so one never
really knows how long the array is
supposed to be.

Type Information Block / Class Descriptor

Super classes: Some kind of information about the super-classes to
facilitate dynamic type tests (e.g., instanceof checks).

VTable: The virtual method table. The addresses of where to branch
to invoke polymorphic methods.

[chapter 5] case studies 95

l

n

m

k

c

class foo {

 int a;

 double b;

 char c;

public:

 virtual void k(...

 virtual int l(...

 virtual void m();

 virtual double n(...

 ...

} F;

F

a

b

foo’s vtable

code for m

Figure 5.10: (PLP f9.3)

class bar : public foo {

 int w;

public:

 void m(); //override

 virtual double s(...

 virtual char *t(...

 ...

} B;

B

a

b

w

c

bar’s vtable

l

n

s

t

m code for bar’s m

code for foo’s n

code for bar’s s

k

Figure 5.11: (PLP f9.4)

Figure 5.12: (Tiger f14.3)

96 ece351 course notes [december 12, 2018]

5.4 Cfront: Translating C++ to C

The original C++ compiler, Cfront by Bjarne Stroustrup, translated
C++ to C. Let’s take a look at what it did (approximately). C++ is a
super-set of C: every C program is a legal C++ program. So what ex-
tra features of C++ do we need to think about? Classes, inheritance,
and virtual functions (dynamic dispatch / polymorphism). What
tools do we have in C to translate these things to? Structs, function
pointers, arrays, switch statements, and unsafe casts. The examples that follow do not illus-

trate a number of issues, such as:

• Inheritance of fields. The field dec-
larations are simply copied into the
structs corresponding the subclasses,
which is easy enough. The variables
that are of the superclass type in
the original source must be changed
to either union types or void* in
the translation. Again, that’s not
difficult, but it makes the examples
look uglier and more complicated,
because the reader would need to
understand either unions or void*
pointers.

• Static fields. These can be placed in
the tib.

• Other object header data, such as
locks or gc bits.

• Each class becomes a struct, with some extra fields for the object
header (just a tib pointer in these examples).

The struct will include all of the fields inherited from all of the
super-classes (not show in these examples), as well as the fields
declared locally in the class.

• A new struct called tib is introduced for the Type Information Block.
This will contain some information used for dynamic dispatch:
possibly a vtable (Figures 5.13 and 5.15) or a type tag (Figure 5.16).

The tibs need to be initialized somewhere before the program
starts executing. We’ve just put this initialization in the main

method in these examples.

• Every class method becomes a standalone procedure with a new
first parameter called ‘this,’ which is of the type of the struct that
corresponds to the class in which the method was declared. Call
sites to methods are modified to pass in the this parameter.

• New branching logic is introduced at polymorphic call sites. We
show two possible translations here: vtables (Figures 5.13 and 5.15),
and switch statements (Figure 5.16). Other translations are possible.
For example, the SmallEiffel compiler generates nested ifs.

A vtable is an array of function pointers. Each method is assigned
an index into this array. The call site looks up the appropriate
function pointer and branches to it.

The switch statement translation assigns every class an integer
representing its type. Polymorphic call sites then branch based on
the runtime value of this integer.

The simple example program in Figure 5.13 prints a (positive) ran-
dom number. The slightly more sophisticated program in Figure 5.15

prints a random number that is randomly made negative sometimes.

[chapter 5] case studies 97

C++ original C translation

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4 using namespace std;

5

6 class RNumber {

7 public:

8 int x = rand();

9 int getX() { return x; }

10 };

11

12 int main() {

13 srand(time(NULL));

14 RNumber n;

15 int x2 = n.getX();

16 printf("x2 is %d", x2);

17 return 0;

18 }

1#include <stdio.h>

2#include <stdlib.h>

3#include <time.h>

4

5typedef struct RNumber RNumber;

6struct RNumber { // class becomes a struct

7int x;

8};

9

10// We add a new parameter, "this" to procedures

11int RNumber_getX(RNumber this) { return this.x; }

12

13int main() {

14srand(time(NULL));

15RNumber n;

16// run the object constructor here

17n.x = rand();

18// back to our regularly scheduled program

19int x2 = RNumber_getX(n);

20printf("x2 is %d", x2);

21return 0;

22}

Figure 5.13: Simple C++ to C transla-
tion

Figure 5.13 shows a simple translation of a C++ program to
C. The class RNumber becomes a struct RNumber. The method
RNumber.getX() becomes the procedure RNumber_getX(RNumber this).

The example in Figure 5.13 does not include dynamic dispatch.
Therefore, we have elided the object headers and type information
blocks from the C translation.

98 ece351 course notes [december 12, 2018]

C translation (switch) C translation (VTables)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4

5 typedef struct RNumber RNumber;

6 struct TIB {

7 int type;

8 };

9

10 // The class RNumber becomes struct RNumber

11 struct RNumber {

12 // object header (just a TIB pointer here)

13 struct TIB tib;

14 // regular data members

15 int x;

16 };

17

18 // We add a new parameter, "this"

19 int RNumber_getX(RNumber this) { return this.x; }

20

21 int main() {

22 srand(time(NULL));

23 RNumber n;

24 // Set up the object metadata

25 n.tib.type = 1;

26 // done with object metadata

27 // run the object constructor here

28 n.x = rand();

29 // back to our regularly scheduled program

30 int x2;

31 switch (n.tib.type) { // call getX()

32 case 1: // RNumber

33 x2 = RNumber_getX(n); break;

34 } // end call getX()

35 printf("x2 is %d", x2);

36 return 0;

37 }

1#include <stdio.h>

2#include <stdlib.h>

3#include <time.h>

4

5typedef struct RNumber RNumber;

6struct TIB {

7int (* vtable[1]) (RNumber this);

8};

9

10// The class RNumber becomes struct RNumber

11struct RNumber {

12// object header (just a TIB pointer here)

13struct TIB tib;

14// regular data members

15int x;

16};

17

18// We add a new parameter, "this"

19int RNumber_getX(RNumber this) { return this.x; }

20

21int main() {

22srand(time(NULL));

23RNumber n;

24// Set up the object metadata

25n.tib.vtable[0] = RNumber_getX;

26// done with object metadata

27// run the object constructor here

28n.x = rand();

29// back to our regularly scheduled program

30int x2 = n.tib.vtable[0](n); // call getX();

31printf("x2 is %d", x2);

32return 0;

33}

Figure 5.14: Simple C++ to C trans-
lation with VTables and with switch
statements

[chapter 5] case studies 99

C++ original C translation (VTables)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4 using namespace std;

5

6 class RNumber {

7 public:

8 int x = rand();

9 virtual int getX() = 0;

10 };

11

12 class Positive : public RNumber {

13 public:

14 virtual int getX() { return x; }

15 };

16

17 class Negative : public RNumber {

18 public:

19 virtual int getX() { return x * −1; }

20 };

21

22 int main() {

23 srand(time(NULL));

24 RNumber* poly;

25 int r = rand() % 2; // flip a coin

26 if (r) {

27 poly = new Positive;

28 } else {

29 poly = new Negative;

30 }

31 int x2 = poly−>getX(); // polymorphic call site

32 printf("x2 is %d", x2);

33 return 0;

34 }

1#include<stdio.h>

2#include<stdlib.h>

3#include<time.h>

4

5typedef struct TIB TIB;

6typedef struct RNumber RNumber;

7struct TIB {

8int (* vtable[1]) (struct RNumber* this);

9};

10

11struct RNumber {

12// Object header

13TIB tib;

14// instance fields

15int x;

16};

17int Positive_getX(struct RNumber* this) { return (*this).x; }

18int Negative_getX(struct RNumber* this) { return (*this).x * −1; }

19

20

21int main() {

22srand(time(NULL));

23struct RNumber poly;

24poly.x = rand(); // object constructor

25int r = rand() % 2; // flip a coin

26if (r) {

27// Set up the object metadata (i.e., the TIBs)

28poly.tib.vtable[0] = Positive_getX;

29} else {

30// Set up the object metadata (i.e., the TIBs)

31poly.tib.vtable[0] = Negative_getX;

32}

33// back to our regularly scheduled program

34int x2 = poly.tib.vtable[0](&poly); // call getX();

35printf("x2 is %d", x2);

36return 0;

37}

Figure 5.15: C++ to C translation using
VTables, with a polymorphic call

100 ece351 course notes [december 12, 2018]

Simple example Polymorphic example
(Figure 5.13) (Figure 5.15)

1 #include <stdio.h>

2 #include <stdlib.h>

3 #include <time.h>

4

5 typedef struct RNumber RNumber;

6 struct TIB {

7 int type;

8 };

9

10 // The class RNumber becomes struct RNumber

11 struct RNumber {

12 // object header (just a TIB pointer here)

13 struct TIB tib;

14 // regular data members

15 int x;

16 };

17

18 // We add a new parameter, "this"

19 int RNumber_getX(RNumber this) { return this.x; }

20

21 int main() {

22 srand(time(NULL));

23 RNumber n;

24 // Set up the object metadata

25 n.tib.type = 1;

26 // done with object metadata

27 // run the object constructor here

28 n.x = rand();

29 // back to our regularly scheduled program

30 int x2;

31 switch (n.tib.type) { // call getX()

32 case 1: // RNumber

33 x2 = RNumber_getX(n); break;

34 } // end call getX()

35 printf("x2 is %d", x2);

36 return 0;

37 }

1#include<stdio.h>

2#include<stdlib.h>

3#include<time.h>

4

5typedef struct TIB TIB;

6struct TIB {

7int type;

8};

9

10struct RNumber {

11// Object header

12TIB tib;

13// instance fields

14int x;

15};

16int Positive_getX(struct RNumber* this) { return (*this).x; }

17int Negative_getX(struct RNumber* this) { return (*this).x * −1; }

18

19

20int main() {

21srand(time(NULL));

22struct RNumber poly;

23poly.x = rand(); // object constructor

24int r = rand() % 2; // flip a coin

25if (r) {

26// Set up the object metadata

27poly.tib.type = 1; // Positive is type 1

28} else {

29// Set up the object metadata

30poly.tib.type = 2; // Negative is type 2

31}

32// back to our regularly scheduled program

33int x2;

34switch (poly.tib.type) { // call getX()

35case 1: // Positive

36x2 = Positive_getX(&poly); break;

37case 2: // Negative

38x2 = Negative_getX(&poly); break;

39} // end call getX()

40printf("x2 is %d", x2);

41return 0;

42}

Figure 5.16: C++ to C translation using
switch statements

[chapter 5] case studies 101

5.4.1 Optimizing Polymorphic Calls
Tiger: §14.7
Modern compilers are good at this.As you can imagine, there is some performance penalty for the over-

head of adding a switch statement or vtable lookup to every method
call. Compiler engineers have expended a tremendous amount of ef-
fort to reduce or eliminate this overhead. For now we won’t be study-
ing those techniques, but rest assured that the overhead of using
inheritance and polymorphism is often lower than the translations
given in this section would suggest.

5.4.2 Why have polymorphism as a language feature?
Modularity

Adding inheritance and polymorphic calls to a language makes it
more complicated for the compiler writer, but does not change the
theoretical expressive power of the language: if it was Turing com-
plete before, it’s still Turing complete afterwards. So why do com-
piler engineers bother with the effort of supporting these language
features? What do these features do for programmers?

Polymorphism makes adding new cases (classes) a modular operation.
The most expensive part of the software production lifecycle is main-
tenance. Polymorphism, if used strategically, can reduce the cost of
software maintenance by making adding new functionality to the
program a more modular operation.

Consider our F and vhdl toolchains, for example. With the Visi-
tor pattern (simply a strategic use of polymorphism) we can add new
translations and optimizations to our compilers without having to
modify our ast classes. This makes it easier to add and test and debug
the new functionality, all of which contributes to lowering the cost of
this maintenance activity.

5.4.3 Subtype Polymorphism and Parametric Polymorphism
Two different things with similar names.

We have been discussing subtype polymorphism, which is the most
prevalent in object-oriented programming.

There is another type of polymorphism that is prevalent in func-
tional programming and has become more common in object-oriented
programming in the last ten years or so: parametric polymorphism.
Parametric polymorphism is seen in Java’s generic/parameter-
ized types and the C++ standard template library. For example, the
class List<T> has type parameter T, which we might instantiate with
List<String> or List<Integer>, etc.

The Tiger book uses the term ‘polymorphism’ just for parametric
polymorphism. The point of this subsection is just for you to be
aware that there are two distinct ideas that are both described with
the word ‘polymorphism’.

102 ece351 course notes [december 12, 2018]

Exercise 5.4.1 Consider the following pseudocode:

struct Shape { int type; int x; int y; }

String name(Shape s) {

switch (s.type) {

case 0: return "triangle";

case 1: return "ellipse";

}

}

int area(Shape s) {

switch (s.type) {

case 0: return x * y / 2; // triangle

case 1: return x * y * PI; // ellipse

}

}

Suppose we want to add a new kind of Shape, such as Squares. How
many of these procedures would we need to edit?

Solution 5.4.1 Two: Both procedures name and area would need to
be modified in order to add a new Shape such as Square.

Exercise 5.4.2 Re-write the pseudocode above using classes, inheri-
tance, and polymorphism.

Solution 5.4.2

abstract class Shape {

int x; int y;

abstract String name();

abstract int area();

}

class Triangle extends Shape {

String name() { return "triangle"; }

int area { return x * y / 2; }

}

class Ellipse extends Shape {

String name() { return "ellipse"; }

int area { return x * y * PI; }

}

[chapter 5] case studies 103

Exercise 5.4.3 In this new code, what do we have to modify in order
to add a new kind of Shape? (e.g., Square)

Solution 5.4.3 Nothing else needs to be modified in order to add
Square.

Exercise 5.4.4 Write the pseudo-code to add Square to the re-factored
pseudocode above

Solution 5.4.4

class Square extends Shape {

String name() { return "square"; }

int area { return x * y; }

}

gcc, Eclipse, edg, gdb, ghc,
HipHop, v8, XUL, CLR,
WAM

gcc, Eclipse, edg, gdb, ghc,
HipHop, v8, XUL, CLR,
WAM

Chapter 6
Optimization

Tiger: §10.0–1, §17.0, §17.2–3

The Scott book refers to ‘optimization’
as ‘code improvement’ because this is
an engineering exercise rather than a
mathematical one: in other words, we
are trading off certain factors against
other factors, not searching for the ex-
trema of a parabola. For example, some
optimizations are inverses of other op-
timizations. Generally speaking we are
trying to save program execution time,
and to do so we spend space. Some-
times things go the other way: spend
time to save space. The memory hierar-
chy plays a role in how much space we
have to spend, and how expensive (in
time) that space is to use.

There are many different kinds of optimizations that compilers per-
form. The optimizations that we will study are based on dataflow
analysis: an analysis of how values are computed by the program.
There are a variety of optimizations, and a variety of dataflow analy-
ses. We will look at two of each in depth.

The analyses that we consider in this chapter are static: i.e., they
are performed on the source code, at compile time. By contrast, a
dynamic analysis is performed at runtime, when we have access not
only to the code, but also to values for the variables. Modern virtual
machines often do some dynamic analysis when optimizing pro-
grams: information from the program execution can be used to guide
the optimization decisions. Dynamic analysis is an important concept
to be aware of, but we will not study it in detail.

6.1 A Learning Progression Approach to Dataflow Analysis

A learning progression involves repetition with increasing complexity.
First we see a simple variant of an idea, to grasp the general concept,
then we learn how to apply it in increasingly more sophisticated set-
tings. There are three stages in our learning progression for dataflow
analysis:

a. By Intuition. First we’ll just look at some small programs and see
what needs to be done, without formalizing anything.

b. With Equations (but no loops/branches). Next, we’ll learn about:

• The distinction between a dataflow analysis and an optimiza-
tion: an analysis tells us something about the program; an opti-
mization transforms the program based on that information.

• We can solve these equations by substitution (also known as
Gaussian elimination). This is the technique that you learned
in highschool, and is the main way that you solve systems of
equations in your other engineering courses.

106 ece351 course notes [december 12, 2018]

c. With Equations (and loops/branches) Now things get more complex.
Once the program we are analyzing has loops or branches, then
we can no longer solve the equations by substitution. We need to
learn:

• Solving a system of equations by iteration to a fixed point. We
first learned this technique in lab4.

• How to choose the initial values. This is a new challenge that
we did not face in lab4. Back in lab4 we were transforming
the ast, and the initial state was the input ast that the pro-
grammer had written. Now, we are just doing an analysis (we
are not yet transforming the ast— that happens after the anal-
ysis is completed). This analysis involves a variety of sets. The
solving works by iterating until the values of the sets reach a
fixed point. To start the process, we need to pick initial values
for the sets. How to pick these initial values varies depending
on the equations that describe the dataflow analysis.

6.2 Optimization by Intuition
Crafting: §14.1.1

It is easy to do compiler optimizations by human intuition on small
programs. For example:

Common Subexpression Elimination

Example 1 Example 2 Example 3 Example 4
Before

a = (x + y) + z;

b = (x + y) * z;

a = (x + y) + z;

b = (y + x) * z;

a = (x + y) + z;

x = 7;

b = (x + y) * z;

a = (x + y) * z;

b = (x + y) * z;

After

t = x + y;

a = t + z;

b = t * z;

t = x + y;

a = t + z;

b = t * z;

(Sort operands)

Can’t be done be-
cause the value of x
changes.

t = x + y;

a = t * z;

b = t * z;

Need another round
of CSE to discover
that t*z is common.

[chapter 6] optimization 107

Loop invariant code motion: move code that doesn’t change
inside the loop (i.e., is loop invariant) to outside of the loop.

Example 1 Example 2 Example 3
Before

for (i = 0; i < n; ++i) {

a[i] = x + y;

}

for (i = 0; i < n; ++i) {

b = x + y;

a[i] = b * b;

}

for (i = 0; i < n; ++i) {

b = x + y * i;

a[i] = b * b;

}

After

t = x + y;

for (i = 0; i < n; ++i) {

a[i] = t;

}

t = x + y;

u = t * t;

for (i = 0; i < n; ++i) {

a[i] = u;

}

Can’t be done because
the value of b now
varies with each itera-
tion of the loop.

There are many other optimizations that can be done, such as
constant propagation (which we did in lab4 as part of simplifying
F), dead code elimination, etc. We will focus on these two.

6.3 Optimization Step By Step

a. Convert the ast to three address code. Most programming lan-
guages allow the programmer to write complex expressions with
multiple operators, such a + b*c. For analysis, we want to break
those down so that each expression has only one operator, and we
store the intermediate values in temporary variables. Discussed in
detail below.

b. Dataflow Analysis: construct and solve a system of equations that
describes the set of possible values the program could compute.

c. Optimize: transform the ast based on what we learned from the
dataflow analysis.

6.4 Convert to Three-Address Form

It is much easier to perform dataflow analysis and optimization on
code that is in three-address form, so the first step is to convert to
that form. The optimization that we intuitively above actually com-
prises both Common Subexpression Elimination and Copy Propaga-
tion. The Copy Propagation doesn’t become clear until we convert

Copy Propagation also makes use of
Reaching Definitions. It also requires
some additional dataflow analyses that
we will not discuss here, and so you
only need to know how to do Copy
Propagation by intuition, not formally.

the example to three-address form and step through it:

108 ece351 course notes [december 12, 2018]

Original Three-Address Form After CSE After Copy Prop. After Dead Code Elim.

a = (x + y) + z;

b = (x + y) * z;

t = x + y;

a = t + z;

u = x + y;

b = u * z;

t = x + y;

a = t + z;

u = t;

b = u * z;

t = x + y;

a = t + z;

u = t;

b = t * z;

t = x + y;

a = t + z;

b = t * z;

Construct ast. Post-order traversal, introducing temporary variables
for each node. The following example shows a complex expression
of the quadratic formula in its original form, ast form, and three-
address form.

public class Quadratic {

public static void main(String[] args) {

double x = positiveRoot(1, 3, −4);

System.out.println(x);

double x3 = positiveRoot3AC(1, 3, −4);

System.out.println(x3);

System.out.println(x == x3);

}

static double positiveRoot(int a, int b, int c) {

return ((−1 * b) + Math.sqrt(b*b − 4*a*c)) / (2*a);

}

static double positiveRoot3AC(int a, int b, int c) {

int negB = −1 * b;

int b2 = b*b;

int ac = a * c;

int fourac = 4 * ac;

int discriminant = b2 − fourac;

double sqrt = Math.sqrt(discriminant);

double numerator = negB + sqrt;

int denominator = 2 * a;

double x = numerator / denominator;

return x;

}

}

*

-1 b -

* *

b b 4 *

a c

sqrt

+

/

*

2 a

[chapter 6] optimization 109

6.5 Available Expressions Dataflow Analysis on Straightline Code
Crafting: §14.3, §14.4

How do we formalize these optimizations so that we can program a
compiler to perform them? The first step in each case is to perform a
(different) dataflow analysis. For Common Subexpression Elimination
we need an Available Expressions analysis, whereas for Loop Invariant
Code Motion we need an Reaching Definitions analysis. These analyses
are quite similar.

To perform Common Subexpression Elimination we need to know
which expressions are available at each statement. In the above ex-
ample 1, when we get to the statement assigning u we need to know
that we have already computed the value of x + y and stored it in
the variable t: in other words, the expression x + y is available at the
statement assigning u. Let’s number our statements so we can talk
about them more concisely:

1 t = x + y;

2 a = t + z;

3 u = x + y;

4 b = u * z;

A dataflow analysis is defined by a set of equation templates involv-
ing four sets:

• In: set of expressions available at beginning
• Out: set of expression available at end
• Gen: set of expressions computed in block
• Kill: set of expressions killed by computations in block

The equation templates for Available Expressions are: The confluence operator here is ∩. The
confluence operator is the one that tells
us what to do in the case when there
are multiple predecessors.

Ins =
⋂

∀ p ∈ predecessors(s)

Outp

Outs = Gens ∪ (Ins − Kills)

Let’s instantiate these equation templates for each statement in our We’re going to do this on a statement
basis instead of on a basic-block basis.
The difference is not conceptually
important.

example:

110 ece351 course notes [december 12, 2018]

Code to be analyzed:

1 t = x + y;
2 a = t + z;
3 u = x + y;
4 b = u * z;

In1 = ∅ 1 has no predecessors

Gen1 = {t=x+y;} the expression x+y

Kill1 = {a=t+z;} expressions that depend on t

Out1 = Gen1 ∪ (In1 − Kill1) instantiating the equation template

In2 = Out1 1 is the only predecessor of 2

Gen2 = {a=t+z;} the expression t+z

Kill2 = ∅ no expressions depend on a

Out2 = Gen2 ∪ (In2 − Kill2) instantiating the equation template

Code to be analyzed:

1 t = x + y;
2 a = t + z;
3 u = x + y;
4 b = u * z;

In3 = Out2 2 is the only predecessor of 3

Gen3 = {u=x+y;} the expression x+y

Kill3 = {b=u*z;} expressions that depend on u

Out3 = Gen3 ∪ (In3 − Kill3) instantiating the equation template

In4 = Out3 3 is the only predecessor of 4

Gen4 = {b=u*z;} the expression u*z

Kill4 = ∅ no expressions depend on b

Out4 = Gen4 ∪ (In4 − Kill4) instantiating the equation template

Now that we have our set of equations we can solve them. Since
there are no loops or branches, we can just substitute: Code to be analyzed:

1 t = x + y;
2 a = t + z;
3 u = x + y;
4 b = u * z;

Out1 = {t=x+y;}
Out2 = {t=x+y; a=t+z;}
Out3 = {t=x+y; a=t+z; u=x+y;}
Out4 = {t=x+y; a=t+z; u=x+y; b=u*z;}

Common Subexpression Elimination. Now that we know the
Available Expressions we can do our Common Subexpression Elimi-
nation. We examine each statement and see if the expression it evalu-
ates is already available: i.e., if In ∩ Gen is non-empty.

We discover that statement 3 generates x+y, and that x+y is already
available (i.e., the expression x+y is in In3) with the name t, so we can
change statement 3 to read u=t;.

[chapter 6] optimization 111

6.6 Dataflow Analysis on Programs With Loops & Branches
The process of solving a system of
equations by substitution is also known
as Gaussian elimination. This is the
technique that you use to solve systems
of equations in most of your other
engineering courses.

In algebraic terms, Gaussian elimi-
nation only works when the values of
the variables are drawn from a field.
The definition of an algebraic field
requires inverse elements, i.e., a concept
of ‘division’.

There are dataflow analysis tech-
niques that have developed concepts
of ‘loop-breaking’ so that Gaussian
elimination can be applied. Those tech-
niques are sometimes limited in the
programs they can analyze, and are
beyond the scope of this course. The
iterative technique always works.

Subtraction with sets is also a bit
different than with reals. When sub-
tracting reals, the result can be less than
zero. With sets, by contrast, the result
of subtraction can never be less than
the empty set: there is no concept of
‘negative sets’. This matters because
the dataflow equation templates often
involve subtracting the Kill set from the
In set.

In the above examples the equations were simple enough that we
could solve them symbolically, by substituting and re-arranging the
equations as you have been doing since highschool. When the pro-
gram we are analyzing gets more complicated — has loops or con-
ditionals — this approach will not be enough. The loops or branches
will give us statements with multiple predecessors, and that will give
us equations of the following form:

P = P ∪ Q

Equations like that are easy to solve when working with real num-
bers, as you do in most of your other engineering courses, such as:

X = X×Y

We divide both sides by X and conclude that Y = 1. But in dataflow
analysis, we are working with sets, not real numbers. And division is
not defined for sets. So we need another way to solve.

6.6.1 Iteration to a Fixed Point

Iteration to a fixed point is a technique that we first learned in lab4.
It is the way to solve these dataflow equations. Back in lab4, we
learned that to apply this technique we need to know that the system
we are working with will be confluent: that is, that it will terminate
and converge. Those properties are still important now. Additionally,
in this context we will see that picking the right initial values also
matters. In lab4 there was only one choice for initial values (the
incoming ast), so we didn’t have to think about it. Now we can
choose to initialize our sets as either empty or full.

There are multiple fixed points for a given set of equations. For
example, the following equation has potentially many solutions:

S = {x} ∪ S

Any set that includes x is a solution to this equation, such as:

{x} = {x} ∪ {x}
{x, y} = {x} ∪ {x, y}
{x, y, z} = {x} ∪ {x, y, z}

All of these solutions are fixed points of the equation. While they are
all, mathematically, solutions, in dataflow analysis we will always
want either the greatest fixed point (largest solution) or the least fixed
point (smallest solution). We initialize appropriately to get the solu-
tion that we are looking for.

112 ece351 course notes [december 12, 2018]

Initialization depends on the confluence operator used in the
equations for the specific dataflow analysis. Different analyses use
different confluence operators. For example, Available Expressions
uses ∩, whereas Reaching Definitions uses ∪.

Confluence Operator Desired Solution Initial In Sets In Size
∩ greatest fixpoint {all} shrinks
∪ least fixpoint ∅ grows

The Domain of dataflow analysis sets are typically some program
fragment, such as variables or expressions. Since our input program
is finite, it must have a finite number of fragments. So our dataflow
analysis sets must be finite. But how large? Exponential.

Suppose that our dataflow analysis is concerned with variables
in the program. Suppose that there are two variables: x and y. Then
our dataflow analysis sets might have any of the following possible
values: ∅, {x}, {y}, {x, y}.

Let V name the set of all interesting fragments (e.g., variables) in
the input program, and let n = |V|. In the above example, V =

{x, y}, and n = 2. Let D name the domain of possible values that the
dataflow analysis sets can have. In the above example, |D| = 2n = 4.
We say that D is the powerset of V: that is, D is the set of all possible
subsets of V, including the empty set and V itself.

D = P(V) = {∅, {x}, {y}, {x, y}}

We can visualize powersets with Hasse diagrams (Figure 6.1).
These diagrams also reveal to us a structure in the powersets: some
subsets include others. For example, {x} ⊂ {x, y}.

{x, y}

{x} {y}

{ }

{x,y,z}

{y,z}{x,z}{x,y}

{y} {z}{x}

Ø

P({x, y}) P({x, y, z})

Figure 6.1: Hasse diagrams for domains
of powersets of two and three elements.
Images from Wikipedia, under the
GNU Free Documentation License.

[chapter 6] optimization 113

Termination. Will dataflow analysis terminate? Let’s revisit the Formally speaking, we say that the
domain forms a semi-lattice with finite
chains between top and bottom, and
that the dataflow transfer functions are
monotone.

termination argument that we saw in lab4 for our term-rewriting
system, which had three components:

• The input was finite (the original program ast).
• The transformations always made the program smaller. In other

words, the transformations were monotonic.
• There is a bound on how small the program could get (e.g., it

cannot have a negative size).

So our term re-writing system in lab4 keeps making the program
smaller until it gets stuck (i.e., reaches the least fixed point), and then
we declare victory. We know it will always get stuck because there is
a bound on how small programs can get.

We will construct a similar argument here for the termination of
dataflow analyses:

• The domain of possible values for the dataflow analysis sets is
finite: it is the powerset of interesting program fragments (and the
original input program is finite).

• The domain has a smallest value (∅) and a largest value (the set of
all interesting program fragments).

• The dataflow equations are monotonic. That is, as we go through This monotonicity property is always
true, but proving it is beyond the scope
of ece351.

the iterative solving technique, the dataflow equations will always
push the solution in one direction in the Hasse diagram. Some
dataflow analyses always push the solutions up, and some always
push the solutions down.

Similarly, a dataflow analysis keeps pushing the solutions up (or
down) on the Hasse diagram until they all get stuck, and then we
declare victory. In other words, the iterative solving keeps going
until it reaches the greatest/least fixed point (depending on which
direction it is moving).

Confluence. All dataflow equations are confluent: every computa- Proofs of confluence are beyond the
scope of ece351.tion order will produce the same fixed-point solution.

Iteration order. All iteration orders compute the same result
(confluence), but some are faster than others. In an industrial com-
piler, a control-flow analysis would first be performed to determine
the order in which to evaluate the sets. We will not worry about iter-
ation order in ece351.

114 ece351 course notes [december 12, 2018]

6.7 Available Expressions Dataflow Analysis (with loops)

Consider the following flow graph, perform Common Subex-
pression Elimination by computing Available Expressions using
(multi-step) iteration to the greatest fixed point.

10: B = 1

11: C = 2

20: A = B+C

21: D = A-B

30: D = C*D
40: C = B+C

41: E = A-B

50: D = B+C

51: E = E+1

60: B = C*D

61: C = B-D

Figure 6.2: Example flow graph from
Dragon book (1st ed.) exercise 14.1;
modified by removing edge B3 → B4.
Each statement is given a line number.

By intuition we can see that lines 40

and 50 have redundant computations of
B+C. We can change these lines to C=A
and D=A, respectively, to eliminate the
common subexpression by re-using the
value of the available expression.

We can also see that line 41 has a
redundant computation of A-B, and so
we can change that line to E=D.

10: B = 1

11: C = 2

20: A = B+C

21: D = A-B

30: D = C*D
40: C = B+C

41: E = A-B

50: D = B+C

51: E = E+1

60: B = C*D

61: C = B-D

We always know the concrete solutions for the Gen and Kill sets
after one step, since these sets do not depend on the ordering of the
blocks (i.e., do not depend on the control-flow of the program). So
let’s do these sets first. First the Gen sets, which are produced by
examining each block in isolation:

Gen1 = {1, 2}
Gen2 = {B+C, A-B}
Gen3 = {C*D}
Gen4 = {B+C, A-B}
Gen5 = {B+C, E+1}
Gen6 = {C*D, B-D}
{all} = {B+C, A-B, C*D, E+1, B-D}

[chapter 6] optimization 115

Then the Kill sets. Recall that the Kill sets are produced by a com-
plete scan of the program, ignoring the control flow (i.e., ignoring the
ordering of the blocks):

Kill1 = {B+C, A-B, C*D, B-D} Depends on B or C

Kill2 = {C*D, A-B, B-D} Depends on A or D

Kill3 = {C*D, B-D} Depends on D

Kill4 = {B+C, C*D, E+1} Depends on C or E

Kill5 = {C*D, B-D} Depends on D or E

Kill6 = {B+C, A-B, C*D, B-D} Depends on B or C

Now let’s build the In sets symbolically. For Available Expressions,
the In sets are where we encode the control-flow of the program:

10: B = 1

11: C = 2

20: A = B+C

21: D = A-B

30: D = C*D
40: C = B+C

41: E = A-B

50: D = B+C

51: E = E+1

60: B = C*D

61: C = B-D

In1 = ∅ 1 has no predecessors

In2 = Out1 ∩Out4 Blocks 1 and 4 are the predecessors of Block 2

In3 = Out2 ∩Out5 Blocks 2 and 5 are the predecessors of Block 3

In4 = Out2 Block 2 is the only predecessor of Block 4

In5 = Out3 Block 3 is the only predecessor of Block 5

In6 = Out4 Block 4 is the only predecessor of Block 6

There is no quantifier in the Out equations, so they all look the same.
We can commence the iterative solving. Sets are initialized to empty.
Superscripts are used to indicate time points, so Out3

2 names the
value of Out2 at step 3.

116 ece351 course notes [december 12, 2018]

Solving for greatest fixed-point, initializing with full sets.

Set Initial Step 1 Step 3 Step 5

Out1 ⇒ ∅ ⇒ same ⇒ same ⇒ same
Out2 ⇒ Gen2 ⇒ Gen2 ∪ (In0

2 − Kill2) ⇒ Gen2 ∪ (In2
2 − Kill2) ⇒ Gen2 ∪ (In4

2 − Kill2)
= {B+C, A-B} ∪ ({all} − Kill2) = {B+C, A-B} ∪ (∅− Kill2) = same
= {B+C, A-B, E+1} = {B+C, A-B}

Out3 ⇒ Gen3 ⇒ Gen3 ∪ (In0
3 − Kill3) ⇒ Gen3 ∪ (In2

3 − Kill3) ⇒ Gen3 ∪ (In4
3 − Kill3)

= {C*D} ∪ ({all} − Kill3) = {C*D} ∪ {B+C, A-B, E+1} = {C*D} ∪ {B+C, A-B}
= {C*D, B+C, E+1, A-B} = {C*D, B+C, E+1, A-B} = {C*D, B+C, A-B}

Out4 ⇒ Gen4 ⇒ Gen4 ∪ (In0
4 − Kill4) ⇒ Gen4 ∪ (In2

4 − Kill4) ⇒ Gen4 ∪ (In4
4 − Kill4)

= {B+C, A-B} ∪ ({all} − Kill4) = {B+C, A-B} ∪ {A-B} = same
= {B+C, A-B, B-D} = {B+C, A-B}

Out5 ⇒ Gen5 ⇒ Gen5 ∪ (In0
5 − Kill5) ⇒ Gen5 ∪ (In2

5 − Kill5) ⇒ Gen5 ∪ (In4
5 − Kill5)

= {B+C, E+1} ∪ ({all} − Kill5) = {B+C, E+1} ∪ {B+C, E+1, A-B} = same
= {B+C, E+1, A-B} = {B+C, E+1, A-B}

Out6 ⇒ Gen6 ⇒ Gen6 ∪ (In0
6 − Kill6) ⇒ Gen6 ∪ (In2

6 − Kill6) ⇒ Gen6 ∪ (In4
6 − Kill6)

= {C*D, B-D} ∪ ({all} − Kill6) = {C*D, B-D} ∪ {B-D} = {C*D, B-D} ∪∅
= {C*D, B-D, E+1} = {C*D, B-D} = {C*D, B-D}

Set Initial Step 2 Step 4 Step 6

In1 ⇒ ∅ ⇒ same ⇒ same ⇒ same
In2 ⇒ {all} ⇒ Out1

1 ∩Out1
4 ⇒ Out3

1 ∩Out3
4 ⇒ Out5

1 ∩Out5
4

= ∅ ∩ {B+C, A-B, B-D} = same = same
= ∅

In3 ⇒ {all} = Out1
2 ∩Out1

5 = Out3
2 ∩Out3

5 = Out5
2 ∩Out5

5
= {B+C, A-B, E+1} ∩ {B+C, E+1, A-B} = {B+C, A-B} ∩ {B+C, E+1, A-B} = same
= {B+C, A-B, E+1} = {B+C, A-B}

In4 ⇒ {all} ⇒ Out1
2 ⇒ Out3

2 ⇒ Out5
2

= {B+C, A-B, E+1} = {B+C, A-B} = same
In5 ⇒ {all} ⇒ Out1

3 ⇒ Out3
3 ⇒ Out5

3
= {C*D, B+C, E+1, A-B} = same = {C*D, B+C, A-B}

In6 ⇒ {all} ⇒ Out1
4 ⇒ Out3

4 ⇒ Out5
4

= {B+C, A-B, B-D} = {B+C, A-B} = same

10: B = 1

11: C = 2

20: A = B+C

21: D = A-B

30: D = C*D
40: C = B+C

41: E = A-B

50: D = B+C

51: E = E+1

60: B = C*D

61: C = B-D

Gen1 = {1, 2}
Gen2 = {B+C, A-B}
Gen3 = {C*D}
Gen4 = {B+C, A-B}
Gen5 = {B+C, E+1}
Gen6 = {C*D, B-D}
{all} = {B+C, A-B, C*D, E+1, B-D}

Kill1 = {B+C, A-B, C*D, B-D} Depends on B or C

Kill2 = {C*D, A-B, B-D} Depends on A or D

Kill3 = {C*D, B-D} Depends on D

Kill4 = {B+C, C*D, E+1} Depends on C or E

Kill5 = {C*D, B-D} Depends on D or E

Kill6 = {B+C, A-B, C*D, B-D} Depends on B or C

[chapter 6] optimization 117

Common Subexpression Elimination: We look at the intersec-

10: B = 1

11: C = 2

20: A = B+C

21: D = A-B

30: D = C*D
40: C = B+C

41: E = A-B

50: D = B+C

51: E = E+1

60: B = C*D

61: C = B-D

tion of the In and Gen sets for each block, to see if a block is redun-
dantly computing an expression that is already available.

Block In ∩ Gen = Result
1 ∅ ∩ ∅ = ∅
2 ∅ ∩ {B+C, A-B} = ∅
3 {B+C} ∩ {C*D} = ∅
4 {B+C, A-B} ∩ {B+C, A-B} = {B+C, A-B}
5 {B+C, C*D, A-B} ∩ {B+C, E+1} = {B+C}
6 {B+C, A-B} ∩ {C*D, B-D} = ∅

So we can change line 40 to C=A, line 50 to D=A, and line 41 to E=D.

What if we initialized incorrectly? Common subexpression
elimination uses the Available Expressions dataflow analysis, which
has ∩ as the confluence operator. Therefore, the In sets should be
initialized full. What if we initialized them empty by mistake? This
computation is done on the next page. Let’s compare.

Block In (init. full) In (init. empty) : Difference
1 ∅ ∅ : ∅
2 ∅ ∅ : ∅
3 {B+C} {B+C} : ∅
4 {B+C, A-B} {B+C, A-B} : ∅
5 {B+C, C*D, A-B} {B+C,C*D} : {A-B}
6 {B+C, A-B} {B+C, A-B} : ∅

The difference here is isolated to block five, and it so happens that it
does not affect the Common Subexpression Elimination: since block
five does not generate A-B, the fact that it has been excluded from In
set does not change anything.

So the initialization mistake has not had serious consequences.
We can additionally observe that this mistake has made the result-

ing sets smaller: if we initialize with larger sets, then we get a larger
solution; if we initialize with smaller sets, we get a smaller solution.

Is this mistake conservative? In other words, will such a mistake
cause us to make an erroneous program transformation? This mis-
take, in the context of Common Subexpression Elimination, is con-
servative: the worst that it will do is cause us to miss an opportunity
to optimize — it will not cause us to make an erroneous program
transformation.

Is it possible to make an initialization
mistake that could cause us to make
an erroneous program transformation?
Yes. In the mistake above, Available
Expressions uses ∩ as the confluence
operator, and so always makes the sets
smaller. If we start with smaller sets,
we might miss some opportunities for
optimization, but we won’t break the
program.

If we were performing a different
dataflow analysis, such as Reaching
Definitions, which has ∪ as the conflu-
ence operator, it would need the sets
initialized as empty. Then it grows the
sets. If, instead, we made the mistake
of initializing the sets as full, then we
would likely have too many values in
the resulting sets (instead of too few),
and that might cause us to break the
program.

118 ece351 course notes [december 12, 2018]

Solving for least fixed-point, initializing with empty sets. This is just for illustration, to show
that there are multiple solutions. For available expressions we really want the greatest fixed point.

Set Initial Step 1 Step 3 Step 5

Out1 ⇒ ∅ ⇒ same ⇒ same ⇒ same
Out2 ⇒ ∅ ⇒ Gen2 ∪ (In0

2 − Kill2) ⇒ Gen2 ∪ (In2
2 − Kill2) ⇒ Gen2 ∪ (In4

2 − Kill2)
= {B+C, A-B} ∪ (∅− Kill2) = same = same
= {B+C, A-B}

Out3 ⇒ ∅ ⇒ Gen3 ∪ (In0
3 − Kill3) ⇒ Gen3 ∪ (In2

3 − Kill3) ⇒ Gen3 ∪ (In4
3 − Kill3)

= {C*D} ∪ (∅− Kill2) = {C*D} ∪ {B+C} = same
= {C*D} = {C*D, B+C}

Out4 ⇒ ∅ ⇒ Gen4 ∪ (In0
4 − Kill4) ⇒ Gen4 ∪ (In2

4 − Kill4) ⇒ Gen4 ∪ (In4
4 − Kill4)

= {B+C, A-B} ∪ (∅− Kill4) = {B+C, A-B} ∪ ({B+C, A-B} − Kill4) = same
= {B+C, A-B} = {B+C, A-B}

Out5 ⇒ ∅ ⇒ Gen5 ∪ (In0
5 − Kill5) ⇒ Gen5 ∪ (In2

5 − Kill5) ⇒ Gen5 ∪ (In4
5 − Kill5)

= {B+C, E+1} ∪ (∅− Kill5) = {B+C, E+1} ∪ ({C*D} − Kill5) = {B+C, E+1} ∪ ({C*D, B+C} − Kill5)
= {B+C, E+1} = {B+C, E+1} = {B+C, E+1}

Out6 ⇒ ∅ ⇒ Gen6 ∪ (In0
6 − Kill6) ⇒ Gen6 ∪ (In2

6 − Kill6) ⇒ Gen6 ∪ (In4
6 − Kill6)

= {C*D, B-D} ∪ (∅− Kill6) = {C*D, B-D} ∪ ({B+C, A-B} − Kill6) = same
= {C*D, B-D} = {C*D, B-D}

Set Initial Step 2 Step 4 Step 6

In1 ⇒ ∅ ⇒ same ⇒ same ⇒ same
In2 ⇒ ∅ ⇒ Out1

1 ∩Out1
4 ⇒ Out3

1 ∩Out3
4 ⇒ Out5

1 ∩Out5
4

= ∅ ∩ {B+C, A-B} = same = same
= ∅

In3 ⇒ ∅ = Out1
2 ∩Out1

5 = Out3
2 ∩Out3

5 = Out5
2 ∩Out5

5
= {B+C, A-B} ∩ {B+C, E+1} = same = same
= {B+C}

In4 ⇒ ∅ ⇒ Out1
2 ⇒ Out3

2 ⇒ Out5
2

= {B+C, A-B} = same = same
In5 ⇒ ∅ ⇒ Out1

3 ⇒ Out3
3 ⇒ Out5

3
= {C*D} = {C*D, B+C} = same

In6 ⇒ ∅ ⇒ Out1
4 ⇒ Out3

4 ⇒ Out5
4

= {B+C, A-B} = same = same

10: B = 1

11: C = 2

20: A = B+C

21: D = A-B

30: D = C*D
40: C = B+C

41: E = A-B

50: D = B+C

51: E = E+1

60: B = C*D

61: C = B-D

Gen1 = {1, 2}
Gen2 = {B+C, A-B}
Gen3 = {C*D}
Gen4 = {B+C, A-B}
Gen5 = {B+C, E+1}
Gen6 = {C*D, B-D}
{all} = {B+C, A-B, C*D, E+1, B-D}

Kill1 = {B+C, A-B, C*D, B-D} Depends on B or C

Kill2 = {C*D, A-B, B-D} Depends on A or D

Kill3 = {C*D, B-D} Depends on D

Kill4 = {B+C, C*D, E+1} Depends on C or E

Kill5 = {C*D, B-D} Depends on D or E

Kill6 = {B+C, A-B, C*D, B-D} Depends on B or C

[chapter 6] optimization 119

6.8 Reaching Definitions Dataflow Analysis (with loops)

To perform the Loop Invariant Code Motion optimization, we need to
know which definitions reach where. If the definitions of all of the
operands in some expression come from outside the loop then we can
evaluate that expression outside the loop.

Let’s consider our first example. We make variables n, x, and y into
formal parameters of a procedure to give them clear definitions sites.

proc p(n, x, y) {

for (i=0; i < n; i++) {

a[i] = x + y;

}

}

We convert to three-address form. In doing so, we also change the
structured control flow (i.e., the ‘for’ loop) of the source program into
unstructured goto statements that a machine can actually execute.
We introduce names arg1, arg2, and arg3 to talk about the binding of
formal parameters x, y and z to the values they are called with.

1 n = arg1;

2 x = arg2;

3 y = arg3;

4 i = 0;

5 start:

6 if (!(i < n)) goto end;

7 a[i] = x + y;

8 i++;

9 goto start;

10 end:

The equation templates for Reaching Definitions are: These equation templates are the same
as for Available Expressions, except the
intersection (∩) of the In equation has
been changed to a union (∪). Intuitively
what this says is that an expression
is available if it reaches a statement
on all incoming paths. By contrast, a
definition may reach a statement if it
comes in on any path.

Ins =
⋃

∀ p ∈ predecessors(s)

Outp

Outs = Gens ∪ (Ins − Kills)

Note that the sets here contain definitions of variables rather than
expressions: in other words, here our sets contain focus on the lhs of
the statement, whereas before we were focused on the rhs.

Let’s instantiate these equation templates for our example. We’ll We’re going to do this on a statement
basis instead of on a basic-block basis.
The difference is not conceptually
important.

use the notation n1 to indicate the definition of variable n on line 1.
The first four statement are trivial, so let’s first state the obvious

without explicitly working through all of the details:

120 ece351 course notes [december 12, 2018]

Out4 = {n1, x2, y3, i4} the initial definitions reach the end of the initial block

Things get more interesting on line 6 at the top of the loop: Code to be analyzed:

1 n = arg1;
2 x = arg2;
3 y = arg3;
4 i = 0;
5 start:
6 if (!(i < n)) goto end;
7 a[i] = x + y;
8 i++;
9 goto start;

10 end:

In6 = Out4 ∪ Out8 line 6 has two predecessors

Gen6 = ∅ line 6 doesn’t define anything

Kill6 = ∅ line 6 doesn’t define anything

Out6 = Gen6 ∪ (In6 − Kill6) = In6 this simplifies to In6 since the other sets are ∅

In7 = Out6 line 7 has one predecessor

Gen7 = {a7} line 7 defines a

Kill7 = ∅ there are no other definitions of a

Out7 = Gen7 ∪ (In7 − Kill7) we’ll solve for this later; simplifies to Gen7 ∪ In6

In8 = Out7 line 8 has one predecessor

Gen8 = {i8} line 8 defines i

Kill8 = {i4} the definition of i on line 4 is no longer valid

Out8 = Gen8 ∪ (In8 − Kill8) we’ll solve for this later

In10 = Out6 line 10 follows from the goto on line 6

Gen10 = ∅ line 10 doesn’t define anything

Kill10 = ∅ line 10 doesn’t define anything

Out10 = Gen10 ∪ (In10 − Kill10) note: Gen10 = Out6 = In6

Solve for the interesting sets. Remember that unknown values, such This is why the iteration order of our
solving matters in practice. While
theory tells us that all iteration orders
produce the same end result, some of
them get there faster.

as Out8, are initialized to ∅). Note that we can use values computed
in the same step: e.g., when we compute Out7 in step 1, we can use
the value of In6 that was computed previously in step 1.

Code to be analyzed:

1 n = arg1;
2 x = arg2;
3 y = arg3;
4 i = 0;
5 start:
6 if (!(i < n)) goto end;
7 a[i] = x + y;
8 i++;
9 goto start;

10 end:

Simplified Formula Step 1 Step 2

In6 = Out4 ∪ Out8 = {n1, x2, y3, i4} = {n1, x2, y3, i4, a7, i8}
Out7 = Gen7 ∪ In6 = {n1, x2, y3, i4, a7} = {n1, x2, y3, i4, a7, i8}
Out8 = Gen8 ∪ (Out7 − Kill8) = {n1, x2, y3, a7, i8} = {n1, x2, y3, a7, i8}

To perform the Loop Invariant Code Motion optimization, we need to

In other words, both x and y are loop
invariant: they do not change with each
iteration of the loop.

know that In7 does not contain any definitions of x or y from inside
the loop. We see above that In7 = Out6 = In6 = {n1, x2, y3, i4, a7, i8}.
The only definitions of x and y there come from outside the loop, so
we can move the computation of x+y before the loop.

[chapter 6] optimization 121

6.9 Duality of Available Expressions and Reaching Definitions

Available Expressions Reaching Definitions
Focus rhs (exprs) lhs (vars)
Confluence Operator intersection (∩) union (∪)
Paths all any
Necessity must may
Initialize In sets {all} ∅
Fixed point greatest least

Dataflow analyses are typically parameterized by their equation
templates (including the confluence operator), and how the Gen and
Kill sets are computed. Because of this regular structure it is possible
to build dataflow analysis frameworks.

1 a = t + z;

2 if (c) {

3 t = x;

4 }

5 b = t + z;

Figure 6.3: An example illustrating
the difference between Available Ex-
pressions and Reaching Definitions.
The expression t+z from line 1 is not
available on line 5 because the value of
t may have changed: it may not be the
same on all paths leading to line 5.

The definitions of variable a on
line 1 and variable t on line 3 both
reach line 5. Reaching Definitions asks
whether a definition might reach a state-
ment any path. Available expressions
asks whether an expression must reach
a statement on all incoming paths.

122 ece351 course notes [december 12, 2018]

6.10 Summary

• Be able to perform the following optimizations by intuition:

– Common Subexpression Elimination
– Copy Propagation
– Dead Code Elimination
– Loop Invariant Code Motion
– Live Variables

• Be able to perform the following optimizations by dataflow analy-
sis:

– Common Subexpression Elimination (Available Expressions)
– Loop Invariant Code Motion (Reaching Definitions)

• Basic skills:

– Convert to three-address form
– Solve for least fixed-point
– Draw a Hasse diagram for a powerset

• Function inlining: We saw a version of this in the labs, in vhdl

terms ‘elaboration’.

Thought questions

a. What order to apply optimizations in?

b. How many times to apply them?

c. Do we know that this process will converge?

d. Will it really make the program faster/smaller/etc.?

e. Will we reach an optimum?

Chapter 7
Storage Management

7.1 Register Allocation Tiger: §11.0, 21.0

Crafting: §13.3
To see a World in a Grain of Sand
And a Heaven in a Wild Flower
Hold Infinity in the palm of your hand
And Eternity in an hour

— Auguries of Innocence
William Blake, 1803

What you need to be able to do on
the exam is draw an interference
graph, colour it, and report how many
registers are needed.

The software illusion: unbounded space in a finite machine.
Turing Machine

infinite tape
≈ Real Computer

registers + cache + ram + disk

We see this illusion at play all over computer engineering:

• Operating Systems: When we run out of ram then we swap to disk
(virtual memory also sometimes has hardware support, so chip
designers might be involved).

• Databases: One of the main sources of complexity in a database
engine is managing data that are too big to fit in ram. It is much
easier to write an in-memory database engine.

• Chips: The chip designer determines the policy of what data are
duplicated in the cache, and what are only in main memory.

• Compilers: The compiler engineer determines how registers are
allocated to the local variables in the program, and which are
spilled to main memory. The programmer has the illusion of an
unbounded number of registers (local variables).

Some programming languages, such as Scheme, provide the

We are focused on register allocation
here. The point is that the illusion
of the infinite in the finite also exists
elsewhere in programming languages.

programmer with integers of unbounded bitwidth, so the pro-
grammer never suffers from overflow. For efficient execution, the
compiler engineer wants to map Scheme integers to machine inte-
gers where possible, and then transparently switch representations
when the machine integer is about to overflow.

Register allocation is an NP-complete problem. Intuitively we can

The Tiger book’s chapter on register al-
location is largely devoted to explaining
the details of some polynomial approx-
imations. We’re not concerned with
that. You can learn it from a book later
if necessary. All you need to learn now
is how to model the register allocation
problem as a graph colouring problem.

In class we did the example problem
on page 221 (Graph 11.1).

Aside: By the four colour theorem we
know that any planar graph requires at
most four colours. The history of this
theorem and its proof is an important
and interesting story in the interplay
between computers and mathematics.
http://en.wikipedia.org/wiki/
Four_color_theorem

see that it is like bin-packing: we have a bunch of local variables
that we have to pack into the available registers. The main approach
for register allocation is graph colouring. Graph colouring is another

http://en.wikipedia.org/wiki/Four_color_theorem
http://en.wikipedia.org/wiki/Four_color_theorem

124 ece351 course notes [december 12, 2018]

well-known NP-complete problem for which there exist known poly-
nomial approximations that perform reasonably well.

Variable liveness appears, on the surface, slightly different in
three-Address code vs. assembly. The 3ac sometimes looks like
it needs more registers than it does. Consider the 3ac statement
f := g * h. How many registers does this require? 3? or 2? If we look at
it in assembly it becomes clearer:

Instruction Begin # Reg. End # Reg. Comment
load g 2: g, h 1: h Load g on to the stack
load h 1: h 0 Load h on to the stack
mult 0 0 result on top of stack
store f 0 1: f store result in f (pop off stack)

For some machines this might just be one instruction like mult $4, $5, $4,
saying multiply the values in register numbers 4 and 5 and store the
result in register 4: only two registers are required. The Wikipedia entry on Register Al-

location covers much of what we
discussed in class. The relevant parts of
that entry are excerpted here for your
convenience.

Wikipedia entries are made available
under a Creative Commons Attribution-
ShareAlike 3.0 licence, which grants the
reader the freedom to adapt the entry
as long as (1) Wikipedia is acknowl-
edged as the source of the material,
and (2) the adapted material is made
available to others under similar licence
terms.

Wikipedia Excerpt. In compiler optimization, register allocation
is the process of assigning a large number of target program vari-
ables onto a small number of CPU registers. Register allocation can
happen over a basic block (local register allocation), over a whole
function/procedure (global register allocation), or in-between func-
tions as a calling convention (interprocedural register allocation).

In many programming languages, the programmer has the illusion
of allocating arbitrarily many variables. However, during compila-
tion, the compiler must decide how to allocate these variables to a
small, finite set of registers. Not all variables are in use (or ‘live’) at
the same time, so some registers may be assigned to more than one
variable. However, two variables in use at the same time cannot be
assigned to the same register without corrupting its value. Variables
which cannot be assigned to some register must be kept in RAM and
loaded in/out for every read/write, a process called spilling. Access-
ing RAM is significantly slower than accessing registers and slows
down the execution speed of the compiled program, so an optimizing
compiler aims to assign as many variables to registers as possible.
Register pressure is the term used when there are fewer hardware
registers available than would have been optimal; higher pressure
usually means that more spills and reloads are needed.

Through liveness analysis, compilers can determine which sets of
variables are live at the same time, as well as variables which are in-
volved in move instructions. Using this information, the compiler can
construct a graph such that every vertex represents a unique variable
in the program. Interference edges connect pairs of vertices which are
live at the same time, and preference edges connect pairs of vertices We will not worry about preference

edges. We will focus on interference
edges.

[chapter 7] storage management 125

which are involved in move instructions. Register allocation can then
be reduced to the problem of K-coloring the resulting graph, where K
is the number of registers available on the target architecture. No two
vertices sharing an interference edge may be assigned the same color,
and vertices sharing a preference edge should be assigned the same
color if possible. Some of the vertices may be precolored to begin We will not worry about precolouring.

with, representing variables which must be kept in certain registers
due to calling conventions or communication between modules. As
graph coloring in general is NP-complete, so is register allocation.
However, good algorithms exist which balance performance with
quality of compiled code. The Tiger Book discusses some of

these polynomial approximations. We
aren’t concerned with them. Once you
understand the concepts you can learn
those approximations from the book
later if your job requires it.

7.1.1 Liveness Analysis

Liveness analysis tells us, for each statement, which variables are
currently holding values that might be used in the future (i.e., which
variables are live). Liveness analysis is the first step in register alloca-
tion. A statement uses a variable that appears on the rhs of the state-
ment, and defines a variable that appears on the lhs. The dataflow
equation templates for liveness analysis are:

Ins = Uses ∪ (Outs −Defs)

Outs =
⋃

∀ x ∈ successors(s)

Inx

Consider, for example, the following block of code, accompanied by
the columns on the right that indicate when each variable is live.

b c d e f g h j k m
live-in k, j | |

g := mem[j+12] \ | |
h := k - 1 | \ | /
f := g * h \ / / |
e := mem[j + 8] \ | |

m := mem[j+16] | | / \
b := mem[f] \ | / |
c := e + 8 | \ / |
d := c | / \ |
k := m + 4 | | \ /
j := b / | \ |

live-out d, k, j | | |

Figure 7.1: Liveness analysis example.
The code block starts with the state-
ment assigning g and ends with the
statement assigning j. We are told that
variables k and j are live coming into
the block; variables d, k, and j are live
going out of the block. The columns on
the right show the results of our live-
ness anaylsis by intuition. A backslash
(\) indicates the statement on which
a variable is defined. A bar (|) indi-
cates a statement on which a variable
is live. A forward slash (/) indicates a
statement on which a definition is last
used. The reason for this notation is to
show, for example, that in the statement
k = m + 4 that k and m do not interfere
with each other (i.e., they can share the
same register).

[Adapted from Tiger §11.1]

126 ece351 course notes [december 12, 2018]

j k

d

h g

f e
b

m

c

j

g

f

d

h

k

e

m

b

c

Figure 7.2: Intereference graph example
corresponding to liveness analysis in
Figure 7.1, before and after colouring.
This colouring shows that we need
four registers. The general problem of
graph colouring is np-complete. If our
machine has fewer registers than are
needed to colour the graph, then some
colours must be spilled to main memory.

7.1.2 Interference Graph Colouring

From the liveness analysis we construct an intereference graph, with
a node for each variable, and an edge between variables that are
live at the same time. We then colour this graph, with each colour
representing a register.

[chapter 7] storage management 127

7.2 Garbage Collection
Tiger: §13.0–4, §13.7.1

We reviewed the basic ideas of reference counting, mark and sweep,
copying collection, and generational collection using the examples from
the Tiger book.

Generational collection enables faster object allocation (which is
well described in the Tiger book).

/** It’s awful: nothing happens twice. */

public class Beckett {

public static void main() {

act1();

System.out.println("Waiting");

act2();

System.out.println("Godot");

}

static void act1() {

Person vladimir = new Person();

Person estragon = new Person();

vladimir.friend = estragon;

estragon.friend = vladimir;

}

static void act2() {

Person lucky = new Person();

Person pozzo = new Person();

pozzo.friend = lucky;

// what is the existential status

// of Vladimir and Estragon at

// the end of act 2?

System.out.println("for");

}

}

class Person {

Person friend;

Person() {

super();
friend = null;

}

}

main() frame

act2() frame
 lucky
 pozzo

Person1 Person2

Person3

Person4

Figure 7.3: Garbage collection in action.
First we draw the stack and the heap, as
we have done on the board many times
throughout the term, and as is done by
PythonTutor.com and Jeliot (for Java
programs).

There is no frame for act1() on the
stack, because act1() is not currently
executing (the point of execution
pictured is at the existential status
comment).

The local variables lucky and pozzo
refer to the objects Person3 and Per-
son4, respectively. The objects Person3

and Person4 have no knowledge that
they are pointed to by local variables
named lucky and pozzo. We see that
Person4 (pozzo) has a friend, but that
Person3 (lucky) does not.

The objects Person1 and Person2

were formerly known by the local vari-
ables vladimir and estragon, respectively,
when act1() was executing (i.e., had an
active frame on the stack).

Every garbage collection strategy
except for reference counting starts
from the pointers on the stack and
traverses the heap to determine which
objects are reachable (i.e., live). In
this case we see that Person3 and
Person4 are reachable, whereas Person1

and Person2 are not reachable. The
unreachable objects are garbage and can
be collected.

Reference counting, by contrast,
looks at each object and its count of in-
coming pointers. Person1 and Person2

both have one incoming pointer, so
reference counting would not identify
them as garbage. Cyclic structures such
as this are the main weakness of refer-
ence counting. Reference counting is
the easiest garbage collection strategy to
implement, but is the worst performing.

An old MIT AI Lab Koan: One day
a student came to David Moon and
said: ‘I understand how to make a
better garbage collector. We must keep
a reference count of the pointers to
each cons (object).’ Moon patiently told
the student the following story: ‘One
day a student came to Moon and said:
“I understand how to make a better
garbage collector...

PythonTutor.com

128 ece351 course notes [december 12, 2018]

7.3 Three options for cleanup

Once we start using the heap then we have to start worrying about
cleaning up after ourselves — garbage collection. Turing Machines
have infinite storage, but our real computers do not. When our pro-
gram no longer needs some object then we want to reclaim that space
to we can reuse it for some future object. There are three main strate-
gies for handling garbage collection:

• Don’t. The program in Figure ?? does not really need any storage
reclamation, because all of the objects allocated are needed until
the program terminates, at which point the entire heap is garbage.
Some command-line programs in the real world are like this. In-
teractive programs are not like this: they do some work, clean up
after themselves, then do some more work. Interactive programs
include any gui (graphical user interface) or web server.

• Manual. Some programming languages, such as C/C++, allow the
programmer to manually reclaim memory (the delete keyword in
C++). For the example program in Figure ?? we could delete the
entire search tree after the search is performed. Deleting the entire
tree would be a bit tricky:

– We would need to implement a destructor for both the Tree

class and the Node class, which would have to perform a post-
order traversal of the tree (i.e., the tree needs to be deleted from
the leaves up).

– We would need to be confident that the tree was well-formed.
Otherwise we might fail to delete some nodes.

– We would need to be confident that the nodes in the tree were
not shared with any other trees.

– We would need to develop, and document, a policy about
whether deleting the tree would also delete the contents of
the tree (‘rock’, ‘paper’, ‘scissors’, ‘prize’ in our example). In
our example program in Figure Figure ?? the input tokens are
shared between the tree, the args array, and some local variables
(e.g., toFind). So it might be unwise to delete them when we
delete the tree. But it also might be tricky to remember to delete
them later, because that would require knowing exactly how
those objects were shared and that any incoming pointers were
no longer needed.

• Automatic. We can rely on an automatic garbage collector to reclaim
space used by objects that are no longer needed. Most modern
programming languages include a garbage collector. We will study
different techniques for automatic garbage collection later.

[chapter 7] storage management 129

7.4 Reference Counting
Recall from §0.3 that all of our design
choices involve engineering trade-offs
between different available resources.

Reference Counting is the easiest technique to implement, but per-
forms poorly in both space and time: it requires an integer for each
object to record the reference count; it has difficulty with cycles; and
it takes time at each assignment (not each allocation). Suppose the
user writes an assignment statement such as the following:

x = y;

The compiler then needs to insert code such as the following: Beginning heap:

stack x y

obj1
 count=1

obj2
 count=1

After deleting obj1 because it’s count
went to zero:

stack x y

obj1
 count=0

obj2
 count=1

After assignment and count update
completed:

stack x y

obj1
 count=0

obj2
 count=2

// compiler generated code before user’s assignment

// decrement the reference count of whatever object is currently

// referred to by variable x (should check for null first)

x.refcount−−;

// collect the object referred to by x if its counter has gone

// down to zero

if (x.refcount == 0) { delete x; }

// user’s assignment

x = y;

// compiler generated code after user’s assignment

// increment reference counter of object referred to by x

// (which is now referred to by both x and y)

x.refcount++;

7.5 Mark & Sweep

See the Tiger §13 excerpt in
the ece351 notes repo.
See the Tiger §13 excerpt in
the ece351 notes repo.

• Start at root set: local + global variables.
• Mark all objects that are reachable from the root set.
• Sweep phase: add all non-reachable objects to free-list.
• Requires slow allocation (§7.9) because heap is never defrag-

mented.

130 ece351 course notes [december 12, 2018]

7.6 Semi-Space Copying Collection

See the Tiger §13 excerpt in
the ece351 notes repo.
See the Tiger §13 excerpt in
the ece351 notes repo.

• Divide the heap in two halves: green and purple.
• First allocate in the green half (using fast allocation §7.10)
• When green half fills up, copy live objects over to purple half.
• Now allocate in purple half (fast allocation)
• When purple half fills up, copy live objects back to green half.
• Repeat.
• Note: when copying, defragment the heap.

7.7 Generational Collection

See the Tiger §13 excerpt in
the ece351 notes repo.
See the Tiger §13 excerpt in
the ece351 notes repo.

• Could be considered an assymetrical kind of copying collection.
• New objects always allocated in nursery (fast allocation §7.10)
• When nursery fills up, copy live objects to old space.

Nursery collectsions are relatively frequent.
• When old space fills up, collect it with Mark+Sweep. Infrequent.
• Keep empirical observation: most objects (≥90%) are short-lived.

Therefore, few objects are ever promoted to old space.

7.8 Discussion

• There are always engineering trade-offs.
• Most modern industrial VMs use generational collection, because

it has the best performance (most of the time) and because the
engineering effort to implement it has economic justification.

• Reference counting with (slow) free-list based allocation is the
easiest to implement, but performs the worst.

• Overall performance of a memory management system depends
on both allocation and collection costs: these cannot be considered
in isolation. For example, there are many configu-

ration options for the user to tune the
Oracle Java VM’s memory management
strategies. See, for example, http://
www.cubrid.org/blog/dev-platform/
how-to-tune-java-garbage-collection/
(That is not required reading.)

• Different programs, and even different inputs to the same pro-
gram, might exercise the memory management system in different
ways, so there is no one strategy that is the best in all circum-
stances. Engineers need to do experiments to determine which
strategies perform the best in the most common circumstances.

http://www.cubrid.org/blog/dev-platform/how-to-tune-java-garbage-collection/
http://www.cubrid.org/blog/dev-platform/how-to-tune-java-garbage-collection/
http://www.cubrid.org/blog/dev-platform/how-to-tune-java-garbage-collection/

[chapter 7] storage management 131

7.9 Object Allocation with Free Lists

See the Tiger §13 excerpt in
the ece351 notes repo.
See the Tiger §13 excerpt in
the ece351 notes repo.

• Organize all free chunks of memory into a linked list (the free-list).
• When the program requests space for an object in the heap, do

linear search on the free-list until space of suitable size is found.
• When an object is collected, add its space to the free-list.
• Slow. Easy to implement.
• There are more sophisticated ways to manage the search rather

than a free-list. But some kind of search is necessary if the heap is
not periodically de-fragmented, and search will always be slower
than a bump allocator (§7.10).

7.10 Fast Object Allocation

See the Tiger §13 excerpt in
the ece351 notes repo.
See the Tiger §13 excerpt in
the ece351 notes repo.Any kind of copying collector enables faster object allocation by

defragmenting the heap. This kind of allocator is sometimes called a
bump allocator, because it just increments (bumps) a pointer: http://www.ibm.com/

developerworks/library/
j-jtp09275/void *malloc(int n) {

if (heapTop − heapStart < n)

doGarbageCollection();

void *wasStart = heapStart;

heapStart += n;

return wasStart;

}

http://www.ibm.com/developerworks/library/j-jtp09275/
http://www.ibm.com/developerworks/library/j-jtp09275/
http://www.ibm.com/developerworks/library/j-jtp09275/

132 ece351 course notes [december 12, 2018]

7.11 DieHard: Probabilistic Memory Safety for C

A memory-unsafe language is one in which programs can read and
write to arbitrary memory locations, like C. A memory-safe language
is one in which programs can read and write only objects, and only
in pre-defined ways (e.g., reading or writing to a field).

Memory-unsafe languages are required for certain operating sys-
tem and device driver kinds of programs: programs whose entire
point is to manipulate a machine.

Memory-safe languages, by contrast, are arguably better for pro-
grams whose purpose is to manipulate symbolic or numerical data
(i.e., most application programs). Memory-safe languages are bet-
ter for these tasks because they prevent entire classes of bugs that
can occur in memory-unsafe languages: buffer overflows, dangling
pointers, double deletes, reads of uninitialized data, etc..

Suppose we have a program written in C. This program has some
memory errors. We don’t want to debug it, and we don’t want to
rewrite it in a memory-safe language (which would remove these
errors). What can we do? DieHard.

DieHard: Probabilistic Memory Safety for Unsafe Languages

Emery D. Berger
Dept. of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003

emery@cs.umass.edu

Benjamin G. Zorn
Microsoft Research
One Microsoft Way

Redmond, WA 98052
zorn@microsoft.com

Abstract
Applications written in unsafe languages like C and C++ are vul-
nerable to memory errors such as buffer overflows, dangling point-
ers, and reads of uninitialized data. Such errors can lead to pro-
gram crashes, security vulnerabilities, and unpredictable behavior.
We present DieHard, a runtime system that tolerates these errors
while probabilistically maintaining soundness. DieHard uses ran-
domization and replication to achieve probabilistic memory safety
by approximating an infinite-sized heap. DieHard’s memory man-
ager randomizes the location of objects in a heap that is at least
twice as large as required. This algorithm prevents heap corruption
and provides a probabilistic guarantee of avoiding memory errors.
For additional safety, DieHard can operate in a replicated mode
where multiple replicas of the same application are run simulta-
neously. By initializing each replica with a different random seed
and requiring agreement on output, the replicated version of Die-
Hard increases the likelihood of correct execution because errors
are unlikely to have the same effect across all replicas. We present
analytical and experimental results that show DieHard’s resilience
to a wide range of memory errors, including a heap-based buffer
overflow in an actual application.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Dynamic storage management; D.2.0 [Software Engi-
neering]: Protection mechanisms; G.3 [Probability and Statis-
tics]: Probabilistic algorithms

General Terms Algorithms, Languages, Reliability

Keywords DieHard, probabilistic memory safety, randomization,
replication, dynamic memory allocation

1. Introduction
While the use of safe languages is growing, many software ap-
plications are still written in C and C++, two unsafe languages.
These languages let programmers maximize performance but are
error-prone. Memory management errors, which dominate recent
security vulnerabilities reported by CERT [39], are especially per-
nicious. These errors fall into the following categories:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’06 June 11–14, 2006, Ottawa, Ontario, Canada.
Copyright c� 2006 ACM 1-59593-320-4/06/0006. . . $5.00.

Dangling pointers: If the program mistakenly frees a live object,
the allocator may overwrite its contents with a new object or
heap metadata.

Buffer overflows: Out-of-bound writes can corrupt the contents of
live objects on the heap.

Heap metadata overwrites: If heap metadata is stored near heap
objects, an out-of-bound write can corrupt it.

Uninitialized reads: Reading values from newly-allocated or un-
allocated memory leads to undefined behavior.

Invalid frees: Passing illegal addresses to free can corrupt the
heap or lead to undefined behavior.

Double frees: Repeated calls to free of objects that have already
been freed cause freelist-based allocators to fail.

Tools like Purify [18] and Valgrind [28, 35] allow programmers to
pinpoint the exact location of these memory errors (at the cost of a
2-25X performance penalty), but only reveal those bugs found dur-
ing testing. Deployed programs thus remain vulnerable to crashes
or attack. Conservative garbage collectors can, at the cost of in-
creased runtime and additional memory [12, 20], disable calls to
free and eliminate three of the above errors (invalid frees, double
frees, and dangling pointers). Assuming source code is available, a
programmer can also compile the code with a safe C compiler that
inserts dynamic checks for the remaining errors, further increasing
running time [1, 3, 27, 41, 42]. As soon as an error is detected, the
inserted code aborts the program.

While this fail-stop approach is safe, aborting a computation is
often undesirable — users are rarely happy to see their programs
suddenly stop. Some systems instead sacrifice soundness in order
to prolong execution in the face of memory errors [30, 32]. For
example, failure-oblivious computing builds on a safe C compiler
but drops illegal writes and manufactures values for invalid reads.
Unfortunately, these systems provide no assurance to programmers
that their programs are executing correctly.

This paper makes the following contributions:

1. It introduces the notion of probabilistic memory safety, a
probabilistic guarantee of avoiding memory errors.

2. It presents DieHard, a runtime system that provides probabilis-
tic memory safety. We show analytically and empirically that
DieHard eliminates or avoids all of the memory errors described
above with high probability.

2. Overview
DieHard provides two modes of operation: a stand-alone mode
that replaces the default memory manager, and a replicated mode
that runs several replicas simultaneously. Both rely on a novel

[chapter 7] storage management 133

7.12 Memory Safety and Language Selection
Crafting: §1.6

We say that a programming language is memory safe if it permits definitions
reads and writes of memory only where objects have been defined.
We say that a programming language is memory unsafe if it permits
reads and writes of arbitrary locations of memory. For example, in
C we can write a program that asks the user for an integer, and then
writes data to that location in memory.

The most common unsafe languages are C and C++. Almost example safe and unsafe languages

all other popular languages are memory safe: Java, C#, Python,
Javascript, Ruby, Perl, Haskell, ML, Basic, Pascal, VisualBasic, Lisp,
etc. Having said that, almost all programs written in C/C++ are in-
tended to behave in a memory safe manner: that is, the programs are
not expected to write past the end of their arrays (buffer overflow), or
read uninitialized memory, etc. There are a wide variety of tools for
trying to catch these memory errors in C/C++ programs.

Memory safety usually incurs some runtime overhead to ensure safety vs. performance

that array operations are within bounds, that casts are legal, etc.—
and, of course, automatic garbage collection. The perceived runtime
cost of memory safety is often the crux of contention in language
selection.

There are five main reasons usually given for choosing a particular reasons for choosing a language

language for a project:

• what kinds of errors the language admits or prevents;
• the imagined runtime performance;
• the convenience of expressing the required computation;
• the computing environment (including available libraries);
• and the skills of the available programmers.

The last two factors are extrinsic to the language and so are not part
of our discussion here. On another day in this course we might be
concerned with the convenience of expression. Our focus here is on
the first two criteria: errors and performance.

There are very few programs that need to perform memory unsafe systems programs vs. application programs

operations: operating system kernels, device drivers, and garbage
collectors are three main kinds of what we might call systems pro-
grams. The vast majority of programs are applications that are ex-
pected to behave in a memory safe manner. If a program is intended use a memory safe language for applications

to behave in a memory-safe manner then, all other things being
equal, it is better to write it in a memory-safe language in order to When Java first came out it was 10–100x

slower than C. That is no longer true.guarantee that the program does not have memory errors.

134 ece351 course notes [december 12, 2018]

Sometimes the imagined runtime cost of memory safety is cited as 5 reasons why to use memory safe lan-
guages for application programminga reason to use a memory unsafe language for application program-

ming. I will give the following arguments against that position:

• Practical Economics: The major costs of producing software are test-
ing and maintenance. For example, Microsoft hires testers and
developers in equal measure. Maintenance is the most expensive
part of the software life cycle. Writing in a memory safe language
reduces these costs because it eliminates entire classes of bugs. In
Tony Hoare’s 1980 Turing Award acceptance speech1 he talked 1 C. A. R. Hoare. The emperor’s old

clothes. Communications of the ACM, 24

(2):75–83, February 1981. Acceptance
speech for 1980 Turing Award

about how he had written a compiler in the 1960’s that inserted
dynamic array bounds checks, and how even at that time his cus-
tomers felt the reduction in bugs was well worth the runtime cost.

• Theoretical Economics: Greenspun’s Tenth Rule states that ‘Any http://en.wikipedia.org/wiki/
Greenspun’s_tenth_rulesufficiently complicated C or Fortran program contains an ad hoc,

informally-specified, bug-ridden, slow implementation of half of
Common Lisp.’ For example, one of the students in the s2013 of-
fering of this course who has worked on Microsoft PowerPoint
reports that PowerPoint contains its own smart-pointer implemen-
tation. Division of labour has, arguably, been the basis of economic
advancement in the west for the last 250 years or so. On this gen-
eral economic theory, compiler engineers should work hard to
make memory safety less expensive, and application programmers
should use memory safe languages. Having application program-
mers attempt to build memory safety onto an unsafe language for
each project is economically inefficient.

• Performance will be parallel. Several years ago we hit the upper
bound of single-core performance. Performance gains of the future
will come from multi-core parallelism, just as the main perfor-
mance gains of the 90’s came from instruction-level parallelism
within a single core. Application programmers should focus their
efforts on high-level parallelization (and use languages and li-
braries that reduce the probability of parallelization errors).

• Memory hierarchy is the bottleneck. In modern computers the bot-
tleneck is the memory hierarchy: the cpu sits around idle waiting
for data to come in from main memory. The runtime overhead of
memory safety typically does not antagonize this situation: i.e.,
we can have it for free. For example, the Varnish http accelerator
program used by Facebook and other large websites makes ex-
tensive use of assertions: approximately 10% of the non-comment
source lines are protected by an assertion. Varnish’s author Poul-
Henning Kamp (a longtime FreeBSD contributor) recently argued2 2 Poul-Henning Kamp. My compiler

does not understand me. Communica-
tions of the ACM, 55(7):51–53, 2012

that these runtime checks incur almost no runtime performance

http://en.wikipedia.org/wiki/Greenspun's_tenth_rule
http://en.wikipedia.org/wiki/Greenspun's_tenth_rule

[chapter 7] storage management 135

penalty because (a) modern compilers are good at statically remov-
ing these runtime checks, and (b) the cpu is sitting idle much of
the time waiting for data from main memory, so it might as well
perform some safety checks on the data it already has in registers.

• Performance is empirical. Until you have a working system to pro- Take ece459 Programming for Perfor-
mance if you really care about perfor-
mance.

file, you don’t know where the real performance problems are.
The assumption that the real problems are caused by the overhead
of language features is likely wrong. Disk i/o, network latency,
and algorithmic deficiencies all cause much larger overhead.

One possible approach is to write a prototype in a memory safe
language to think through all of the conceptual issues, and then
write a production version in a memory unsafe language. Gerwin
Klein’s team did this for their l4 microkernel operating system
and found that it reduced their development costs as compared to
other teams developing l4 microkernels.3

3 Gerwin Klein, Kevin Elphinstone,
Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elka-
duwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, Thomas Sewell, Har-
vey Tuch, and Simon Winwood. seL4:
Formal verification of an OS kernel. In
Proceedings of the 22nd ACM Symposium
on Operating Systems Principles (SOSP),
Big Sky, MT, USA, October 2009

Is there ever a time when performance concerns make it worth- sat is an exception

while to forego memory safety? Maybe, in the following cases:

• The program does not require dynamic memory allocation (i.e.,
all allocation is done on the stack). A more restrictive form of this
rule is that the program does not require objects, just primitive int

and float values, and perhaps arrays.

• The program is batch-mode (i.e., not interactive) and short-running.
If the program simply reads an input, computes an output, and
terminates, then garbage collection might not be necessary. Any
interactive program, whether via a gui or via the web, will likely
require dynamic memory allocation and garbage collection.

• The program implements a single, well-understood algorithm.

• The program does not accept inputs from unknown adversaries
(i.e., does not accept inputs on the web). Lack of memory safety
creates all kinds of security vulnerabilities, such as buffer overflow,
so if the program is running in a dangerous environment then it
should be written in a memory safe language.

A sat solver is an example of a non-systems program that can rea-
sonably be written in a memory unsafe language: it implements a
well-known algorithm4; it operates in batch mode; it does not accept 4 Martin Davis and Hilary Putnam. A

computing procedure for quantification
theory. Journal of the ACM, 7(3):201–
215, 1960; and Martin Davis, George
Logemann, and Donald Loveland. A
machine program for theorem proving.
Communications of the ACM, 5(7):394–
397, 1962

inputs from adversarial users; it has restricted memory usage; it is
typically small enough to be well understood by a single person (less
than 5,000 lines of code); and there are well-defined ways to mea-
sure performance (an annual international competition with multiple
categories). Data compression programs are a similar example.

Appendix B
Bibliography

[1] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Raja-
mani. SLAM and Static Driver Verifier: Technology Transfer of
Formal Methods inside Microsoft. In Eerke A. Boiten, John Der-
rick, and Graeme Smith, editors, Proceedings of the 4th Integrated
Formal Methods (IFM) Conference, pages 1–20, Canterbury, UK,
April 2004.

[2] Martin Davis and Hilary Putnam. A computing procedure for
quantification theory. Journal of the ACM, 7(3):201–215, 1960.

[3] Martin Davis, George Logemann, and Donald Loveland. A
machine program for theorem proving. Communications of the
ACM, 5(7):394–397, 1962.

[4] Edsgar W. Dijkstra. The humble programmer. Communications of
the ACM, 15(10):859–866, October 1972. Turing Award Speech.

[5] John Harrison. Formal verification at Intel. In Proceedings of the
18th IEEE Symposium on Logic in Computer Science (LICS), Ottawa,
Ontario, Canada, 2003. Invited talk http://www.cl.cam.ac.uk/
~jrh13/slides/lics-22jun03.pdf.

[6] C. A. R. Hoare. The emperor’s old clothes. Communications of the
ACM, 24(2):75–83, February 1981. Acceptance speech for 1980

Turing Award.

[7] Poul-Henning Kamp. My compiler does not understand me.
Communications of the ACM, 55(7):51–53, 2012.

[8] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andron-
ick, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai En-
gelhardt, Rafal Kolanski, Michael Norrish, Thomas Sewell, Har-
vey Tuch, and Simon Winwood. seL4: Formal verification of
an OS kernel. In Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP), Big Sky, MT, USA, October
2009.

http://www.cl.cam.ac.uk/~jrh13/slides/lics-22jun03.pdf
http://www.cl.cam.ac.uk/~jrh13/slides/lics-22jun03.pdf

138 ece351 course notes [december 12, 2018]

[9] R. A. Mollin. Prime-producing quadratics. The American Mathe-
matical Monthly, 104(6):529–544, 1997.

[10] Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu,
Marc Brooker, and Michael Deardeuff. How Amazon web
services uses formal methods. Communications of the ACM, 58(4):
66–73, 2015.

Appendix J
Jokes on Engineering Practice vs. Theory

This section contains a collection of stories and jokes to help you
appreciate the relationship between theory and engineering practice.
Generally speaking, engineers are concerned with the finite, whereas
theoreticians are concerned with the infinite. Engineers build things
in the material world, which is finite.

J.1 A theoreticians’s salary

A theoretician is someone who does not care about their salary up to a con-
stant factor.

A theoretician would focus on the asymptotic behaviour (i.e., big-
O) rather than the constant factors of a data structure or algorithm.
When the inputs get large enough, the asymptotic behaviour is all
that matters. But when the inputs are small, the constant factors
assume greater importance.

For example, suppose the theoretician’s salary grows quadratically
(O(n2)) in the number of years they have been working, whereas the
practitioner’s salary grows merely linearly (O(n)). The theoretician
might think that they have a higher salary. The practitioner would re-
serve judgment until they knew the constant factors. For example, if
the practitioner’s salary was $10,000 ×n, that would be better than a
theoretician’s salary of $1 ×n2 within the range of a human lifetime,
because of the constant factors.

This same kind of analysis matters when selecting data structures.
For example, a hash table might have O(1) asymptotic lookup, but
with large constant factors in both time and space. In practice, if
the set is expected to contain only two or three elements, it might
actually be faster and more space-efficient to use a list and do linear
search. Linear search is O(n), which is clearly worse than O(1) in
theory — and in practice for large inputs — but the constant factors
matter when the inputs are small.

140 ece351 course notes [december 12, 2018]

J.2 British vs. French Engineers

Q: What did the French engineer say to the British engineer?
A: Yes, well, it works in practice — but does it work in theory?
There are a few things happening in this joke. Culturally, the

British approach tends to focus more on practice and less on theory,
whereas the Continental European (French, German, etc.) approach
tends to focus more on theory and less on practice.

The more typical line is yes, it works in theory — but does it work in
practice? In normal engineering design, we first construct a theoretical
model of a design, and only after analyzing that theoretical model do
we build and test in the material world.

However, historians of science and engineering have demonstrated
that normal engineering design does not illustrate the entire rela-
tionship between theory and practice: sometimes practice precedes,
rather than follows, theory. A major case study here is thermody-
namics and the steam engine. When Newcomen and Watt invented
the steam engine they did not have the theory of thermodynamics.

The steam engine was invented by
Newcomen. Newcomen’s engine had
only a single chamber that was heated
and cooled. Watt’s engine had separate
heating and cooling chambers, and so
was much more efficient and powerful.

Rather, the theory of thermodynamics was invented to explain and
understand their engines.

This joke reminds us that neither theory nor practice is superior to
the other: we must understand both, and strive for them to work in
harmony to achieve the best results.

J.3 Engineer’s Induction

In mathematics, an inductive proof involves a base case and an in-
ductive case. The inductive case shows that if one case is true, then
the next case after it is also true. The base case is concrete (just for
one particular input), whereas the inductive case is abstract (covering
many inputs).

The term engineer’s induction is a derisive term for the practice
of just trying a few concrete cases in an effort to establish a general
truth. For example, in 1772 Euler noticed that the following polyno- Actually, Euler noticed the polynomial

x2 − x + 41. The polynomial with
the positive x term is actually due
to Legendre in 1798, but nowadays
everyone refers to it as Euler’s.

R. A. Mollin. Prime-producing
quadratics. The American Mathematical
Monthly, 104(6):529–544, 1997

mial seems to always compute primes:

P(x) = x2 + x + 41

Does P(x) always compute a prime, for any input x? Let’s use engi-
neer’s induction:

[appendix j] jokes on engineering practice vs. theory 141

x P(x) Prime?
0 41 X
1 43 X
2 47 X
3 53 X
4 61 X
5 71 X

So, by engineer’s induction we conclude that the polynomial P(x)
always produces a prime number.

But is our conclusion really sound? No. Can you guess what input
does not produce a prime? Good engineering intuition suggests we
try 41, since it is a named constant in the formula. And indeed, that
does not produce a prime, which we can see because 41 would be a
common factor:

P(41) = 412 + 41 + 41 = 41× (41 + 1 + 1)

Engineer’s induction is a quick-and-dirty technique that can be use-
ful as a first-order approximation, but it should not be considered as
proof.

All of software testing is engineer’s induction. In testing all we do is In the famous words of Edsgar Dijkstra,
program testing can be a very effective
way to show the presence of bugs, but is
hopelessly inadequate for showing their
absence.

Edsgar W. Dijkstra. The humble
programmer. Communications of the
ACM, 15(10):859–866, October 1972.
Turing Award Speech

try some specific inputs. We hope that other inputs, that we have not
tested, will also produce the desired results, but we have no reason to
believe that they will other than engineer’s induction. In this course
you will learn some more powerful ways to think about software
testing (which is very important for compilers), but they are still
ultimately engineer’s induction.

In your future careers you will probably use more powerful tech-
niques for establishing program correctness called formal methods.
Formal methods involves using mechanized logic tools to give higher
confidence that software (or algorithms) are correct.

The computer hardware engineering community has been using
these in practice for over twenty years, since the 1994, when Intel1 1 John Harrison. Formal verification

at Intel. In Proceedings of the 18th IEEE
Symposium on Logic in Computer Science
(LICS), Ottawa, Ontario, Canada, 2003.
Invited talk http://www.cl.cam.ac.
uk/~jrh13/slides/lics-22jun03.pdf

had to recall Pentium chips with faulty floating point units. That
recall cost them about $500M. It is less expensive to invest the effort
to use formal methods up front to verify a hardware design than to
recall a chip.

The computer software industry, in certain focused areas, has been
using formal methods since around 2005 when Microsoft2 required 2 Thomas Ball, Byron Cook, Vladimir

Levin, and Sriram K. Rajamani. SLAM
and Static Driver Verifier: Technology
Transfer of Formal Methods inside
Microsoft. In Eerke A. Boiten, John
Derrick, and Graeme Smith, editors,
Proceedings of the 4th Integrated Formal
Methods (IFM) Conference, pages 1–20,
Canterbury, UK, April 2004

device drivers to pass their Static Driver Verifier before being in-
cluded with Windows. More recently, Amazon Web Services3 has

3 Chris Newcombe, Tim Rath, Fan
Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff. How
Amazon web services uses formal
methods. Communications of the ACM,
58(4):66–73, 2015

been using formal methods to verify their distributed algorithms.
Concurrent software is very difficult to test, because not only does
one need to establish correctness in the single-threaded case, but also

http://www.cl.cam.ac.uk/~jrh13/slides/lics-22jun03.pdf
http://www.cl.cam.ac.uk/~jrh13/slides/lics-22jun03.pdf

142 ece351 course notes [december 12, 2018]

when multiple threads interleave in different ways.

J.4 Close enough for practical purposes
Zeno’s Paradox

