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Overview

Compiler Concepts: call stack, heap
Programming Concepts: version control,

push, pull, merge, SSH keys, IDE,
debugger, objects, pointers

0.1 How the Labs Fit Together

The overall structure of our vhdl synthesizer and simulator is de-
picted in Figure 1.

W

SVG

 vizW

F  simplifier

dot

technology mapper

.java

 simulator generator

PNG

 Graphviz

.class

 javac

VHDL

 combinational synthesis

desugaring 
 elaboration 

 process splitting

Figure 1: Overview of ece351 Labs.
Nodes represent file types (e.g.,

vhdl). All of these file types, with the
exception of .class and png files, are
text files.

Edges represent translators between
different file types. Solid edges repre-
sent translators that we will implement
in ece351. Dotted edges represent
translators provided by third-parties
such as Sun/Oracle (javac) or AT&T
Research (dot).

The three-part edge between .class
and W nodes is intended to indicate
that the .class file we generate will read
a waveform (W) file as input and write
a waveform (W) file as output.

Labels on edges describe the transla-
tion(s) performed.

Numbers on edges indicate the
order in which we will implement those
translators in ece351. For example, the
first translator that we will implement
will transform waveform files to svg

files (svg is an xml-based graphics file
format).

The general direction of our work
in ece351 will be from the bottom of
the figure towards the top. We will start
with file types that have the simplest
grammars and work towards file types
with more complicated grammars.
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Update the lab numbering
for assembler generation
Update the lab numbering
for assembler generation

1. W recursive descent

2. W to SVG 3. F recursive descent 5. W parboiled

4. F simplifier 6. F parboiled

7. F tech. mapper 8. F simulator 9. V parboiled

10. V elaborator 11. V splitter

Figure 2: Lab dependencies. A solid
line indicates that the code is needed
to test the future lab. For example, you
need to have a working implementation
of lab1 in order to test lab2.

A dotted line indicates that ideas
from one lab feeds into the next lab. For
example, you learn the grammar ofW
in lab1 and then use that idea again
in lab5. Not all of the dotted lines are
shown, in order to simplify the graph.

The shaded nodes indicate labs that
you need to focus on because they are
used by future labs. If you must skip a
lab, skip something like 2, 5, 8, 10, or
11 that are not used as much by future
labs.
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0.2 Learning Progressions

There are a variety of undergraduate compiler projects. Almost all of
them involve compiling a subset of some imperative programming
language to assembly. In the past Pascal was the popular language to
compile, whereas these days Java is.

The ece351 labs are different. On a superficial level, the differ-
ence is that these labs use a subset of vhdl as the input language,
and produce circuit gate diagrams and simulations as outputs. The
deeper difference is that our project is designed around two parallel
learning progressionsrather than around the logical structure of a com- The idea of a learning progression

has been used in hockey for several
decades. It is recently attracting atten-
tion in educational circles. For example,
suppose that the goal of the practice
is to have the players skate quickly
around the circles with the puck. To
progress to that goal the team might
start with skating around circles, then
skating in a straight line with the puck,
then skating around the circles slowly
with the puck, and finally skating
around the circles quickly with the
puck. The skills are first practiced in
isolation and at slower speeds, and then
finally all together at high speed.

piler. This project comprises both a programming skills progression and
a compiler concepts progression.

The key technical decision that enables these progressions is to
restrict our subset of vhdl to combinational circuits: no loops, no
timing, etc.. From this decision flows the design of a simple interme-
diate language, F , for boolean formulas, and the design of a simple
auxiliary language,W , for boolean waveforms. The project pro-
gresses from the simplest language (W) to the most complex (vhdl),
performing parsing, transformation, and translation on each of the
three languages. Repetition with increasing complexity (hopefully)
leads to mastery.
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# Description Compiler Concepts Programming Concepts

0 Prelab call stack, heap version control, push, pull, merge,
SSH keys, IDE, debugger, objects,
pointers

1 ParsingW by recur-
sive descent

regular languages, regular expres-
sions, ebnf, recognizers, parsing,
recursive descent, lexing, pretty-
printing, abstract syntax tree (ast)

classes, objects, variables, aliasing,
immutability, test-driven develop-
ment

2 TranslatingW to svg

(visualization)
trees, transformations, xml, svg object contract, object equality, math-

ematical equivalence classes, dom vs.
sax parser styles, call-backs, iterator
design pattern

3 Parsing F by recur-
sive descent

context-free grammars, ll(1) gram-
mars, predict sets, parse trees, prece-
dence, associativity, commutativity,
program equivalence

inheritance, polymorphism, dynamic
dispatch, type tests, casting, memory
safety, composite design pattern,
template design pattern, singleton
design pattern, recursive functions,
recursive structures, higher-order
functions

4 Simplifying F pro-
grams
(optimization)

intermediate languages, identity
element, absorbing element, equiv-
alence of logical formulas, term
rewriting, termination, confluence,
convergence

interpreter design pattern, template
design pattern, representation invari-
ants

5 ParsingW with a
parser generator

parser generators, Parsing Expres-
sion Grammars (peg), push-down
automata

domain specific languages (dsl):
internal vs. external, debugging
generated code, stacks

6 Parsing F with a
parser generator

parser generators, Parsing Expres-
sion Grammars (peg), push-down
automata

domain specific languages (dsl):
internal vs. external, debugging
generated code, stacks

7 Translating F to
Graphviz (technol-
ogy mapping)

common subexpression elimination hash structures, iteration order,
object identity, non-determinism,
Visitor design pattern, tree traversals:
preorder, postorder, inorder

8 Translating F to Java
(circuit simulation)

program generation, name capture

9 Parsing vhdl with a
parser generator

10 vhdl elaboration
11 vhdl process split-

ting and translation
to F (combinational
synthesis)

desugaring, function inlining

B Translating F to
assembly

instruction selection, register alloca-
tion

assembly, linking

∗ ‘DP’ stands for ‘design pattern’; ‘B’ stands for bonus lab
Figure 3: Descriptions of individual
labs with the compiler and program-
ming concepts introduced in each
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0.3 How this project compares to CS241, the text book, etc.

ece351 cs241 Tiger cs444 mit 6.035

Language(s) vhdl, F ,W Java Java Java Java
Compiler Phases

Parsing
√ √ √ √ √

Symbol tables
√ √ √ √

Type checking ?
√ √ √

Dataflow analysis ◦ ?
√

Optimization
√

◦ ?
√

Translation
√ √ √ √ √

Assembly ◦
√ √ √ √

Pedagogy
Skills Progression

√

Concept Progression
√

Background
√

Tests
√

Workload
√ √ √

×2 ×2



22 ece351 lab manual [april 5, 2018]

0.4 Student work load
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Figure 4: Student hours spent on labs
in winter 2013. The target is five hours
per lab. About half the students hit
this target on most labs, as indicated
by the bars in the middle of the boxes.
On most labs, 75% of the students
completed the lab within eight hours,
as indicated by the top of the boxes.

Some students took much longer
than eight hours. If you are one of
those students, please consider taking
advantage of our course collaboration
policy. The point of the collaboration
policy is for you to learn more in less
time.

The exceptional labs that took more
time were 4 and 9. This term we will
be increasing the ta resources for lab
4, and also changing the way we teach
lab 9, in an effort to get these numbers
down.
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Figure 5: Student hours spent on labs in
summer 2013. (Partial data to lab 9.)
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0.5 How this course compares to MIT 6.035

mit’s (only) undergraduate compilers course is 6.035. It differs from
ece351 in a two important ways:

a. 6.035 is rated at 12 hours per week for 14 weeks, whereas ece351

is rated at 10 hours per week for 12 weeks: a 48 hour nominal
difference. Moreover, 6.035 makes no effort to keep the workload
near the course rating, whereas ece351 actively tracks student
hours and over half the students get the work done in the rated
time. So the actual difference is much larger than the nominal.

6.035 also comes in an 18 hour per week variant.

b. 6.035 is an elective course, whereas ece351 is a required course.
Elective courses only get students who have the interest and abil-
ity; required courses get everyone. On the flipside, not every
graduate of mit eecs will know compilers: some will be totally
ignorant. At uw we guarantee a minimum level of quality in our
graduates (this approach is also required for ceab accreditation).

0.6 Where do I learn more?

If you are interested in learning more about compilers at uw your
next step is cs444. If you take ece351 and cs444 then you will know
more than if you took mit 6.035. cs462 covers the theoretical end
of formal languages and parsing, although this knowledge won’t
greatly improve your practical skills. In the graduate curriculum
cs644 and cs744 are offered on a semi-regular basis. There are also a
number of graduate courses in both ece and cs on program analysis
that are offered irregularly.
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0.7 Full-Adder Circuit Example

entity full_adder is port (

A, B, Cin: in bit;

S, Cout: out bit

);

end full_adder;

architecture full_adder_arch of full_adder is
begin

S <= (A xor B) xor Cin;

Cout <= ((A xor B) and Cin) or (A and B);

end full_adder_arch;

Figure 6: Source code for full adder
circuit (vhdl)

A: 0 1 0 1 0 1 0 1;

B: 0 0 1 1 0 0 1 1;

Cin: 0 0 0 0 1 1 1 1;

Figure 7: Input waveform for full adder
(W)

S <= ((not (((not A) and B) or ((not B) and A))) and Cin) or
((((not A) and B) or ((not B) and A)) and (not Cin));

Cout <= ((((not A) and B) or ((not B) and A)) and Cin)

or (A and B);

Figure 8: Boolean formulas for full
adder (F generated from source code in
Figure 6)

S

Cout

A

B

Cin

Figure 9: Gates for full adder (gener-
ated from formulas in Figure 8)
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A

B

Cin

Cout

S

Figure 10: Input and output waveforms
for full adder (generated from formulas
in Figure 8 and input waveform in
Figure 7)
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0.8 Pre-Lab: Computing Environment

0.8.1 Our Environment

Follow the instructions at http://ecgit.uwaterloo.ca/setup/ and
ensure you can authenticate properly. There are instructions for in-
stalling git (the version control software we’re using) and a link to
git references as well. Note that git is already installed in the lab
computers.

0.8.2 Your SSH key should have a password!

Sometimes students are tempted to make an ssh key without a pass-
word to avoid the annoyance of entering the password every time
the key is used. The proper way to manage that annoyance is to use
an ssh agent. The agent is a background software process that you
authorize to use your key. Every working session you want to first
launch the agent and then authorize it to use your key:

� eval ‘ssh-agent‘ (use ssh-agent.exe on Windows)

Those are backticks around ssh-agent.
The backtick is usually in the top left
corner of the keyboard with the tilde
(˜). You can add this to your login script
(e.g., .bashrc), so then you only have to
manually do the second step (ssh-add)
each working session.

� ssh-add

0.8.3 Getting This Manual
TERM is the term number, which you
can find at http://www.adm.uwaterloo.
ca/infocour/CIR/SA/under.html. It is
four digits. The first digit is always 1.
The second two digits are the year. The
last digit is the month the term starts
on. So 1151 indicates winter term of
2015 (starts in January, the first month).

This manual is continuously improved based on student feedback.
Always use the latest version, which is distributed via Git:

� mkdir ~/git

� cd ~/git

� git clone git@ecgit.uwaterloo.ca:ece351/TERM/ece351-notes

� cd ece351-notes

� ls

0.8.4 Getting Your Code

All of the code and materials are hosted on ecgit.uwaterloo.ca.
Follow these steps to set up your repository.

� mkdir ~/git

� cd ~/git

� git clone --recursive git@ecgit.uwaterloo.ca:ece351/TERM/USERNAME/labs ece351-labs

replace USERNAME with your username

� cd ece351-labs

� git remote add skeleton git@ecgit.uwaterloo.ca:ece351/TERM/skeleton

http://ecgit.uwaterloo.ca/setup/
http://www.adm.uwaterloo.ca/infocour/CIR/SA/under.html
http://www.adm.uwaterloo.ca/infocour/CIR/SA/under.html
ecgit.uwaterloo.ca
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0.8.5 Updating Your Repository

If there are updates, assuming you’re back on the master branch,
type the following command to merge in the changes:

� cd ~/git/ece351-labs

� git pull

� git pull skeleton master

� git submodule update

If there are any conflicts type git status to check which files you
need to modify. Modify the file(s) and keep whatever changes you
want. Afterwards commit your conflict resolution for the merge.
Clean merges will create a commit for you.

0.8.6 Committing Changes
Commit after every logical work unit.

When you have changes you want to add to the repository (they
should be visible when you type git status) you need to commit
them. If status shows files that are modified you can do git commit -am "Descriptive message here"

to add them to your repository. This should be the type of commit
you use most of the time during the labs.

0.8.7 Uploading Your Repository
Push at the end of every work session.

When you want to upload your commits to ecegit simply type the
following:

� git push

0.8.8 Picturing Git

My Computer

ecegit server

Git Working Copy

Local Repo

commit

Eclipse Workspace

Student Repo
push

pull

Skeleton Repo pull skeleton master

Figure 11: Relationship between local
repository, student server repository,
and skeleton repository
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0.8.9 Eclipse on your computer

Eclipse is already installed on the lab computers. These instructions Q:\eng\ece\util\eclipse.bat

are for installing it on your computer, if you choose to do so. You do not have to use Eclipse. You are
welcome to use any editor/IDE that
you are capable of configuring yourself.
We provide support for Eclipse.

� Download Eclipse JDT from http://www.eclipse.org/

� Launch Eclipse

� Click File then Import or pres Alt-f then i

� Open the General folder

� Select Existing Projects into Workspace

� Click Next

� Set Select root directory: ~/git/ece351-labs (or wherever your
repository is

� Make sure ece351 is checked under Projects

� Make sure Copy projects into workspace is unchecked

� Click Finish

0.8.10 Configuring Eclipse

JUnit Launcher to enable assertions:

� Go to Window / Preferences / Java / JUnit
� Check Add -ea to VM arguments for new launch configurations
� Click Apply and close the window

Switch package presentation mode to hierarchical:

� Click the downwards pointing triangle icon in the Package Ex-
plorer

� Select Package Presentation / Heirarchical on the menu

0.8.11 Standard Java Data Structures
To open a type in Type Hierarchy view
select Open Type in Hierarchy from the
Navigate menu, or press Shift+Ctrl+H,
and then key in the name of the type.

Open java.util.List in Eclipse’s Type Hierarchy View. What are the
subclasses of List in the java.util package? What is the difference
between them?

Open java.util.Set in Eclipse’s Type Hierarchy View. What are the
subclasses of Set in the java.util package? What are the differences
between them?

Open java.util.Map in Eclipse’s Type Hierarchy View. What are the
subclasses of Map in the java.util package? What are the differences
between them?

Q:\eng\ece\util\eclipse.bat
http://www.eclipse.org/
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0.8.12 Pre-Lab Exercise

We created an update for you to merge into yours, follow the above
instructions to get it. Afterwards there should be meta directories in
your repository. Edit meta/hours.txt with how many hours it took
for lab0.1 Here is a checklist:

1 lab0 is this prelab exercise, including
any time you spend installing software
on your own computer.

Common Problem 1: JDK vs. JRE test
fails. In order to fix this, do the fol-
lowing. Click Window and go to
Preferences. In the tree view select Java,
then Installed JREs and click Add. Hit
Next (Standard VM should be selected
already), then Directory, navigate to
C:\Program Files\Java\jdk, or some-
thing similar, and hit Finish. Finally,
check the jdk in the Installed JREs pane
and click OK.
Common Problem 2: testJUnitConfigu-
ration fails, but you have followed the
steps above in §0.8.10. Probably you
tried to run TestPrelab before following
the steps from §0.8.10. The steps from
§0.8.10 only adds ‘−ea’ to new run con-
figurations; it does not change existing
run configurations. You now need to
change the TestPrelab run configuration
individually so that it includes ‘−ea’ in
the VM arguments.

Common Problem 3: Lots of compiler
errors. Ensure that Eclipse is configured
to use compiler/language level 1.7
or greater — and that the runtime
JDK/JRE is set to 1.7 or greater.

� Get updates from the skeleton
� Merge updates into your master branch
� Run TestPrelabConfig and TestPrelabExceptions
� Run build.xml (this is the marking script)
� Right-click on a single test to run it individually
� Familiarize yourself with the Eclipse debugger
� Familiarize yourself with PythonTutor.com

� Edit meta/hours.txt to specify your time spent on getting set up
� Edit meta/collaboration.txt to indicate that for lab0 you were

mentored by one of the course staff (this is just an exercise to
check that you know who the staff are and that you know how
to edit the collaboration.txt file properly).

� Upload (commit+push) your changes

0.9 Checklist for Every Lab

Before you start working on the lab:

� cd ~/git/ece351-labs

� git checkout master

� git pull

� git pull skeleton master

� git submodule update

� manually resolve any conflicts

During/After every working session:

� Run tests in Eclipse
� Run tests via build.xml
� git commit -am ’description of work you did since last commit’

� git push

Before the deadline:

� Update meta/collaboration.txt

� Update meta/hours.txt

� git add meta

� git commit -m ’updated metadata for labX’

� git push

PythonTutor.com
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0.10 How to do these labs

The lab manual will tell you what files you need to edit, what li-
braries you should use, and what tests to run. The lab manual will
also explain what you need to do at each point in the code, and the
background concepts you need to understand the lab. Most of the
dagger (†) sections in the lab manual are to explain these background
concepts. Every place in the skeleton code that you need to edit is
marked by both a Todo351Exception and a TODO marker. We will dis-
cuss the next week’s lab in class every Friday.

Despite this clear and explicit instruction, some students have dif-
ficulty getting started on these labs. Why? What is missing from the
instructions described above? The lab manual doesn’t tell you the order
in which you should edit the files. There is an important reason for this:
execution order is the wrong way to think about developing object-
oriented software (most of the time). The right way to think about
object-oriented software is to focus on developing cohesive and ex-
tendible modules (classes). In this way object-oriented programming

In ece250 you did object-oriented
programming in the small. That is, you
defined structures that spanned one
or two classes and operations on those
structures that spanned one or two
methods. The programs you worked
on were perhaps several hundred lines
long.

In ece351 you will work on a code
base that is over 8,000 lines of code, of
which you will write about 1000 lines,
at an average rate of about 100 lines per
week. The structures we will work with
are defined across dozens of classes,
and the operations on those structures
are similarly defined across dozens of
methods. This is the first time in the
ece curriculum that you are exposed to
programming in the large. At this scale,
modularity and code structure really
matter.

By the standards of modern industrial
software development, 8,000+ lines is
just approaching medium sized. The
code structuring ideas you will learn
in these labs can take you up to maybe
100,000 lines: beyond that you will need
new ideas and modularity mechanisms.

(in the large) is mentally quite different from procedural program-
ming (in the small). In procedural programming (in the small) one
thinks primarily about the order in which the steps are performed.

Now don’t misunderstand this to mean that execution order
doesn’t matter: it does. It’s just that execution order is generally a
separate design concern from modularity and extensibility. The best
way to understand the execution order of a large object-oriented pro-
gram is to run it and observe it in the debugger or via some other
tracing mechanism (e.g., printf).

If you want to figure out what code you should edit first, run the
test harness and see where an exception is thrown. Fix that. Then run
again, get another exception, etc.. The ‘fix’ step might be quick and
easy, or it might require reading several pages of the lab manual to
understand what needs to be done at that particular point. Remem-
ber, the lab manual describes everything that needs to be done and
where it needs to be done, it just doesn’t describe the order in which
you should do it. Aligning your editing order with the program exe-
cution order is one way to guide your work that will help you build
an understanding of the code.

Thinking on your own to develop an understanding of the skele-
ton code is an important part of these labs. I promise you that it takes
less time and effort to study 8,000+ lines of code than to write it from
scratch.
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0.11 Metadata

Your workspace has a directory named meta that contains the follow-
ing three files in which you can describe a few things about how your
work on the lab went.

collaboration.txt To record your collaborators. Each line is a triple of You must edit this file for every lab,
even if all of your collaborations were
just conversation.

lab number, collaboration role, and userid. Legal values for collab-
oration roles are: converser, partner, mentor, protege. The role field
describes the role of the other person, so lab2 mentor jsmith says that
J Smith was your mentor for lab2. Similarly, lab3 protege jsmith says
that J Smith was your protégé for lab3 (i.e., you were his mentor).
Both parties are required to report collaborations. If you collab-
orated with more than one person on a lab then you should put
multiple lines into this file for that lab: one line for each collabora-
tor on each lab.

hours.txt Estimate of the hours you worked on each lab. This file will These data will be used solely for
the staff to assess the difficulty of the
labs. This assessment will be made in
aggregate, and not on an individual
basis. These data will not be used to
assess your grade. However, we will
not mark your lab until you report an
estimate of your hours.

have a line for each lab like so: lab1 5 (indicating five hours spent
on lab 1). For pre-lab / computing environment time, use lab0.
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0.12 I think I found a bug in the skeleton code

You are welcome to do what you like with the skeleton code. Our
recommendation if you want to make a change is the following:

a. Report the change you want to make (in the forum, or to a staff
member). Preferably by generating a patch.

b. We tell you that the change is misguided and you really want to
do something else.

c. We say thanks and we patch the skeleton code with the change so
everyone can use it. Potentially you earn bonus marks for partici-
pation.

If you make the change yourself without reporting it then you
lose out on class participation points, and if someone else reports the
change and we go to apply a patch the patch will fail on your code.
This might or might not end up being a problem for you.

0.13 I want to change the skeleton code for my own usage

You may change the skeleton code for your own usage. Perhaps
you have a better idea of how to write something. If you make such
changes, be careful to not create more problems than you solve. Some
things to look out for include:

• Breaking the JUnit test harnesses.

• Breaking some other code that depends on the code you are
changing.

• Messing up one of the design patterns that are an explicit part of
what you are supposed to be learning.

• Changing something from immutable to mutable because you
do not want to learn to work with immutable data. First, this is
depriving yourself of one of the important lessons of the labs.
Second, you will likely be introducing some bugs that will be very
difficult to fix later. Immutable data is a good engineering practice
that helps you avoid many classes of difficult to diagnose and fix
bugs.

Algorithmic changes are usually safe, because the algorithmic parts
of this code are usually encapsulated.
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0.14 Object-Oriented Programming†

You will need to understand object-oriented programming,2 includ- 2 B. Eckel. Thinking in Java. Prentice-
Hall, 2002. http://www.mindview.net/

Books/TIJ/
ing classes, objects, methods, fields, local variables, inheritance /
subclassing / subtyping, polymorphism / dynamic dispatch, and
method overloading. You will also need to understand some design
patterns,3 such as iterator, composite, and visitor. We will make some 3 E. Gamma, R. Helm, R. Johnson, and

J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1995

effort to cover these things, but they are in some sense really back-
ground material for this course that you are expected to know.

class B {

String x;

String foo() {

String y = x + "_";

return y;

}

}

class D extends B {

String foo() { return x; }

}

• B is a base class or super-class
• D is a derived class or sub-class
• D extends/derives/subclasses B

• x is a field or instance variable
• y is a local variable
• foo is a method

(a virtual method in C++ terms)
• the definition of foo in D over-

rides the definition of foo in B

Figure 12: Basic terminology of oop

0.14.1 Visualizing Objects and Pointers

It is absolutely vital that you understand objects and pointers, both
for your own programming in the labs for this course and elsewhere,
and to understand the subject material of this course. A great way to
solidify these concepts is through an appropriate visualization sys-
tem such as Jeliot (for Java) and PythonTutor.com (for Python). The http://www.cs.joensuu.fi/jeliot/

PythonTutor.comfundamental concepts of objects and pointers are the same regardless
of language: Java, Python, C#, C++, etc. You will notice that Jeliot and
PythonTutor.com use very similar visualizations.

There is also a nice set of ‘learning objects’ (lessons) for learning http://cnx.org/content/col10915/latest/

Java with the Jeliot visualization system.

0.15 Testing†

Program testing can be used to show the
presence of bugs, but never to show their
absence! — Edsger W. Dijstra

Just because your code passes all of the tests does not mean it is
correct: there could be some as of yet unidentified test that it does
not pass. Worse, that not-yet-identified test might occur during some
lab later in the term.

This might be the first course in which you have to write a ‘real’
program: that is, a non-trivial program that you will have to depend
on in the future. First, the labs are non-trivial: The total size of the
code for this course is about 8500 lines, of which you will have to

http://www.mindview.net/Books/TIJ/
http://www.mindview.net/Books/TIJ/
PythonTutor.com
http://www.cs.joensuu.fi/jeliot/
PythonTutor.com
PythonTutor.com
http://cnx.org/content/col10915/latest/
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write about 1500, and roughly 7000 will be provided for you. Second,
the labs are cumulative: Each week you will run some labs that you
wrote in the past. At the end of the term you will run all of them
together. So testing will be important.

Test inputs may be generated either manually or automatically
with a testing tool. There are two main approaches used by tools: The Korat tool generates test inputs

systematically based on representation
invariants.

The Randoop tool generates inputs
randomly.

systematic and random. Because the space of possible inputs is large,
possibly infinite, systematic approaches tend to generate all small in-
puts and no big inputs. Random approaches will generate a mixture
of small and large inputs. Programmers can use human insight to
generate interesting inputs that might be missed by automated tools.

There are different strategies for evaluating whether a test
passed or failed. One is to check the computed result against a
known answer. In other words, the test suite consists of a set of
known input/output pairs.

Another strategy is to check general properties of functions. For
example, that a function never returns null. An advantage of this
property-based approach is that one only needs the test inputs — the
corresponding outputs do not need to known. Some properties that
we will be interested in for this course include:

reflexive x.equals(x)
symmetric x.equals(y)⇒ y.equals(x)
transitive x.equals(y) and y.equals(z)⇒ x.equals(z)
antisymmetric x ≤ y and y ≤ x ⇒ x = y
total x ≤ y or y ≤ x
idempotent f (x) = f ( f (x))
invertible f ′( f (x)) = x

Some functions do not have any of these properties. But if we
expect a function to have one or more of these properties then it is a
good idea to test for that property explicitly.

In particular, the first three properties define a mathematical equiv-
alence relation. We expect the equals() method in Java to represent a
mathematical equivalence relation.

A total order is defined to be transitive, antisymmetric, and total.
The integers, for example, are totally ordered. We expect the com-
pareTo() method in Java to represent a total order.

A good test suite will contain some of everything mentioned In a previous offering of this course the
staff provided tests that only looked
at general properties and none that
examined specific input output pairs.
It turned out that students could write
code that had the general property
without actually computing anything
useful. They became unhappy when
they discovered that their code that
passed the staff-provided tests did not
actually work when they wanted to run
it on a future lab.

above: test inputs that are generated manually and automatically,
both systematically and randomly; evaluations that look at specific
input/output pairs and at general properties.
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0.16 Phases of Compilation†

Scanner/Lexer/Tokenizer
1, 3

Parser
1, 3, 5, 6, 9

Type Checker

Optimizer
2, 4, 7, 10, 11

Code Generator
7, 8, 11

Figure 13: Phases of compilation and
the labs in which we see them. The
scanner, parser, and type checker are
considered the front end, whereas the
optimizer and code generator are
considered the back end of the compiler.
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0.17 Engineers and Other Educated Persons

There are a number of important general skills that all educated
persons, including engineers, should possess. The first two years of
engineering education need to focus on technical details in isolation
in order for you to have the technical competency to tackle more
interesting things. This focus on minutiæ sometimes comes at the
cost of limited growth in these larger skills. In this course you will
not only learn lots of tiny technical details, but you will also need
to develop some of the larger skills that all educated persons should
possess.

The ability to quickly find relevant information. Infor- Simplicity and elegance are unpopular
because they require hard work and
discipline to achieve and education to
be appreciated.

– Edsgar W. Dijkstra, 1997

mation is more accessible now than at any previous point in human
history. There are a wide variety of sources available to you: the
course notes, the lab manual, old exams, the skeleton code, the rec-
ommended text books, other text books, lecture notes and slides and
videos from other professors, etc. You should be facile in using all of
these sources to find what you are looking for.

Books, in particular, have helpful features for navigating them,
such as the table of contents, the index, and the preface or introduc-
tion. You should know how to use these features.

The ability to quickly assess what information is rele- Fools ignore complexity; pragmatists
suffer it; experts avoid it; geniuses
remove it.

— Alan Perlis

vant. As old-time engineers used to say, there is always more heat
than light. Learn to see the light without being overwhelmed by the
heat.

When doctors, lawyers, accountants, and other professionals assess
a case study problem, the first order of business is to discern what
the relevant facts and issues are. Those professions explicitly train
their people to separate the wheat from the chaff. Engineering educa-
tion, especially in the first two years, is often guilty of spoon-feeding
its students with only and all of the relevant information, and hence
developing a sense of intellectual complacency and entitlement in its
students.

For example, you should be able to take a list of topics to be cov-
ered from the course outline and be able to use that to determine
which sections of the text book are relevant and which questions
from old exams are applicable.
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The ability to accurately assess the credibility of a source.
Information comes from a variety of sources. Some of them are more

There are two ways of constructing a
software design. One way is to make
it so simple that there are obviously no
deficiencies. And the other way is to make
it so complicated that there are no obvious
deficiencies.

— C.A.R. Hoare, 1982

Turing Award Speech

credible than others. An educated person knows, for example, that
a report from the Transportation Safety Board of Canada is more
likely to be accurate than a newspaper report — more likely, but not
infallibly so.

The ability to manage large amounts of complex, inter-
connected details. The human body is a complex system that
doctors work with. The law is a complex system that lawyers work
with. Engineers work with complex socio-technical systems.

In the first two years of engineering education you typically en-
counter only small text book problems in order to gain understand-
ing of specific technical concepts in isolation. The labs for this course
might be the first time in your engineering education where you
have had to work with a non-toy system. Our skeleton code is still

The total code base that we work with
in this course is about 8,000 lines.
We provide about 7,000 lines of that
to you — which you are expected
to understand while developing the
remaining 1,000 lines.

For reference, the source code for
Microsoft’s Windows operating system
is somewhere around 25 million lines
of code. The source code for ati’s
video card driver is about 60 million
lines — more than double the Windows
operating system. Modern chip designs
also get into millions of lines of code.

small by industrial standards, but it might be an order of magnitude
greater than what you have worked with in your previous courses.
Learning to manage this volume of complexity and interdependency
is an essential part of your professional education.

The ability to think deep thoughts. In elementary school you Back where I come from we have universi-
ties — seats of great learning — where men
go to become great thinkers. And when they
come out, they think deep thoughts, and
with no more brains than you have.

— The Wizard of Oz, 1939

Of course, in the modern world, women
now go to (and graduate from) univer-
sities in greater numbers than men.

learned to multiply positive integers. In middle school you learned
to multiply all integers (including negative ones). In high school you
learned to multiply matrices, perhaps in two different ways: cross-
product and dot-product. In first year you learned to write programs
that multiply matrices. In this course you will learn a bit about how
to design and implement programming languages in which someone
might write a program to multiply matrices. You could go on in pure
math and logic courses to learn more about multiplication. It’s still For example, Gödel’s first incomplete-

ness theorem shows that any formal
logic that includes multiplication can
express propositions that we know to
be true but which cannot be proven
within that logic. A result that rocked
the world in 1931, and was an impor-
tant intellectual precursor to Turing’s
proof of The Halting Problem in 1936.

the multiplication of your childhood, but your understanding of it
is much deeper for the twenty years of study that you have devoted
to it. Understanding one or a few things in some depth like this
hopefully cultivates in you the ability to think deeper thoughts in
other domains and circumstances.





Lab 1
Recursive Descent Parsing ofW

Compiler Concepts: regular languages,
regular expressions, ebnf, recognizers,
parsing, recursive descent, lexing,
pretty-printing, abstract syntax tree
(ast)

Programming Concepts: classes, objects,
variables, aliasing, immutability, test-
driven development

We consider that the input and outputs of a circuit are a set of wave-
forms. We use theW language for expressing waveforms in text files.
Figure 1.1 shows an exampleW file and Figure 1.2 gives the gram-
mar forW .

A: 0 1 0 1 0 1 ;

B: 1 0 1 0 1 0 ;

OR: 1 1 1 1 1 1 ;

Figure 1.1: Example waveform file for
an or gate. The input pins are named A
and B, and the output pin is named OR.
Our vhdl simulator will read aW file
with lines A and B and will produce a
W file with all three lines.

Program → (Waveform)+

Waveform → Id ‘:’ Bits ‘;’
Id → Char ( Char | Digit | ‘_’ )*
Char → [A-Za-z]
Digit → [0-9]
Bits → (‘0’ | ‘1’)+

Figure 1.2: Grammar forW in ebnf.
By convention we will call the top
production Program.

1.1 Grammars & ebnf
†

Crafting: §4.3
Figure 1.2 lists the grammar for the languageW in Extended Backus-
Naur Form (ebnf). A grammar is formal specification of the syntax bnf was developed by John Backus

while working on what became the
Algol-60 language. Backus lead the
Fortran compiler team at ibm in the
1950s, which was the first commercially
successful compiler.

of a language. A grammar tells us which sentences are included in
the language and which are excluded. For certain classes of gram-
mars, we can systematically derive a program to recognize and parse
sentences written in the language.

The grammar in Figure 1.2 also includes the lexical specification of
the languageW : that is, it also tells us what sequences of characters
make legal tokens (words). For example, it tells us that an identifier People do not usually have numerals

in their names. A notable exception
is former New York Times reporter
Jennifer 8. Lee. She says that many
computer programs prohibit her middle
name, forcing her to write out ‘Eight’.
She chose the middle initial 8. because
as a teenager she realized that there
were about 10,000 other ‘Jennifer Lee’s
in the United States.

(i.e., a name) must start with an alphabetic character, but may con-
tain numerals or underscores in subsequent positions. Some times
grammars do not explicitly include a lexical specification, and instead
assume that characters not separated by whitespace form legal tokens.
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There are a number of important concepts and notations for un- Examples are given with respect to
the grammar for theW language in
Figure 1.2.

derstanding grammars and ebnf:

Production Rules: Each line with an arrow (→) represents a produc- The name ‘production rule’ is some-
times shortened to just ‘production’ or
‘rule’.

tion rule. A rule has a right-hand side (rhs) and a left-hand side
(lhs). We say the the lhs derives the rhs, by which we mean that
the rhs can be substituted for the lhs. The lhs will always be a
single non-terminal, whereas the rhs can be some combination of
terminals and non-terminals.

Terminals: A terminal is a symbol that cannot be derived any further. e.g., colon (:), semi-colon (;), zero (0),
one (1), and underscore (_)

Non-terminals: A non-terminal is a symbol that can be derived. Ev- e.g., Program, Waveform, Id, Char, Digit,
and Bitsery non-terminal must appear on the lhs of at least one produc-

tion.

Alternation: The bar (|) character indicates alternatives. e.g., Bit→ ‘0’ | ‘1’
says that a Bit can be a zero or a one.

Repetition: The star (∗) and plus (+) characters are used to indicate e.g., Program→ Waveform+

says that a Program derives one or
more Waveforms.

repetition. Star means zero or more, whereas plus means one or
more. The plus, star and bar are part of Extended Backus Naur Form
(ebnf), but are not part of regular Backas Naur Form (bnf). We
will learn how to convert from ebnf to bnf in [N 2.71].

Derivation: Consider the inputW program A: 1 0. Let’s derive this
string from theW grammar in Figure 1.2. In this example we are doing a leftmost

derivation: that is, we are expanding
the leftmost non-terminal at each step.

If we expanded Bits before Id then it
would be a rightmost derivation.
Pragmatics: §2.1.3, p.48

Crafting: §4.1.1, §4.1.2

Program → (Waveform)+ top-level rule
→ (Id ‘:’ Bits ’;’)+ derive Waveform
→ (‘A’ ‘:’ Bits ’;’)+ derive Id
→ (‘A’ ‘:’ ‘1’ ‘0‘ ’;’)+ derive Bits
→ ‘A’ ‘:’ ‘1’ ‘0‘ ’;’ reached end of input

The recursive descent recognizer and parser that you will write
in this lab will work in this way: it will descend from the top of
the grammar, recursively if necessary (the grammar ofW is not
recursive, but the grammar of F in lab3 is).

1.1.1 Summary of Grammar Notation Conventions

When writing grammars in ebnf or bnf we will often follow these
notational conventions for names. This chart will be repeated elsewhere

in the Lab Manual and Course Notes
as convenient. The conventions are
adopted from Programming Language
Pragmatics by Michael L. Scott.

Pragmatics: §2

Crafting: §4.5.1

ABC non-terminals
abc terminals
XYZ nonterminals or terminals
xyz token strings
αβγ strings of arbitrary symbols
lhs Left Hand Side
rhs Right Hand Side
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1.1.2 Derivations†

Pragmatics: §2.1.3, p.48 + j1

Tiger: j1

Crafting: §4.1.1, §4.1.2

A derivation is how we show, on paper, that an input string can be
recognized by a grammar. We start with the top production in the
grammar and do substitutions until we derive the input string. In
most textbooks this is done algebraically, but it can also be done
graphically by drawing the partial ast at each step of the derivation.
Here we will show both ways.

Consider the input string ‘1+2+3’ and the following grammar, with
productions numbered for easy reference:

1. S → E
2. E → E + E
3. E → INT

Here is a derivation of that input string with that grammar:

S → E start at the top
S E

→ (E + E) substitute by rule 2

E

E E

S

→ ((E + E) + E) substitute by rule 2

E

E + E

S

E + E

→ ((1 + 2) + 3) substitute by rule 3 (3 times)

E

E + E

S

E + E 3

1 2
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Here is another derivation of that input string with that grammar:

S → E start at the top
S E

→ (E + E) substitute by rule 2

E

E E

S

→ (E + (E + E)) substitute by rule 2

E

E + E

S

E + E

→ (1 + (2 + 3)) substitute by rule 3 (3 times)

E

E + E

S

1 E + E

2 3

Since there are multiple derivations (i.e., parse trees) for the same
input string, we say that this grammar is ambiguous. [N 2.4]

1.2 Write a regular expression recognizer forW
Sources:

ece351.w.regex.TestWRegexSimple
ece351.w.regex.TestWRegexSimpleData
ece351.w.regex.TestWRegexAccept
ece351.w.regex.TestWRegexReject

A recognizer is a program that accepts or rejects a string input based
on whether that string is a valid sentence in some language. A rec-
ognizer forW will accept or reject a file if that file is a legalW ‘sen-
tence’/‘program’. The website regexper.com will draw

finite-state machine diagrams for
your regular expressions. The website
regexpal.com lets you test out your
regular expressions. There are many
other similar websites.

W is a regular language. Regular is a technical term here that de-
scribes the complexity of the grammar ofW . Regular languages are
the simplest kind of languages that we will consider. The grammar of
a regular language can be described by a regular expression.

Your first task is to write a regular expression describing the gram-
mar ofW . You will do this in two steps, first editing TestWRegexSimpleData

and running TestWRegexSimple, and second editing TestWRegexAccept.REGEX

and running both TestWRegexAccept and TestWRegexReject. Your final
answer should be stored in the field TestWRegexAccept.REGEX.

regexper.com
regexpal.com
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1.2.1 Test-Driven Development†

Sources:
ece351.w.regex.TestWRegexSimple
ece351.w.regex.TestWRegexSimpleData

In traditional waterfall software development, one writes the code

The danger of the traditional approach
is that it produces general code that
does not actually pass any specific tests.

first and then the tests; moreover, the code is written in a deductive
mental style, thinking about the problem generally.

Modern agile software development advocates a different ap-
Obviously if the test-suite is inadequate
then TDD will result in code that is
not sufficiently general. But it will pass
some test cases.

proach: Test-Driven Development (TDD). In TDD, one writes the tests
first and then the code. The code is written in a more inductive men-
tal style: what needs to be done to pass the next test case?

The first exercise is to follow a Test-Driven Development approach
to building a regular expression recognizer for theW language.
There are test files r1.wave through r8.wave. You will start by running
TestWRegexSimple and observing that the first test passes and the
second test fails. The first test passes because the regular expression
you are given, in TestWRegexSimpleData, matches the contents of
r1.wave: this regular expression will work only for r1.wave.

Your job is to copy/paste/generalize that regular expression, mak-
ing the minimal modifications necessary for it to accept both r1.wave

and r2.wave. Then you will see that it fails r3.wave. Again, copy/-
paste/generalize, and you will see it fails r4.wave. Eventually you will
build up a regular expression that will accept up to r8.wave.

A challenge that you will face is that theW grammar in Figure 1.2
does not explicitly specify whitespace, whereas your regular expres-
sion will have to explicitly specify the whitespace. Grammars given
in ebnf usually implicitly assume some lexical specification that
describes how characters in the input string are to be grouped to-
gether to form tokens. Usually any amount of whitespace may occur
between tokens.

1.2.2 Complete the regular expression recognizer forW
Sources:

ece351.w.regex.TestWRegexAccept
ece351.w.regex.TestWRegexReject

Copy your final regular expression recognizer forW from
TestWRegexSimpleData to TestWRegexAccept.REGEX, and then run

TestWRegexAccept and TestWRegexReject. You will see that some tests
pass and some tests fail. Fix your regular expression until all of the
tests pass.

1.3 Write a recursive descent recognizer forW †

Sources:
ece351.w.rdescent.WRecursiveDescentRecognizer

Libraries:
ece351.util.Lexer

Tests:
ece351.w.rdescent.TestWRDRecognizerAccept
ece351.w.rdescent.TestWRDRecognizerReject

Recursive descent is a style of writing parsers (or recognizers) by hand
(i.e., without using a parser generator tool). In this style we make a
method for each non-terminal in the grammar. For recognizers these
methods return void.

The bodies of these non-terminal methods consume the input
one token at a time. Kleene stars (*) or plusses (+) become loops.
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Alternation bars (|) become conditionals (if statements).
Execution of these non-terminal methods starts at the ‘top’ of the

grammar. This is what the term descent in recursive descent refers to.
The term recursive in recursive descent simply means that the various
non-terminal methods may call each other.

By convention we will name the top production of our grammars
Program, and so execution of our hand-written recursive descent
parsers and recognizers will start in a method called program.

Your W recognizer code will make use of the Lexer library class
that we provide. This class tokenizes the input string: i.e., strips out
the whitespace and groups the input characters into chunks called to-
kens. The lexer provides a number of convenience methods, including
methods for recognizing identifiers, so you won’t need to write an id()

method in your recognizer.
The lexer has two main kinds of operations: inspect the next token

to see what it looks like, and consume the next token. The inspect
methods are commonly used in the tests of loops and conditionals.
The consume methods are commonly used in regular statements.

1.4 Write a pretty-printer forW
Sources:

ece351.w.ast.WProgram
ece351.w.ast.Waveform

Libraries:
java.lang.String
System.getProperty(“line.separator”)
org.parboiled.common.ImmutableList

Pretty-printing is the opposite of parsing. Parsing is the process of
constructing an abstract syntax tree (ast) from a string input. Pretty-
printing is the process of producing a string from an ast.

For this step you will write the toString() methods for theW ast

classes. These methods will be tested in the next step. Note that

Once we have a function and its inverse
we can test that f ′( f (x)) = x for any
input x.

these toString() methods just return a string: they do not actually print
to the console nor to a file. Pretty-printing is the name for the inverse
of parsing, and does not necessarily involve actually printing the
result to an output stream. Whereas parsing constructs a tree from a
string, pretty-printing produces a string from a tree.

1.5 Write a recursive descent parser forW
Sources:

ece351.w.rdescent.WRecursiveDescentParser
Libraries:

ece351.w.ast.WProgram
ece351.w.ast.Waveform
ece351.util.Lexer
org.parboiled.common.ImmutableList

Tests:
ece351.w.rdescent.TestWRDParserBasic
ece351.w.rdescent.TestWRDParserAccept
ece351.w.rdescent.TestWRDParserReject

A parser reads a string input and constructs a tree output. Specifi-
cally, an abstract syntax tree (ast).

To write your recursive descent parser forW start by copying over
the code from your recursive descent recognizer. The parser will be
a superset of this code. The difference is that the recognizer discards
the input whereas the parser will build up the ast based on the
input. The ast classes are WProgram and Waveform.

The test performed here is to parse the input, pretty-print it, re-
parse the pretty-printed output, and then compare the ast’s from the
two parses to see that they are the same.
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1.6 Pointers, Aliasing, and Immutability†

One of the most important design decisions to be made in a program Mutable means ‘can be changed’ or
‘can be mutated’. Immutable means
‘unchangeable’.

is which data will be mutable. Mutability is a powerful feature that
can introduce all kinds of difficult bugs if used carelessly. Two classic
examples of where to use mutability and where not to are bank ac-
counts and integers, respectively. The whole point of a bank account How do decide if an object should be

mutable?object is that the balance can change — that it can be mutated. An
integer object, by contrast, is representing an unchanging mathemat-
ical abstraction. A good design question to ask yourself is whether
the objects you are trying to model in your program represent things
in the material world (that change, as all material things do); or are
mathematical abstractions (which do not change). In this course we
are dealing primarily with mathematical abstractions, and so most of
our objects will be immutable.

A favourite example of aliasing for
philosophers is that the terms ‘the
morning star’ and ‘the evening star’
both refer to the planet Venus.

Aliasing is common for people in
real life and in literature. For example,
in Dostoevsky’s novel The Brothers
Karamazov, each of the main characters
have several nicknames. The youngest
brother, Alexei Fyodorovich Karamazov,
is also known as: Alyosha, Alyoshka,
Alyoshenka, Alyoshechka, Alxeichick,
Lyosha, and Lyoshenka. Nicknames,
formal titles, and the like, add depth
to human experience. But just as this
depth can make it more difficult to read
novels, it can also make it more difficult
to read programs.

Aliasing occurs when there is more than one variable pointing to
an object: i.e., the object has more than one name. Aliasing is not a
problem for immutable objects: because the immutable object can-
not change, it can be shared freely. Aliasing can introduce subtle

Try PythonTutor.com to see some nice
visualizations of code execution that
might help you understand variables,
objects, and aliasing.

bugs when mixed with mutable data though. Consider two people

In some programming languages, such
as Python, all objects are mutable;
whereas in other programming lan-
guages, such as Haskell, all objects are
immutable. Languages like Java allow
you to choose which objects are muta-
ble and which are immutable. Aliasing
occurs in all programming languages.

X and Y who share a bank account. At the beginning of the day the
balance is $100. Both people head out their separate ways to sepa-
rate stores. X makes a purchase for $50. A minute later, at a different
store, Y attempts to make a purchase for $75 but is denied because
the account no longer has sufficient funds. In this real life example
it is fairly easy for person Y to debug what has happened. But in a
large program it can be very difficult to determine where aliases ex-
ist. And, of course, discovering the alias is just the first step towards
fixing the program so that the problem does not occur during the
next execution.

Introductory object-oriented programming is often taught in a
style where all objects are mutable and there is no aliasing. This style
doesn’t work for large programs. Large programs have aliasing —
and probably aliasing across threads. Immutability is one simple
technique to make aliasing a non-issue. Other solutions include com-
plex sharing, locking, or usage protocols. These alternatives all intro-
duce new possibilities for new kinds of subtle bugs: e.g., forgetting
to follow the protocol and lock or unlock the object. Immutability All of our ast objects will be im-

mutable. We will generally use mutable
data only in temporary local variables,
and will try to avoid storing mutable
values into the heap.

might, in some circumstances, introduce minor inconvenience in the
short term, but it eliminates entire classes of bugs rather than intro-
ducing new possibilities for bugs.

The examples in Figure 1.3 illustrates the interaction of aliasing
and mutability and immutability, respectively.

PythonTutor.com
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Exercise 1.6.1
List list = new LinkedList();

List alias = list;

list.add("hello");

alias.add("world");

System.out.println(list); // 1

Exercise 1.6.2

ImmutableList list = ImmutableList.of();

ImmutableList alias = list;

list.append("hello");

alias.append("world");

System.out.println(list); // 2

list = list.append("hello");

alias = alias.append("world");

System.out.println(list); // 3

Figure 1.3: Aliasing and mutable
vs. immutable data. What output is
printed? What does the heap look like?
Which variables point to which objects?
What is the difference between the
add() and append() methods?

The LinkedList class is part of the
JDK. The ImmutableList class comes
with the Parboiled parser generator that
we will use in later labs.

1.7 Assignment†

Assignment is the feature of programming languages that lets you
change what a variable name means. It is one of the distinguishing
characteristics of imperative programming languages. Consider the
code listing in Figure 1.4: the variable x points to ‘foo’ first, and then
we re-assign it to ‘bar’.

String x;

x = "foo"; // assign String "foo" to variable x

x = "bar"; // re−assign variable x with String "bar"

Figure 1.4: Assignment and re-
assignment of x

Assignment makes it more difficult to analyze and transform pro-
grams, as illustrated in Figure 1.5. The issue is not that we give a
value a name, but that we then later change what that name means
by re-assigning it to some other value. In other words, re-assignment
is what introduces potential problems. Re-assignment is the basis of
mutation: all mutation involves changing the value associated with
some variable name (local variable, field, method parameter).

(a) program that can
be optimized

a = (x + y) + z;

b = (x + y) * z;

(b) optimization of (a)

t = x + y;

a = t + z;

b = t * z;

(c) program that can-
not be optimized

a = (x + y) + z;

x = 7;

b = (x + y) * z;

Figure 1.5: Assignment interferes with
analysis and optimization. Program (c)
cannot be optimized because x has been
re-assigned, so the expression x+y on
the last line will have a different value
than the expression x+y on the first line.

Assignment and aliasing are duals of each other. Assignment allows
one name to have multiple meanings (values). Aliasing is when one
meaning has multiple names. Both of these language features can be
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very useful, but they both come at some cost: they make the program
harder to understand, make it more likely to have bugs, make it more
difficult to debug, and make it harder to analyze and optimize. The
cost of these features is born both by the end programmer and by the
compiler engineer.

In the lab skeleton code we have made an effort to mitigate the
complexities of these features by following some guidelines:

• All ast objects are immutable so that they may be safely aliased
and confidently reasoned about. Compilers typically have many
phases that transform the ast. If these transformations actually
mutate the original ast, instead of constructing a new ast, then it
can be more difficult to debug.

• Wherever possible, fields, local variables, and method parameters
are declared to be ‘final’ to prevent them from being re-assigned.
The keyword ‘final’ in Java requires the compiler to prove that the
variable is assigned exactly once on every control-flow path.
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1.8 Object Diagram of ExampleW ast

AST Tree W Example 

For the W File below the corresponding AST constructed will be:

A: 1 0 1;  
B: 0 1 0;

ASTW File

A B[ 1 , 0 , 1 ]

Waveform

+ name : String
+ bits : ImmutableList<String>
 

Waveform

+ name : String
+ bits : ImmutableList<String>
 

WProgram

 + waveforms: ImmutableList<Waveform>

[ 0 , 1 , 0 ]

[Waveform,Waveform]

1 0 1 0 01

Figure 1.6: Object diagram for example
W ast
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1.9 Steps to success

Double Rectangle

W Files

Lexer
1.3
Pretty
Printer

1.1
Recursive 
Descent 
Recognizer

1.2 Recursive 
Descent Recognizer

1.4  Recursive
 Descent Parser

RejectAccept

Recursive  
Descent 

Recongnizer

Recursive  
Descent Parser

Accept RejectBasic

RejectAccept

Simple

Waveform

Wprogram

Lab 1 Programming Procedure

Figure 1.7: Steps to success for Lab 1.
Legend for icon meanings in Figure 1.8.
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Class Files / TXT Files 
that needed to be  

imported or exported

Sources needed to 
be edit

TXT Files 
that needed to be  

imported or exported

Tests needed 
to be run

Contains all the files in 
one section of the lab 
and shows the name of

 the section.  
Ex：“1.1 Recursive 
Descent Recognizer”

Class

Programming Procedure Legend

Logical Process Legend

Method

Figure 1.8: Legend for Figure 1.7
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1.10 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below. Note that you don’t earn any points

for the rejection tests until some of the
corresponding acceptance tests pass.
Also, you don’t earn any points for the
parser until the TestWRDParserBasic
tests pass.

Shared Secret
TestWRegexAccept 10 5

TestWRegexReject 5 5

TestWRDRecognizerAccept 15 5

TestWRDRecognizerReject 5 5

TestWRDParserBasic 5 0

TestWRDParserAccept 20 10

TestWRDParserReject 5 5

1.11 Reading

1.11.1 Tiger Book1 1 A. W. Appel and J. Palsberg. Mod-
ern Compiler Implementation in Java.
Cambridge, 2004• 1 Introduction

• 2.0 Lexical Analysis
• 2.1 Lexical Tokens
• 2.2 Regular Expressions
• 3.0 Parsing
• 3.2.0 Predictive Parsing / Recursive Descent

– skip First and Follow Sets for now
– read Constructing a Predictive Parser on p.50

– skip Eliminating Left Recursion and everything that comes after
it — for now

• 4.1.1 Recursive Descent

1.11.2 Programming Language Pragmatics2 2 M. L. Scott. Programming Language
Pragmatics. Morgan Kaufmann, 3

edition, 2009• 2.2 Scanning
• 2.3.1 Recursive Descent

1.11.3 Web Resources

Thinking in Java3 3 B. Eckel. Thinking in Java. Prentice-
Hall, 2002. http://www.mindview.net/

Books/TIJ/
Prof Alex Aiken @ Stanford on recursive descent:

http://www.youtube.com/watch?v=Kdx5HOtb-Zo

http://www.youtube.com/watch?v=S7DZdn33eFY

http://www.mindview.net/Books/TIJ/
http://www.mindview.net/Books/TIJ/
http://www.youtube.com/watch?v=Kdx5HOtb-Zo
http://www.youtube.com/watch?v=S7DZdn33eFY




Lab 2
TransformingW → SVG for Visualization

Compiler Concepts: trees, transforma-
tions, xml, svg

Programming Concepts: object contract,
object equality, mathematical equiva-
lence classes, dom vs. sax parser styles,
call-backs, iterator design pattern

svg is a an xml-based graphics file
format: in other words, it is structured
text that describes some vectors to be
rendered. Any modern web browser
will render svg.

While our circuit simulator programs will read and writeW files,
people often prefer to look at waveforms in a graphical format. In
this lab we will translateW files into svg files for visualization.

An exampleW file is shown in Figure 2.1. Figure 2.2 shows
what the corresponding svg looks like when visualized with a
web browser such as Firefox or a vector graphics program such as
Inkscape. Figure 2.3 shows the first few lines of the textual content of
the svg file.

A: 0 1 0 1 0 1 ;

B: 1 0 1 0 1 0 ;

OR: 1 1 1 1 1 1 ;

Figure 2.1: Example waveform file for
an or gate. The input pins are named A
and B, and the output pin is named OR.
Our vhdl simulator will read aW file
with lines A and B and will produce a
W file with all three lines.

Figure 2.2: Rendered svg ofW file
from Figure 2.1
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<?xml version="1.0" encoding="UTF−8"?>

<!DOCTYPE svg PUBLIC "−//W3C//DTD SVG 1.1//EN" "http://www.w3.org/

Graphics/SVG/1.1/DTD/svg11.dtd">

<svg xmlns="http://www.w3.org/2000/svg" width="100%" height="100%"

version="1.1">

<style type="text/css"><![CDATA[line{stroke:#006600;fill:#00 cc00;} text{font−
size:"large";font−family:"sans−serif"}]]></style>

<text x="50" y="150">A</text>

<line x1="100" x2="100" y1="150" y2="200" />

<line x1="100" x2="200" y1="200" y2="200" />

<line x1="200" x2="200" y1="200" y2="100" />

<line x1="200" x2="300" y1="100" y2="100" />

Figure 2.3: First 10 lines of svg text of
W file from Figure 2.1. The boilerplate
at the top is already in W2SVG.java for
your convenience.

Note that the origin of an svg

canvas is the top left corner, not the
bottom left corner (as you might expect
from math). Consequently, Y=200 is
visually lower than Y=100, since Y
counts down from the top.

2.1 Write a translator fromW → svg

Sources:
ece351.w.svg.TransformW2SVG

Libraries:
ece351.w.ast.WProgram
ece351.w.svg.Line
ece351.w.svg.Pin

Tests:
ece351.w.svg.TestW2SVG

The idea of the transformation is simple: for each bit (zero or one) in
the input file, produce a vertical line and a horizontal line. To do this
the transformer needs to remember three things: the current X and
Y position of the (conceptual) cursor, and the YOffset so we can move
the cursor down the page when we start drawing the next waveform.

Exercise 2.1.1 Where is the origin
on an svg canvas? Which directions are
positive and which are negative?

Run your transformations and inspect the output both visually, in
a program such as Firefox, and textually, using the text editor of your
choice. Ensure that the output is sensible.

2.2 Write a translator from svg →W
Sources:

ece351.w.svg.TransformSVG2W

Libraries:
ece351.w.ast.WProgram
ece351.w.svg.Line
ece351.w.svg.Pin

Tests:
ece351.w.svg.TestW2SVG2W

This translator is the inverse of the previous one. We write this in-
verse function as a way to test the previous translator. Now we can
take advantage of the general property that x = f ′( f (x)) or, in other
words, w = toW(toSVG(w)).

This inverse translation is a bit tricky because the svg files do
not contain any explicit information about which line segments are
associated with which waveform: the svg file just contains a bunch of
text labels and a bunch of line segments. We have to infer, from the y
values, which line segments belong to which waveform/label. Then
we use the x values to infer the ordering of the bits, and the y values
to infer the bit values (0 or 1).

Many program analysis tasks used in optimizing compilers in-
volve this kind of inference: recovering information that is implicit
in a lower-level representation but was explicit in some higher-level
representation.
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2.3 Introducing the Object Contract†

Sources:
ece351.objectcontract.TestObjectContract

Libraries:
ece351.objectcontract.TestObjectContractBase

Tests:
ece351.objectcontract.TestObjectContract

The object contract is a term sometimes used to describe properties
that all objects should have. It is particularly concerned with the
equals and hashCode methods. The equals method should represent
a mathematical equivalence relation and it should be consistent with
the hashCode method. A mathematical equivalence class has three The object contract looks simple (and

it is), but even expert programmers
have difficulty getting it right in all
circumstances.

properties:
reflexive x.equals(x)
symmetric x.equals(y)⇔ y.equals(x)
transitive x.equals(y) && y.equals(z)⇒ x.equals(z)

Additionally, by consistent with hashCode we mean the following:
consistent x.equals(y)⇒ x.hashCode() == y.hashCode()

Exercise 2.3.1 What would happen
if every hashCode method returned 42?

Exercise 2.3.2 What would happen
if every hashCode method returned a
random value each time it was called?

Finally, no object should be equal to null:
not null !x.equals(null)

The file TestObjectContract contains some code stubs for testing the
object contract. In order to fill in those stubs correctly you might
need to read and understand the code in TestObjectContractBase.

What is the default behaviour of the equals and hashCode meth- The == (‘double equals’ or ‘equals
equals’) comparison operator compares
the memory addresses of the objects
referred to by the two variables.

ods? In other words, what happens if you do not implement those
methods for your objects? Consider the code listings in Figure 2.4.
What value is printed out by each statement?

Exercise 2.3.3

Integer x = new Integer(1);

Integer y = new Integer(1);

System.out.println(x.equals(y));

System.out.println(x == y);

Exercise 2.3.4

List a = new LinkedList();

List b = new LinkedList();

System.out.println(a.equals(b));

System.out.println(a == b);

Exercise 2.3.5

Object p = new Object();

Object q = new Object();

System.out.println(p.equals(q));

System.out.println(p == q);

Figure 2.4: Code comprehension exer-
cises. Draw an object diagram for each
statement in each listing. What will the
result of the println statements be?

2.3.1 Engineering Apparatus and Controls†

What is a kilogram? Since 1983, a metre has been defined as the
length of the path travelled by light in vacuum during a time interval
of 1

299,792,458 seconds.1 What is a second? Since 1967, a second has 1 17th Conférence Générale des Poids et
Mesures (CGPM) — Resolution 1 of the
CGPM (1983): Definition of the metre.
Bureau international des poids et
mesures (BIPM). http://www.bipm.org/
en/CGPM/db/17/1/

been defined as the duration of 9,192,631,770 periods of the radiation
corresponding to the transition between the two hyperfine levels of
the ground state of the caesium 133 atom.2 So we have definitions of

2 Unit of time (second). SI Brochure.
BIPM. http://www.bipm.org/en/
publications/si-brochure/second.

html

distance and time in terms of physical constants of nature.
The kilogram, by contrast, is defined by a cylinder (with nicely

chamfered edges) of platinum-iridium alloy in a vault in Paris: the
International Prototype Kilogram (IPK). It is the last remaining base
unit of measure to be defined by a physical artefact rather than a
property of nature (Figure 2.5).

http://www.bipm.org/en/CGPM/db/17/1/
http://www.bipm.org/en/CGPM/db/17/1/
http://www.bipm.org/en/publications/si-brochure/second.html
http://www.bipm.org/en/publications/si-brochure/second.html
http://www.bipm.org/en/publications/si-brochure/second.html
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Figure 2.5: Infographic and photo
of the International Kilogram
Prototype stored in Paris. From
Phys.org http://phys.org/news/

2011-11-quandary-kilo-triggers-weighty-reflexion.

html

Suppose that we want to build a scale — an engineering apparatus
to measure mass. The purpose of such a device, in principle, is to
compare other masses to the IPK. This comparison has three possible
outcomes: less than, more than, or same.

Many developed countries, including Canada, have an official
replica of the IPK. One would expect that all of these official replicas
have the same mass as the IPK. Suppose that we tested our scale with
only these official replicas, and every time the scale reported same, as
expected. Can we thus conclude that our scale is really accurate? No:
perhaps it always returns same; maybe it never returns more or less.

We need some control objects that actually have more or less mass
than the IPK, so that we can also check that our scale does return
more or less when appropriate.

Part of the software exercise here is to build the apparatus (scale),
and part of it is to build these control objects so that we know the
apparatus works properly. Then, in the future, we can use the appa-
ratus on unknown objects and trust the results it gives us.

In this analogy, it is obvious that the control objects are supposed
to weigh more or less than the IPK. There are many objects in the
world that weigh more or less than the IPK. In our software world,
no object is ever supposed to violate the object contract, and in prac-
tice very few objects violate that contract. So it might feel weird to
intentionally create control objects that violate the object contract.
Nobody would ever want such an object in a regular program. But
we need these control objects to assess the accuracy of our apparatus.

http://phys.org/news/2011-11-quandary-kilo-triggers-weighty-reflexion.html
http://phys.org/news/2011-11-quandary-kilo-triggers-weighty-reflexion.html
http://phys.org/news/2011-11-quandary-kilo-triggers-weighty-reflexion.html
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2.3.2 Learning to write professional code†

It is important, in general, for you to learn the Object Contract be-
cause it is a set of properties that must hold for all code you write in
any object-oriented language (Java, C++, C#, Python, etc.). It is also
specifically important that you learn the Object Contract to do the
labs in this course, because checking the equality of objects forms the
basis of the automated marking scripts. In this exercise you are also
learning how to write professional code, with the Object Contract as
an example. The steps that we are following here are:

a. Identify the mathematical properties that the code should have.
(Object contract: reflexive, symmetric, transitive, etc.)

b. Write methods that check these mathematical properties on some
input object(s). (e.g., checkEqualsIsReflexive(x)) Call these the prop-
erty check methods.

c. Verify that the property check methods return true when expected
by using third party inputs (e.g., java.lang.String and java.lang.Integer).

d. Verify that the property check methods return false when ex-
pected by constructing pathological control objects with known
deviant behaviour. (e.g., constructAlwaysTrue(), constructAlwaysFalse(),
constructToggler(), etc.)

e. Use the verified property check methods to assess real code.
(We aren’t doing this step in this exercise.)

In future labs we will use staff-provided property check methods
for Object Contract properties. The purpose of this exercise is for
you to see what these property check methods look like, both so you
understand the Object Contract and so you understand how your
future labs will be graded.

2.3.3 Reading

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#equals(java.lang.Object)

http://www.artima.com/lejava/articles/equality.html

http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html

Implementation of java.util.AbstractList.equals()
Effective Java 3 3 J. Bloch. Effective Java. Addison-Wesley,

2001§0.15 of this lab manual on Testing

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#equals(java.lang.Object)
http://www.artima.com/lejava/articles/equality.html
http://www.angelikalanger.com/Articles/JavaSolutions/SecretsOfEquals/Equals.html
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2.4 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below.

We provide you with about 30 W files for these equations.

Current New Equation
TestW2SVG 20 10 legalSVG(TransformW2SVG(w))

TestW2SVG2W 40 10 SVG2W(W2SVG(w)).equivalent(SVG2W(staff.svg))

TestObjectContract 15 5 see §2.3 above

2.5 Steps to success

2.4 dom vs. sax parser styles
2.3 Introducing the Object Contract

2.1 Write a translator from W to svg 2.2 Write a translator from svg to W

SVG FileTransformW2SVG

W2SVG

WProgram Line Pin

TransformSVG2W

WProgram Line Pin

W2SVG2W

TestObjectContract

ObjectContract 
Base

TransformW2SVG

Lab 2 Programming Procedure

W FIle W FIle

Figure 2.6: Steps to success for Lab 2.
Legend for icon meanings in Figure 1.8.
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Recursive Descent 
Parser

 
Regular Expression 

Recognizer

1.1
1.4

LAB 1
W File

WProgramWaveform

Pretty PrintingPretty Printing

1.3 1.3

LAB 2

SVG File

TransformW2SVG TransformSVG2W

2.1 2.2

Figure 2.7: How Lab 1 and Lab 2 fit
together





Lab 3
Recursive Descent Parsing of F

Compiler Concepts: context-free gram-
mars, ll(1) grammars, predict sets,
parse trees, precedence, associativity,
commutativity, program equivalence

Programming Concepts: inheritance,
polymorphism, dynamic dispatch, type
tests, casting, memory safety, composite
design pattern, template design pattern,
singleton design pattern, recursive
functions, recursive structures, higher-
order functions

This lab introduces formula language F , which we will use as an
intermediate language in our circuit synthesis and simulation tool. In
a subsequent lab we will write a translator from V to F .

Compilers usually perform their optimizations on programs in
intermediate forms. These intermediate forms are designed to be
easier to work with mechanically, at the cost of being less pleasant
for people to write large programs in. A program written in F , for
example, is just a list of boolean formulae. This is relatively easy to
manipulate mechanically. V , by contrast, has conditionals, module
structure, etc., which are all of great benefit to the V programmer but
are more work for the compiler writer to manipulate. In the next lab
we will write a simplifier/optimizer for F programs.

Program → Formula+ $$
Fomula → Var ‘<=’ Expr ‘;’
Expr → Term (‘or’ Term)*
Term → Factor (‘and’ Factor)*
Factor → ‘not’ Factor | ‘(’ Expr ‘)’ | Var | Constant
Constant → ‘‘0’’ | ‘‘1’’
Var → id

Figure 3.1: ll(1) Grammar for F . F is
a very simple subset of V , which is in
turn a subset of the real vhdl. F in-
cludes only the concurrent assignment
statement and the boolean operators
conjunction (and), disjunction (or), and
negation (not). Note that in the concrete
syntax the constants ‘0’ and ‘1’ are sur-
rounded by single quotes, whereas no
other terminals are.

3.1 A Tale of Three Hierarchies†

There are (at least) three hierarchies involved in understanding this
lab — and all of the future labs. In lab1 we met the abstract syntax
tree (ast) and the parse tree (the execution trace of a recursive descent
recognizer/parser). In this lab we will also meet the class hierarchy of
our Java code. In the past labs there wasn’t much interesting in the
class hierarchy, but now (and for the remainder of the term) it is a
central concern.
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3.1.1 Parse Tree

Consider the F program X <= A or B;. When we execute the recursive
descent recognizer that we are about to write its call tree will look
something like this:

Exercise 3.1.1 Try to draw a few
parse tres on paper for other examples
such as:

• X <= A and B;
• X <= A or B and C;
• X <= A and B or C;

program()

formula()

var()

id()

‘X’

‘<=’

expr()

term()

factor()

var()

id()

‘A’

‘or’

term()

factor()

var()

id()

‘B’

‘;’

EOI

We will use EOI (end of input) and EOF
(end of file) and $$ interchangeably.

See the readings, especially Bruce
Eckel’s free online book Thinking in
Java, for more background material on
inheritance/sub-classing.3.1.2 ast

Exercise 3.1.2 For the examples
above, also draw the corresponding
ast. Both the call tree and the resulting
ast depend on the input.

Recall that ‘ast’ stands for abstract syntax tree, and is the important
information that we want to remember from the parse tree above.
This important information is the structure of the tree and the inter-
esting nodes. Things like term, factor, and parentheses are ways that
the input string communicates its structure to the parser: the ast

doesn’t need to retain those things, just the structure itself.

FProgram

AssignmentStatement

outputVar = X

expr = OrExpr

left = A

right = B
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AST Tree F Example 
For the F File below the corresponding AST constructed will be:

x <= a or ( b and c );

ASTF File

AssignmentStatement

+ outputVar: VarExpr
+ expr: Expr
 

FProgram

+ formulas: ImmutableList<AssignmenStatement>

[AssignmentStatement]

VarExpr

+ identifier: String

x

OrExpr

+ left: Expr
+ right: Expr

VarExpr

+ identifier: String

a

AndExpr

+ left: Expr
+ right: Expr

VarExpr

+ identifier: String

b

VarExpr

+ identifier: String

c

Figure 3.2: Object diagram for example
F ast
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3.1.3 A peak at the Expr class hierarchy

The class hierarchy, on the other hand, does not depend on the in-
put: it is how the code is organized. The following listing highlights
some features of the Expr class hierarchy and also demonstrates
polymorphism/dynamic-dispatch.

Exercise 3.1.3 Find the class common.ast.Expr in Eclipse, right-click
on it and select Open Type Hierarchy. This will give you an interactive
view of the main class hierarchy.

For this lab you will need the classes
AndExpr, OrExpr, NotExpr, VarExpr, and
ConstantExpr. You will also need the
classes that those depend on, but you
will not need classes corresponding to
more esoteric logical operators such as
exclusive-or. This lab also uses classes
outside of the Expr class hierarchy, but
you don’t need to draw them on your
uml class diagram.Exercise 3.1.4 Draw this hierarchy in a uml class diagram, excluding

the classes in common.ast that you do not need for this lab.

Exercise 3.1.5 Draw a uml class
diagram for this code.

Exercise 3.1.6 Draw an object diagram
showing the relationship between the
variables and the objects for the main
method. (We have drawn this kind
of diagram on the board in class, and
these kinds of diagrams are also drawn
by PythonTutor.com.)

Exercise 3.1.7 Annotate this diagram
with the static type of each variable
and the dynamic type of each object. In
the past we only considered the case
where the static type of the variable was
the same as the dynamic type of the
object referred to by that variable. Now
we also consider the case where the
dynamic type of the object is a subtype
of the variable’s static type.

Exercise 3.1.8 Is there any aliasing
occurring in the main method? If so,
what is it?

abstract class Expr {

abstract String operator();

}

abstract class BinaryExpr extends Expr {

final Expr left;

final Expr right;

abstract BinaryExpr newBinaryExpr(Expr l, Expr r);

public String toString() { return left + operator() + right; }

}

final class AndExpr extends BinaryExpr {

String operator() { return " and "; }

BinaryExpr newBinaryExpr(Expr l, Expr r) { return new AndExpr(l,r); }

}

final class OrExpr extends BinaryExpr {

String operator() { return " or "; }

BinaryExpr newBinaryExpr(Expr l, Expr r) { return new OrExpr(l,r); }

}

final class Main {

public static void main(String[] args) {

BinaryExpr e = new AndExpr(); // why isn’t the type of e AndExpr?

Expr[] a = new Expr[3]; // an empty array of size 3

// what is the type of the object stored in each element of the array?

a[0] = e;

a[1] = new OrExpr();

a[2] = e.newBinaryExpr(null,null); // monomorphic call site

for (int i = 0; i < a.length; i++) {

System.out.println(a[i].operator()); // polymorphic call site

System.out.println(a[i].toString()); // mono or polymorphic?

}

}

}

Figure 3.3: Some highlights from the
Expr class hierarchy

PythonTutor.com
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3.2 Polymorphism & Dynamic Dispatch†

A monomorphic call site is one where the dynamic dispatch will always
resolve to the same target. A polymorphic call site is one where the
dynamic dispatch might resolve to a different target each time the
call is executed.

The Java compiler/runtime system inserts code like the following
at each potentially polymorphic call site:

if (a[i] instanceof AndExpr) {

return AndExpr::operator(); }

else if (a[i] instanceof OrExpr) {

return OrExpr::operator(); }

This feature of implicit type tests to determine which method def-
inition to execute is one of the key features of object-oriented pro-
gramming. Many design patterns are about ways to organize code
with this feature that make certain kinds of anticipated changes to
the software modular.
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3.3 Write a recursive-descent recognizer for F
Sources:

ece351.f.rdescent.FRecursiveDescentRecognizer

Libraries:
ece351.util.Lexer
ece351.util.CommandLine

Tests:
ece351.f.rdescent.TestFRDRecognizerAccept
ece351.f.rdescent.TestFRDRecognizerReject

Figure 3.1 lists a grammar for F . A recognizer merely computes
whether a sentence is generated by a grammar: i.e., its output is
boolean. A parser, by contrast, also constructs an abstract syntax tree
(AST) of the sentence that we can do things with. A recognizer is
simpler and we will write one of them first.

The idea is simple: for each production in the grammar we make
a function in the recognizer. These functions have no arguments and
return void. All these functions do, from a computational standpoint,
is examine the lexer’s current token and then advance the token.
If the recognizer manages to push the lexer to the end of the input
without encountering an error then it declares success.

Exercise 3.3.1 Can you write a regular expression recognizer for F?

3.4 Write a pretty-printer for the ast

Sources:
ece351.f.ast.FProgram
ece351.common.ast.AssignmentStatement
ece351.common.ast.ConstantExpr
ece351.common.ast.UnaryExpr
ece351.common.ast.BinaryExpr

Tests:
manual inspection of output
parser tests below

Pretty-printing is the inverse operation of parsing: given an AST,
produce a string. (Parsing produces an ast from a string.) In this
case the task is easy: implement the toString() methods of the ast

classes. When the program invokes toString() on the root node of the
ast the result should resemble the original input string.

3.5 Equals, Isomorphic, and Equivalent†

We were previously introduced to the object contract and the equals
method, and learned that all of the equals methods together are sup-
posed to define a partitioning of the objects, which has three proper- A partitioning is also known as a math-

ematical equivalence class. We’ll try to
move towards the term ‘partitioning’
and away from ‘mathematical equiva-
lence class’, because we use the words
‘equivalence’ and ‘class’ in other pro-
gramming contexts.

ties: reflexivity, symmetry, and transitivity. But we did not talk about
the specific semantics of the equals method. For example, always
returning true from every equals method would define a partition-
ing: there would just be one partition and every object would be in it.
That’s not particularly useful.

In this lab we will give some more meaningful semantics to the
equals method, and we will also define two other partitionings with
different semantics: isomorphic and equivalent. Here is an example:

X <= A or !A;
equals←→ X <= A or !A;

isomorphic←→ X <= !A or A;
equivalent←→ X <= 1;

equals: Two objects are equals if any computation that uses either one
will produce identical results.1 This can only be true if the objects 1 B. Liskov and J. Guttag. Program

Development in Java: Abstraction, Spec-
ification, and Object-Oriented Design.
Addison-Wesley, 2001

are immutable (i.e., the values stored in their fields do not change).

isomorphic: We will say that two objects are isomorphic if they have
the same elements and similar structures. For example, we will
consider the expressions X or Y and Y or X to be isomorphic: they
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are permutations of the same essential structure. Any two objects equals⇒ isomorphic

that are equals are also isomorphic, but isomorphic objects are not
necessarily equals. For example, the expressions X or Y and Y or X

are isomorphic but not equals.

equivalent: We will say that two objects are equivalent if they have You will not be implementing equiva-
lent this term, but you will eventually
(not for this lab) need to understand
what it means and how we have imple-
mented it for FProgram.

the same meaning, but possibly different structures and possibly
different elements. For example, the expression 1 is equivalent
to the expression X or !X: they have the same meaning but totally
different syntax. Any two objects that are isomorphic are also isomorphic⇒ equivalent

equivalent, but not necessarily vice versa (as in this example).

3.6 Write Equals and Isomorphic for the F ast classes
Sources:

ece351.common.ast.VarExpr
ece351.common.ast.ConstantExpr
ece351.common.ast.AssignmentStatement
ece351.common.ast.UnaryExpr
ece351.common.ast.CommutativeBinaryExpr
ece351.f.ast.FProgram

Libraries:
ece351.util.Examinable
ece351.util.Examiner
ece351.util.ExaminableProperties

Tests:
ece351.f.test.TestObjectContractF

Start with VarExpr and ConstantExpr. You should be able to fill in
these skeletons with the knowledge you have learned so far.

For the FProgram and AssignmentStatement classes you will need
to make recursive function calls. Understanding why these calls will
terminate requires understanding recursive object structures.

For the UnaryExpr and CommutativeBinaryExpr classes you will
also need to understand inheritance and polymorphism.

Exercise 3.6.1 Why do we use getClass() for type tests instead of
instanceof?

Exercise 3.6.2 Why do we cast to UnaryExpr instead of NotExpr?

Exercise 3.6.3 How does the operator() method work?

3.7 Write a recursive-descent parser for F
Sources:

ece351.f.rdescent.FRecursiveDescentParser
Tests:

ece351.f.rdescent.TestFRDParserBasic
ece351.f.rdescent.TestFRDParser

Our recursive-descent parser will follow the same structure as our
recursive-descent recognizer. The steps to write the parser are the
same as in the previous lab:
• Copy the procedures from the recognizer. It is important that you follow these

steps. If you try to implement the
parser for F in one big method you will
run into a lot of trouble.

• For each procedure, change its return type from void to one of the
ast classes.

• Modify each procedure to construct the appropriate ast object
and return it.

Exercise 3.7.1 Is the result of pretty-printing an ast always character-
by-character identical with the original input program? Why?

Exercise 3.7.2 Write a program in F for which the result of pretty-
printing the ast is not identical to the original input string.



68 ece351 lab manual [april 5, 2018]

3.8 Steps to success

F Files

Lexer

3.2 Write a recursive
-descent recognizer for F 3.6 Write a recursive-

descent parser for F

RejectAccept

FRecursive 
Descent 

Recongnizer

FRecursive 
DescentParser

FRDParser

FRDParser 
Basic

Lab 3 Programming Procedure

3.5 Write Equals and Isomorphic
 for the F ast classes

VarExpr

FProgram

ConstantExpr

UnaryExpr

Assignment  
Statement

Commutative 
BinaryExpr

Object 
ContractF

3.4 Write a pretty-
printer for the ast

f.ast.*

common. 
ast.*

Figure 3.4: Steps to success for Lab 3.
Legend for icon meanings in Figure 1.8.

3.9 Common Missteps

Not testing your Pretty-Printer before starting to write the
parser. There is no test suite for the pretty printer. You need to test
it manually by looking at the output. If your pretty printer doesn’t
work correctly then you will get weird failures in the parser tests.

Not following the methodology for writing recursive descent
recognizers and parsers from the grammar. In lab1 you could have
got away with this becauseW is a regular language and so there was
no real recursion in the grammar. Because F has nested expressions
there is recursion in the grammar: Expr calls Formula, which in turn
calls Expr back. If you do not follow the methodology, then you will
probably get a parser that works for short formulas but not for long
ones. And it will probably also have other bugs.

Associativity of BinaryExprs. Since and and or are not associa- TestFRDParserBasic.testLeftAssociativeOr()

tive, arithmetically you can parse them either way (left-associative or
right-associative). For uniformity of testing, we require the parse to
be left-associative: i.e., a or b or c should parse as (a or b) or c.
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3.10 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below.

The testing equation for this lab is:
∀ AST | AST.equals(parse(prettyprint(AST)))

At present we have about 80 ast’s to plug into this equation. We
might explore some mechanical techniques to generate more ast’s. One of the great benefits of having a

testing equation is that we can separate
out the correctness condition (the
equation) from the inputs. Then we can
look for other techniques to generate
inputs. By contrast, if we test with
just specific input/output pairs the
correctness condition is that we get the
output for that input.

Current New
TestFRDRecognizerAccept 5 5

TestFRDRecognizerReject 5 5

TestFRDParserBasic 5 5

TestFRDParser 30 10

TestObjectContractF 20 10

3.11 Background & Reading
See also the readings for lab1 above.

Tiger Book
3.0 Parsing
3.1 Context-Free Grammars
3.2.0 Predictive Parsing / Recursive Descent

• including First and Follow Sets
• read Constructing a Predictive Parser on p.50

• skip Eliminating Left Recursion and everything that comes after
it — for now (we’ll study this for exam, but not for the labs)

4.1.1 Recursive Descent

Thinking in Java 2 is a good resource for object-oriented program- 2 B. Eckel. Thinking in Java. Prentice-
Hall, 2002. http://www.mindview.net/

Books/TIJ/
ming in general and Java in particular.

1 Introduction to Objects
6 Reusing Classes
7 Polymorphism

If you are not already familiar with
these topics then this lab is going to
take you longer than five hours. Once
you get through these background top-
ics then the rest of the course material
should be fairly straightforward.

Some topics you should be comfortable with include:

• inheritance / subtyping / subclassing
• polymorphism / dynamic dispatch
• objects vs. variables, dynamic vs. static type
• type tests, casting

ECE155 Lecture Notes In winter 2013 ece155 switched to Java (from
C#), and the third lecture covered some of the differences. http://patricklam.ca/ece155/

lectures/pdf/L03.pdf

http://www.mindview.net/Books/TIJ/
http://www.mindview.net/Books/TIJ/
http://patricklam.ca/ece155/lectures/pdf/L03.pdf
http://patricklam.ca/ece155/lectures/pdf/L03.pdf




Lab 4
Circuit Optimization: F Simplifier

Compiler Concepts: intermediate lan-
guages, identity element, absorbing
element, equivalence of logical for-
mulas, term rewriting, termination,
confluence, convergence

Programming Concepts: interpreter
design pattern, template design pattern,
representation invariants

F is an intermediate language for our circuit synthesis and simula-
tion tools, in between vhdl and the final output languages, as was
depicted in Figure 1. In a subsequent lab we will write a translator
from vhdl to F .

Compilers usually perform their optimizations on programs in an
intermediate language. These intermediate languages are designed
to be easier to work with mechanically, at the cost of being less pleas-
ant for people to write large programs in. A program written in F ,
for example, is just a list of boolean formulas. This is relatively easy
to manipulate mechanically. vhdl, by contrast, has conditionals,
module structure, etc., which are all of great benefit to the vhdl pro-
grammer but are more work for the compiler writer to manipulate.

The simplifier we will develop in this lab will work by term-
rewriting. For example, when it sees a term of the form x + 1 it will
rewrite it to 1. Figure 4.5 lists the algebraic identities that your sim-
plifier should use.

Our simplifier works at a syntactic level: i.e., it does not have a
deep understanding of the formulas that it is manipulating. The
testing framework to determine if the simplifier has produced correct
output does, however, do a deep semantic analysis of the formulas,
as discussed in §4.9.

You might have previously studied semantic techniques for boolean
circuit simplification such as Karnaugh Maps and the Quine-McCluskey
algorithm for computing prime implicants. By completing this lab
you will have the necessary compiler-related knowledge to imple-
ment these more sophisticated optimization algorithms in the future.
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4.1 Iteration to a Fixed Point and Termination†

We will use this idea of iterating to
a fixed point on paper in the course
notes when analyzing a grammar to
determine if it is ll(1) and when doing
dataflow analysis.

A common technique in optimizing compilers is to iterate to a fixed
point: that is, to keep applying the optimizations until the program
being transformed stops changing. Figure 4.1 shows the code in
Expr.simplify() that we will run in this lab to iterate to fixed point.

final public Expr simplify() {

Expr e = this;

while (true) { // loop forever?

final Expr simplified = e.simplifyOnce();

if (simplified.equals(e)) {

// we’re done: nothing changed

return simplified;

} else {

// something changed: keep working

e = simplified;

}

}

}

Figure 4.1: Code listing for
Expr.simplify() showing iteration to
a fixed point. This is the only imple-
mentation of simplify() in the project,
and it is provided for you. You will be
working on implementing simplify-
Once() for some of the ast classes.

From this termination condition we
can reason that the simplify method
is idempotent: that is, if we apply it
twice we get the same result as if
we apply it once. We first saw this
property above in §0.15 in the form
f (x) = f ( f (x)). In our code here,
x.simplify().equals(x.simplify().simplify())

Idempotence is an important gen-
eral property that can be exploited
in testing. It is one of the main gen-
eral properties that must hold for
data synchronizers: if a synchro-
nization is performed, and no data
changes on either side, then a sec-
ond synchronization is performed,
the second synchronization should
not need to perturb the data. http:
//en.wikipedia.org/wiki/Idempotence

Notice the loop while (true). Is this an infinite loop? Will this code ever
terminate? Maybe. Inside the body of the loop there is a return state-
ment that will exit the loop (and the method) when simplified.equals(e).
We refer to this test to decide whether to exit the loop as the termina-
tion condition. Will this termination condition ever be true? Will it
become true for any possible F program that we might optimize?

Yes, this termination condition will become true for any possible F
program that we optimize (unless there are other bugs in your code).
How do we know this? Because our optimizer applies rewrite rules
that make the formula smaller, and there is a limit to how small a
formula can get. Therefore, we say that our term rewriting system is
terminating: there is no input F program on which it will get stuck in
an infinite loop.

http://en.wikipedia.org/wiki/Idempotence
http://en.wikipedia.org/wiki/Idempotence
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4.2 Confluence†

We now know that our term rewriting system is terminating: it will
never get stuck in an infinite loop. But will it always compute the
same result? What if we apply the rewrite rules in a different order?
A term rewriting system that always reaches a unique result for any
given input, regardless of the order in which the rules are applied, is
called confluent.

Suppose, as a counter-example, that we consider a term rewriting
system for the square root operator (

√
) that has two rewrite rules,

one that gives the positive root and another that gives the negative
root. This rewrite system is not confluent. For example,

√
4 7→ 2 and√

4 7→ −2, and 2 6= −2. It is harder to test code that implements a
non-confluent term rewriting system because there could be different
outputs for the same input.

The term rewriting system that we are implementing in this lab is
confluent. Consider the example in Figure 4.2. Whichever order we
apply the rules in we eventually get to the same result.

(X or !X) and (Y and !Y)

1 and (Y and !Y) (X or !X) and 0

1 and 0

0

Figure 4.2: Example of two confluent
rewrites converging on a common
solution

convergent = confluent + terminating

There are a variety of sources on-
line where you can read more
if you are interested. One good
one is by Paul Klint: http:
//www.meta-environment.org/doc/

books/extraction-transformation/

term-rewriting/term-rewriting.html

Proving that a term rewriting system is confluent is, in the general
case, a fairly difficult problem. For our purposes, we will consider a
rewrite system to be confluent if there are no two rules that have the
same left-hand side. Our counter-example above had two rules with√

x as the left-hand side. The rules that we are implementing for this
lab all have different left-hand sides.

http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html
http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html
http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html
http://www.meta-environment.org/doc/books/extraction-transformation/term-rewriting/term-rewriting.html
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4.3 Mathematical Properties of Binary Operators†

These are things you’ve probably learned and forgotten many times.
Turns out they are actually important in this course.

The term binary operators refers to the grammatical fact that these
operators take two operands (arguments) —- not to the semantic is-
sue that some operators apply to boolean (binary) values. For exam-
ple, conjunction (logical and) is binary because it takes two operands,
not because it operates on true/false values.

4.3.1 Commutativity

Changing the order of the arguments doesn’t matter, e.g.:

x + y = y + x

Addition, multiplication, conjunction (and), disjunction (or) are all
commutative. Subtraction and division are not commutative: the
order of the operands (arguments) matters.

4.3.2 Associativity

Wikipedia says it nicely:1 1 http://en.wikipedia.org/wiki/

Associative_property

Within an expression containing two or more occurrences in a row of
the same associative operator, the order in which the operations are
performed does not matter as long as the sequence of the operands is
not changed. That is, rearranging the parentheses in such an expres-
sion will not change its value. Consider, for instance, the following
equations:

1 + (2 + 3) = (1 + 2) + 3

Addition, multiplication, conjunction (logical and), disjunction (logi-
cal or) are all associative.

Subtraction, division, exponentiation, and vector cross-product are
not associative. The terminology can be a little bit confusing here.
On the one hand we say that subtraction is not associative, and on the
other hand we say it is left associative because:

x− y− z = (x− y)− z

Exponentiation is right associative:

xyz
= x(y

z)

Saying that an operator is not associative means that it is either left
associative or right associative.

http://en.wikipedia.org/wiki/Associative_property
http://en.wikipedia.org/wiki/Associative_property
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4.4 Transforming BinaryExprs to NaryExprs
Where to implement this idea will be
described below.

We say that an operator is binary
because it has two operands. It is
just a coincidence that our binary
operators operate on boolean values.
For example, arithmetic addition is
also a binary operator, even though
it operates on numbers. We say that
an operator is n-ary if it has a variable
number of operands, possibly more
than two.

conjunction means ‘logical and’
disjunction means ‘logical or’

To test your simplifier we’ll need to compare the output it computes
with the output that the staff simplifier computes. In a previous lab
we wrote an isomorphic method that accounted for the commutativity
property of many binary operations: e.g., it would consider x + y and
y + x to be isomorphic. That’s a good start, but we’ll need more than
this to really evaluate your simplifier mechanically.

Many of the binary operations we consider are also associative.
That is, x + (y + z) is equivalent to (x + y) + z. Disjunction and
conjunction are both associative, as are addition and multiplication.

Detecting the equivalence of x+(y+ z) and (x+ y)+ z is tricky be-
cause these parse trees are not structurally similar (recall that ‘struc-
turally similar’ is what isomorphic means). We could try to implement
a really clever equivalent method that detects this equivalence, or we
could go all out and compute the truth tables for each expression and
compare them, or we could try something else: transforming these
trees into a standardized form for which it is easy to check isomor-
phism.

Figure 4.3 shows four different trees that all represent the same
logical expression. The first three trees are binary. Comparing them
for equivalence is difficult. However, all three binary trees can be
transformed into the sorted n-ary tree fairly easily, and these sorted
n-ary trees can be easily compared to each other for isomorphism.

Note that this transformation requires that the operator (e.g., ‘+’)
be both associative and commutative. Fortunately, both conjunction
and disjunction are associative and commutative, and these are the
only operators that we are applying this transformation to.

right-associative parse left-associative parse right-associative parse sorted n-ary tree
of x + y + z of x + y + z of y + x + z of x + y + z

+

x +

y z

+

+ z

x y

+

y +

x z

+

x y z

Figure 4.3: Four trees that represent
logically equivalent circuits. The sorted
n-ary representation makes equivalence
comparisons easier.

Where to implement this transformation will be described below.
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4.5 Identity Element & Absorbing Element†

For example, with integer addition and
multiplication we have:

∀ x ∈ Z | x = x× 1
∀ x ∈ Z | 0 = x× 0
∀ x ∈ Z | x = x + 0

Let I represent the identity element of a binary operation ⊗ on ele-
ments of set S, and let A represent the absorbing element of that opera-
tion on that set. Then the following equations hold:

∀ x ∈ S | x = x⊗ I
∀ x ∈ S | A = x⊗ A

What are the absorbing and identity elements for conjunction and
disjunction in boolean logic?

4.6 Simplify Once

Sources:
ece351.common.ast.AndExpr
ece351.common.ast.OrExpr
ece351.common.ast.NotExpr
ece351.common.ast.NaryExpr
....NaryOrExpr.getIdentityElement()
....NaryOrExpr.getAbsorbingElement()
....NaryAndExpr.getIdentityElement()
....NaryAndExpr.getAbsorbingElement()

Libraries:
NaryExpr.filter()
NaryExpr.removeAll()
NaryExpr.contains()
NaryExpr.getThatClass()

Tests:
TestSimplifierEquivalence
TestSimplifier2

In §4.1 above we discussed how the simplify() method keeps calling
simplifyOnce() until there are no changes (i.e., it iterates to a fixed
point). Now we turn our attention to simplifyOnce().

Figure 4.5 lists all of the transformations to be implemented
within the simplifyOnce() methods. By far the most interesting case
is NaryExpr.simplifyOnce(), which is broken down into a number of
sub-cases, as shown in Figures 4.4 and 4.5.

protected final Expr simplifyOnce() {

assert repOk();

final Expr result =

simplifyChildren().

mergeGrandchildren().

foldIdentityElements().

foldAbsorbingElements().

foldComplements().

removeDuplicates().

simpleAbsorption().

subsetAbsorption().

singletonify();

assert result.repOk();

return result;

}

Figure 4.4: The steps of Nary-
Expr.simplifyOnce().

You are not obliged to use exactly
these steps.

These methods have been stubbed
with return this, so that the code will run
— it just won’t do any transformations
until you implement them.

All of these methods transform
an NaryExpr to a new NaryExpr —
except singletonify(), which might
return a different kind of Expr. Why?
Most of these transformations reduce
the number of nodes in the ast. That
might result in an NaryExpr with
just one child, which doesn’t make
sense. So singletonify() will replace
this malformed NaryExpr with its lone
child. Implement singletonify() early.
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Level Description Code & Transformation Notes
0 Convert binary to n-ary OrExpr.simplifyOnce()

AndExpr.simplifyOnce()
NaryExpr.mergeGrandchildren()

B+

B+ Y

X Z

7→

N+

N+ Y

X Z

7→

N+

X Y Z

1 Fold Identity Elements NaryExpr.foldIdentityElements()

x · 1 7→ x
x + 0 7→ x

Implement NaryExpr.singletonify()
before implementing folds. Why?

2 Fold Absorbing Elements NaryExpr.foldAbsorbingElements()

x · 0 7→ 0
x + 1 7→ 1

Write more concise code by using
getIdentityElement() and
getAbsorbingElement()

3 Fold Negation NotExpr.simplifyOnce()

!0 7→ 1
!1 7→ 0

!!x 7→ x

4 Fold Complements NaryExpr.foldComplements()

x·!x 7→ 0
x+!x 7→ 1

5 Deduplication NaryExpr.removeDuplicates()

x + x 7→ x
x · x 7→ x

6 Simple Absorption NaryExpr.simpleAbsorption()

x + (x · y) 7→ x
x · (x + y) 7→ x

Is x a VarExpr or an NaryExpr?
The latter case is harder.

7 Subset Absorption NaryExpr.subsetAbsorption()

(a + b) + ((a + b) · y) 7→ a + b

Figure 4.5: Simplifications for F pro-
grams
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4.7 Object sharing in the simplifier

Figure 4.6 was drawn by some students to help you visualize which
objects are shared between the original ast and the simplified ast.
The general pattern is that the leaves of the tree will be re-used
(shared), whereas the interior nodes will be replaced.

F AST Before & After for Simplification

Objects in Memory

1ax

Legend

Reference

AST Path

<=

a

or

1

x

<=

x 1

Before

After

<=<=

Figure 4.6: Object sharing in the F
simplifier. The original ast and the
simplified ast will share some nodes.
This is permissible because all of our
ast nodes are immutable.
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4.8 Class Representation Invariants†

http://en.wikipedia.org/wiki/Class_invariant
The invariants of a class are conditions that are expected to hold for
all legal objects of that class. For example, a legal FProgram will con-
tain at least one formula and will have exactly one formula for each
output pin (i.e., no output pin will be computed by two different for-
mulas). A legal NaryExpr will have more than one child, its children
must not be null, and its children must be sorted. By convention, the class representation

invariants are checked in a method
called repOk().

For mutable objects, invariants are usually expected to hold at
all public method boundaries (before the method starts and fin-
ishes). All of our ast objects are immutable. We take the position
that it is possible to construct illegal ast objects (where the invari-
ants do not hold) as temporary values. Consider the code for Nary-
Expr.simplifyOnce() in Figure 4.4: each of the helper methods (except
singlotonify) is allowed to construct and return an illegal NaryExpr,
but at the end we expect to have a legal Expr object.

public boolean repOk() {

// programming sanity

assert this.children != null;
// should not have a single child: indicates a bug in simplification

assert this.children.size() > 1 : "should have more than one child, probably a bug in simplification";

// check that children is sorted

int i = 0;

for (int j = 1; j < this.children.size(); i++, j++) {

final Expr x = this.children.get(i);

assert x != null : "null children not allowed in NaryExpr";

final Expr y = this.children.get(j);

assert y != null : "null children not allowed in NaryExpr";

assert x.compareTo(y) <= 0 : "NaryExpr.children must be sorted";

}

// no problems found

return true;

}

Figure 4.7: NaryExpr.repOk() class
representation invariants for NaryExpr;
i.e., the rules that define what is a
well-formed NaryExpr object.

http://en.wikipedia.org/wiki/Class_invariant
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4.9 Logical equivalence for boolean formulas†

The correctness of your simplifier is
determined by checking whether the
output is logically equivalent to, yet
structurally smaller (or no larger) than
the input.
Is the termination condition in
Expr.simplify() (Figure 4.1) written
in terms of logical equivalence? Why?

F is a language of boolean formulas. Checking equivalence of
boolean formulas is an NP-complete problem.

To see why checking equivalence of boolean formulas is NP-
complete consider the example of comparing (x + y) + z and x +

(y + z) and !(!x·!y·!z) by constructing their truth tables, where f
names the output:

(x + y) + z = f
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

x + (y + z) = f
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

!(!x · !y · !z) = f
0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 1

Figure 4.8: Equivalent truth tables
We can see from examining the three truth tables that these three

formulas are equivalent. Great. But the number of rows in each truth
table is an exponential function of the number of variables in the
formula. For example, these formulas have three variables and eight
rows in their truth tables: 23 = 8.

What to do? This is a hard problem. As discussed in the Course
Notes §0 we have three main options: implement an NP-complete al-
gorithm ourselves; use a polynomial time approximation; or convert
the problem to sat and ask a sat-solver for the answer. If you look Our translation to sat occurs via an

intermediate language named Alloy
(http://alloy.mit.edu), which is in
turn translated to sat. We found it
convenient to work this way, but it
would also be easy to translate this
problem to sat directly.

The sat solver that Alloy is config-
ured to use in this case is sat4j, which
is open-source, written in Java, and
used by Eclipse to compute plugin
dependencies.

at the skeleton code in FProgram.equivalent() you will see that it uses
this last approach, and this is the approach that we generally recom-
mend you follow in your future career (unless there are well known
and accepted polynomial time approximations for the problem you
are trying to solve).

For this particular problem of computing the equivalence of
boolean formulas there is a fourth option: translate the formulas
into a standardized form, and then compare that standardized form.
This is the approach that we took above when we converted the bi-
nary expressions to sorted n-ary expressions. In the case of boolean
formulas, the most common standardized form is reduced, ordered
binary decision diagrams (or bdd for short).2 A bdd is essentially a 2 R. E. Bryant. Graph-based algorithms

for boolean function manipulation.
IEEE Transactions on Computers, C-
35(8):677–691, Aug. 1986

There will be no exam questions on
bdds. This material is just here for
your interest. Boolean formulas are of
fundamental and intrinsic interest both
in theory and in practice.

compressed form of a truth table.
Two equivalent boolean formulas will have the exact same bdd

representation. Constructing a bdd for a boolean formula is, in the
worst case, an exponential problem, but in practice usually runs
fairly quickly. bdds are commonly used for hardware verification
and other tasks that require working with boolean formulas.

http://alloy.mit.edu
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4.10 BinaryExpr.examine() is a Higher-Order Function†

Higher-order functions were briefly
introduced in [N 0.6]A higher-order function is a function that takes another function as

an argument. BinaryExpr.examine() is an example: the first argu-
ment, the Examiner, is essentially another function. The Examiner
object has no state: it is just used to call the examine() method.

private boolean examine(final Examiner e, final Object obj) {

// basics

if (obj == null) return false;

if (!this.getClass().equals(obj.getClass())) return false;

final BinaryExpr be = (BinaryExpr) obj;

// compare field values

if (!e.examine(left, be.left)) return false;

if (!e.examine(right, be.right)) return false;

// no differences

return true;

}

Figure 4.9: BinaryExpr.examine() is a
higher-order function

Exercise 4.10.1 How many Exam-
iner objects are there in this codebase?
What are their names?

Exercise 4.10.2 Is it possible to
create any more Examiner objects?

4.11 Choice of Data Structures for NaryExpr.children†

NaryExpr uses an ImmutableList to store its children. Some points of
discussion:

• ImmutableList is used widely in this code, so it is familiar.

• We must use linear search with ImmutableList. Perhaps some NaryExpr.contains()

other data structure would offer better asymptotic complexity. For
example, a hash structure would give us constant time lookup.
But, we are engineers: we care about constant factors. Linear
search in a small list can be faster, in practice, than looking up
in a hash structure — depending on what the constant factors are.

• A list is the most compact storage for this purpose. The children of
NaryExpr need to be ordered. So a structure like HashMap would
not be adequate: LinkedHashMap would be necessary. Linked-
HashMap maintains ordering via an internal list, in addition to the
space allocated for the hash structure.

• ImmutableList.remove() will throw exceptions because ImmutableList
is immutable.
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4.12 Evaluation
In the unlikely, but not impossible,
event that you implement a better
simplifier than the staff has then your
simplifier might produce spurious
failures while evaluating the correctness
equation. Talk to us to rectify the
situation and get some bonus marks.

The last pushed commit before the deadline is evaluated both on
the shared test inputs and on a set of secret test inputs according to
the weights in the table below. The testing equations are as follows.
First, the simplifier should always produce an equivalent F program,
for all inputs:

originalAST.simplify().equivalent(originalAST)

Second, the simplifier should be idempotent:
originalAST.simplify().equals(originalAST.simplify().simplify())

Finally, for a select set of F programs (opt*.f), the simplifier should
perform some specific transformations:

originalAST.simplify().isomorphic(staffSimplifiedAST) Note that you do not earn any marks
for this lab until TestObjectContractF
from lab3 passes. As you can see, the
testing equations for this lab depend
on having the object contract correctly
implemented for the F ast classes. If
your object contract implementation is
buggy then we cannot trust the results
of the testing equations.

Shared Secret
TestSimplifierEquivalence 30 10

TestSimplifier2 40 20



Lab 5
ParsingW with Parboiled

Compiler Concepts: parser generators,
Parsing Expression Grammars (peg),
push-down automata

Programming Concepts: domain
specific languages (dsl): internal vs.
external, debugging generated code,
stacks

Files:
ece351.w.parboiled.WParboiledRecognizer
ece351.w.parboiled.WParboiledParser

Tests:
ece351.w.parboiled.TestWParboiledRecognizerAccept
ece351.w.parboiled.TestWParboiledRecognizerReject
ece351.w.parboiled.TestWParboiledParserAccept
ece351.w.parboiled.TestWParboiledParserReject

Tool Documentation:
http://parboiled.org

In this lab you will write a new parser forW . In lab1 you wrote
a parser forW by hand. In this lab you will write a parser forW
using a parser generator tool named Parboiled. A parser generator is
a tool that takes a description of a grammar and generates code that
recognizes whether input strings conform to that grammar. Many
developers in practice choose to use a parser generator rather than
write parsers by hand.

There are many different parser generator tools, and there are a
number of dimensions in which they differ, the two most important
of which are the theory they are based on and whether they require dsl = Domain Specific Language. This

terminology is in contrast to a general
purpose programming language, such as
Java/C/etc.

the programmer to work in an internal or external dsl. The theory
behind Parboiled is called Parsing Expression Grammars (peg). Other
common theories are ll (e.g., Antlr) and lalr (e.g., JavaCup).

A dsl is often used in combination with a general purpose pro-
gramming language, which is sometimes called the host language.
For example, you might write an sql query in a string inside a Java
program. In this example Java is the host language and sql is an

Exercise 5.0.1 Name a few more
common dsls

external dsl for database queries. Whether the dsl is internal or ex-
ternal is determined by whether it shares the grammar of the host
language, not by the physical location of snippets written in the dsl.
In this example the sql snippet is written inline in the Java program,
but sql has a different grammar than Java, and so is considered to be
an external dsl.

An internal dsl uses the grammar of the host language. A com-
mon way to implement an internal dsl is as a library written in the
host language. Not all libraries represent dsl’s, but almost all inter-
nal dsl’s are implemented as libraries. The Tiger Book §3.4 discusses two other

parser generator tools, JavaCC and
SableCC. You can look at that section to
get a sense for what their external dsl’s
look like, and why it might be easier to
learn Parboiled first. Parboiled did not
exist when the Tiger book was written.

Most parser generators require the programmer to work in an
external dsl. That is, they require the programmer to learn a new
language for specifying a grammar. Parboiled, by contrast, provides
an internal dsl. I think that it is easier to learn an internal dsl, and
this is why we have chosen to use Parboiled.

http://parboiled.org
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The purpose of this lab is for you to learn how to use Parboiled. Learning progression: repetition with
increasing complexity. In a traditional
compilers project, without learning
progression, you would have to learn
everything simultaneously in one
big lab: the source language (W), the
host language (Java), and the parser
generator’s external dsl. Moreover, the
source language would be more like
our toy subset of vhdl, which we won’t
see until after midterm week, rather
than a simple regular language likeW .
Even the pedagogical example on the
Parboiled website is as complicated as
F (a simple context-free language).

This lab is specifically structured to facilitate this learning. You are
already familiar with the input languageW and the host language
Java. W is an even simpler language than is used to teach Parboiled
on its website. The only new thing in this lab is Parboiled.

Once you learn to use one parser generator tool it is not too hard
to learn another one. Learning your first one is the most challenging.

The other reason why we are using Parboiled is that it is like a
pushdown automata because its main storage mechanism is a stack,
and so it reinforces that theoretical concept.

5.1 Introducing Parboiled

To write a recognizer or a parser with Parboiled we extend the
BaseParser class, which either defines or inherits almost all of the
methods that we will use from Parboiled. For our labs we will actu-
ally extend BaseParser351, which in turn extends BaseParser and adds
some additional utility methods.

We can divide the methods available in our recognizer/parser into
a number of groups:

Rule Constructors. These methods are used to describe both the Recall that in previous labs there was
a separate Lexer class that encoded
the lexical specification forW (and
F ). Some parser generator tools have
separate dsl’s for the lexical and
syntactic specifications of the input
language. In Parboiled, by contrast, we
specify the tokenization as part of the
grammar.

grammar and the lexical specification of the language that we wish
to recognize or parse, and we can subdivide this group this way:

ebnf = Extended Backus Naur Form.
This is the name of the notation used to
specify the grammars forW (Figure 1.2)
and F (Figure 3.1).

EBNF Parboiled
* ZeroOrMore()
+ OneOrMore()
? Optional()
| FirstOf() similar but importantly different

Sequence() no explicit character in EBNF

Regular expressions are often used for
lexical specifications.

For this lab we will specify whitespace
explicitly. In the next lab we will
learn how to specify the whitespace
implicitly, which makes the recognizer
rules look a bit less cluttered.

Regex Parboiled
[ab] AnyOf("ab")
[^ab] NoneOf("ab")
a Ch(’a’) or just ’a’

[a-z] CharRange(’a’, ’z’)
IgnoreCase() no regex equivalent
EOI special char for end of input
W0() optional whitespace (zero or more)
W1() mandatory whitespace (at least one)

Access to input. A recognizer doesn’t need to store any of the input
that it has already examined. A parser, however, often saves sub- The match() method is in Parboiled’s

BaseActions class, which is the super-
class of BaseParser.
Exercise 5.1.1 Draw a uml class
diagram for WParboiledRecognizer and
WParboiledParser.

strings of the input into an ast. The match() method returns the
substring that matched the most recently triggered rule.

[ab]
[^ab]
a
[a-z]
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Stack manipulation. A parser builds up an ast. Where do the frag-
ments of this ast get stored while the parser is processing the
input? When we wrote the parsers forW and F by hand in the
previous labs we used a combination of fields, local variables,
and method return values to store ast fragments. None of these
storage mechanisms are available to us within Parboiled’s dsl.
Parboiled gives us one and only one place to store ast fragments: Hewlett-Packard calculators also

famously have a value stack for inter-
mediate results.

the Parboiled value stack. In this sense, working with Parboiled
is very much like programming a pushdown automata. We can
manipulate this stack with the standard operations, including: These stack operations are in Par-

boiled’s BaseActions class, which is the
superclass of BaseParser.

push(), pop(), peek(), swap(), and dup(). When the parser has pro-
cessed all of the input we expect to find the completed ast on the
top of the stack.

Grammar of the input language. We will add a method to our recog- We might also add some methods for
parts of the lexical specification of the
input language.

nizer/parser for each of the non-terminals in the grammar of the
input language. These methods will have return type Rule and
will comprise just one statement: a return of the result of some
Parboiled rule constructor. See rule constructors above.

5.2 Write a recognizer forW using Parboiled

Suppose we want to process files that contain a list of names, such as
‘Larry Curly Moe ’. A recognizer for such a language might include a
snippet as in Figure 5.1.

public Rule List() { return ZeroOrMore(Sequence(Name(), W0())); }

public Rule Name() { return OneOrMore(Letter()); }

public Rule Letter() { return FirstOf(CharRange(’A’, ’Z’), CharRange(’a’, ’z’)); }

Figure 5.1: Snippet of a recognizer
written in Parboiled’s dsl.

Exercise 5.2.1 Write the ebnf

grammar that corresponds to this
Parboiled code.

5.3 Add actions to recognizer to make a parser

Let’s add actions to our recognizer from Figure 5.1 to make a parser.
Figure 5.2 lists code for the actions. The general idea is that we wrap
every recognizer rule in a Sequence constructor, and then add new
clauses to manipulate the stack: i.e., a clause with one of the push,
pop, peek, swap, dup, etc., commands.

Figure 5.5 augments the listing of Figure 5.2 with some debugging debugmsg() and checkType() are
defined in BaseParser351, which is a
superclass of our recognizer/parser
classes and a subclass of Parboiled’s
BaseParser.

clauses using the debugmsg() and checkType() methods. If you want
to inspect memory while your recognizer or parser is executing then
use one of the debugmsg() or checkType() methods and set a break-

Rule constructors are executed once in
a grammar analysis phase in order to
generate code that will actually process
input strings.

point inside that method. Setting a breakpoint inside a rule constructor
will not do what you want.
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public Rule List() {

return Sequence(

push(ImmutableList.of()),

ZeroOrMore(Sequence(Name(), W0()))

);

}

public Rule Name() {

return Sequence(

OneOrMore(Letter()),

push(match()),

swap(),

push( ((ImmutableList)pop()).append(pop()) )

);

}

public Rule Letter() { return FirstOf(CharRange(’A’, ’Z’), CharRange(’a’, ’z’)); }

// wrap everything in a Sequence

// push empty list on to stack

// rule from recognizer

// wrap everything in a Sequence

// consume a Name, which can be retrieved later by match()

// push the Name on top of the stack

// swap the Name and the List on the stack

// make a new list by appending the new Name to the old List

// rule from recognizer

Figure 5.2: Snippet of a parser written
in Parboiled’s dsl, corresponding to
the recognizer snippet in Figure 5.1.
See this snippet extended with some
debugging commands in Figure 5.5.

When the parser reaches the end of the input then we expect to
find a list object on the top of the stack, and we expect that list object
to contain all of the names given in the input. For example, for the
input string ‘Ren Stimpy ’ we would expect the result of the parse
to be the list [‘Ren’, ‘Stimpy’]. Similarly, for the input string ‘Larry
Curly Moe ’ we would expect the result of the parse to be the list
[‘Larry’, ‘Curly’, ‘Moe’]. The result of a parse is the object on the top
of the stack when the parser reaches the end of the input. Figure 5.3 http://www.youtube.com/results?

search_query=ren+stimpyillustrates the state of the stack as this example parser processes the
input ‘Ren Stimpy ’.

[ ]
Ren
[ ]

[ ]
Ren [Ren]

Stimpy
[Ren]

[Ren]
Stimpy [Ren, Stimpy]

Figure 5.3: Stack of Parboiled parser
from Figure 5.2 while processing input
‘Ren Stimpy ’. Time proceeds left to
right.

Exercise 5.3.1 Which state of the
stack corresponds to which line of the
parser source code?

5.3.1 An alternative Name() rule

Figure 5.4 shows an alternative formulation of the Name() rule from
Figure 5.2.

public Rule Name() {

return Sequence(

OneOrMore(Letter()),

push( ((ImmutableList)pop()).append(match()) )

);

}

Figure 5.4: An alternative definition of
the Name() rule in Figure 5.2

Exercise 5.3.2 Draw out the stack
that this alternative formulation creates
(i.e., the analogue of Figure 5.3).

http://www.youtube.com/results?search_query=ren+stimpy
http://www.youtube.com/results?search_query=ren+stimpy
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public Rule List() {

return Sequence(

push(ImmutableList.of()),

ZeroOrMore(Sequence(Name(), W1()))

checkType(peek(), List.class)

);

}

public Rule Name() {

return Sequence(

OneOrMore(Letter()),

push(match())

debugmsg(peek()),

checkType(peek(), String.class)

swap(),

checkType(peek(), List.class)

push( ((ImmutableList)pop()).append(pop()) )

);

}

public Rule Letter() { return FirstOf(CharRange(’A’, ’Z’), CharRange(’a’, ’z’)); }

// wrap everything in a Sequence

// push empty list on to stack

// rule from recognizer

// expect a list on the top of the stack

// wrap everything in a Sequence

// rule from recognizer

// push a single name, so stack is: [List, String]

// print the matched name to System.err

// match always returns a String

// swap top two elements on stack: [String, List]

// confirm that the list is on top

// construct and push a new list that contains

// all of the names on the old list plus this new name

// rule from recognizer

Figure 5.5: Snippet of a parser written
in Parboiled’s dsl (Figure 5.2). Ex-
tended with debugging commands.
Corresponding to the recognizer snip-
pet in Figure 5.1.

5.3.2 The stack for ourW parser will have two objects

Exercise 5.3.3 Draw out a picture
of what you expect the stack to look
like at each point in time of the parser
execution before you start programming it.
See Figure 5.3 as an example.

Exercise 5.3.4 What is the maximum
size that the stack will grow to?

The stack for ourW programs will have two objects once it reaches
steady state: a WProgram object and a Waveform object. Periodically
the Waveform object will be appended with the WProgram object and
a new Waveform object will be instantiated. The WProgram object
will usually be closer to the bottom of the stack and the Waveform
object will usually be closer to the top.

5.4 Parsing Expression Grammars (pegs)†

Exercise 5.4.1 What language
feature can cfgs represent that pegs
cannot?

Parboiled works with Parsing Expression Grammars (pegs). pegs are
slightly different than Context Free Grammars (cfgs). The important
difference is that pegs cannot represent ambiguity, whereas cfgs
can. We never want ambiguity in programming languages, so this
‘feature’ of cfgs is not much of a feature in our context. http://en.wikipedia.org/wiki/

Parsing_expression_grammar

http://en.wikipedia.org/wiki/

Context-free_grammar

cfgs were originally developed by linguists to model natural lan-
guages, which often contain grammatical ambiguities. Only after
linguists had successfully applied the idea of cfgs in their natural
language context did computer scientists try using cfgs for program-
ming languages.

http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://en.wikipedia.org/wiki/Parsing_expression_grammar
http://en.wikipedia.org/wiki/Context-free_grammar
http://en.wikipedia.org/wiki/Context-free_grammar
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Where does ambiguity arise in a cfg? From the choice (alterna-
tion) operator: ‘|’ (the bar). An ambiguity is when two (or more)
different alternatives might apply. pegs remove this possibility for
ambiguity by treating alternatives in priority order: the first alterna-
tive to match is taken as correct; if a subsequent alternative would
also have matched it is just ignored. So Parboiled does not have a
bar operator, it has the FirstOf method instead, which says ‘use the
alternative in this list that matches first.’

cfgs and pegs recognize almost the
same set of grammars, but there are a
few that each can do that the other can-
not. For example, a cfg can recognize
the following, while a peg cannot:

S→ ′x′ S ′x′ | ′x′
Similarly, there are some grammars that
pegs can recognize that cfgs cannot,
such as counting three things:
{anbncn|n ≥ 0}

5.5 Expressions, Statements, and Side Effects†

Expressions are evaluated to a value. From an idealistic perspective,
expressions are mathematical: they comprise variables and operators;
they do not change the state of the machine.

Statements are executed to do something (i.e., a side-effect). State-
ments end with a semi-colon (;) in C-like languages. They change
the state of the machine (their side-effect). For example, an assign-
ment statement changes the value bound to a variable; a goto statement
changes the program counter (the statement which is currently being
executed). The Wikipedia definition of statement:

https://en.wikipedia.org/wiki/

Statement_%28computer_science%29In computer programming, a statement is the smallest standalone
element of an imperative programming language that expresses some
action to be carried out. It is an instruction written in a high-level
language that commands the computer to perform a specified action.
A program written in such a language is formed by a sequence of one
or more statements. A statement may have internal components (e.g.,
expressions).

The line between expressions and statements can be a bit fuzzy
in modern languages (most languages invented after around 1970; C
was one of the first to blurr this line a bit). There are some nice arti-
cles on StackOverflow that discuss this bluriness in C#and Python.
That discussion is beyond the scope of this course, but might be of
interest to you.

C#: http://stackoverflow.com/questions/19132/expression-versus-statement
Python: http://stackoverflow.com/questions/4728073/what-is-the-difference-between-an-expression-and-a-statement-in-python

Prefix/Postfix/Infix notationPrefix/Postfix/Infix notation

https://en.wikipedia.org/wiki/Statement_%28computer_science%29
https://en.wikipedia.org/wiki/Statement_%28computer_science%29
http://stackoverflow.com/questions/19132/expression-versus-statement
http://stackoverflow.com/questions/4728073/what-is-the-difference-between-an-expression-and-a-statement-in-python
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5.6 A few debugging tips

You might get a weird error message that Parboiled has difficulty cre-
ating the parser class. If so, see if your rule constructors are throwing
exceptions. For example, the skeleton code ships with stubs like this: You need to get rid of all of these stubs

and replace them with code that does
something sensible — or just return null.
If you leave the exception throwing in,
even in a rule constructor you don’t
call, Parboiled will complain.

public Rule Program() {

// TODO: 1 lines snipped

throw new ece351.util.Todo351Exception();

}

Also, you should explicitly include EOI in your grammar.

5.7 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below.

You do not earn any marks for the
rejection tests until some acceptance
tests pass. You do not earn any marks
for the main parser tests until the basic
parser test passes.

Current New
TestWParboiledRecognizerAccept 20 5

TestWParboiledRecognizerReject 5 5

TestWParboiledParserBasic 5 0

TestWParboiledParserAccept 30 15

TestWParboiledParserReject 10 5

The recognizer tests just run the recognizer to see whether it rejects
or accepts. The parser rejection tests work similarly. The parser ac-
ceptance tests check two testing equations. Let w name the inputW
file. Let x = ParboiledParse(w). The two testing equations are:

x.isomorphic(ParboiledParse(PrettyPrint(x)))

x.isomorphic(RecursiveDescentParse(w))

5.8 Reading

Parboiled & pegs:
http://parboiled.org

https://github.com/sirthias/parboiled/wiki/Grammar-and-Parser-Debugging

https://github.com/sirthias/parboiled/wiki/Handling-Whitespace

http://www.decodified.com/parboiled/api/java/org/parboiled/BaseParser.html

http://en.wikipedia.org/wiki/Parsing_expression_grammar

JavaCC & SableCC: (two other parser generators) You will not be tested on specifics of
JavaCC and SableCC, but you should
know of their existence and that they
use an external dsl for specifying the
grammar.

Tiger Book §3.4
Note that both JavaCC and SableCC require the grammar to be

defined in an external dsl (i.e., not in Java).

http://parboiled.org
https://github.com/sirthias/parboiled/wiki/Grammar-and-Parser-Debugging
https://github.com/sirthias/parboiled/wiki/Handling-Whitespace
http://www.decodified.com/parboiled/api/java/org/parboiled/BaseParser.html
http://en.wikipedia.org/wiki/Parsing_expression_grammar




Lab 6
Parsing F with Parboiled

Compiler Concepts: parser generators,
Parsing Expression Grammars (peg),
push-down automata

Programming Concepts: domain
specific languages (dsl): internal vs.
external, debugging generated code,
stacks

Files:
ece351.f.parboiled.FParboiledRecognizer.java
ece351.f.parboiled.FParboiledParser.java

Tests:
ece351.f.parboiled.TestFParboiledRecognizerAccept
ece351.f.parboiled.TestFParboiledRecognizerReject
ece351.f.parboiled.TestFParboiledParserBasic
ece351.f.parboiled.TestFParboiledParser
ece351.f.parboiled.TestFParserComparison

This lab is similar to some previous labs: we will write a recognizer
and parser for F , this time using Parboiled.

6.1 Write a recognizer for F using Parboiled

Program → Formula+ $$
Fomula → Var ‘<=’ Expr ‘;’
Expr → Term (‘or’ Term)*
Term → Factor (‘and’ Factor)*
Factor → ‘not’ Factor | ‘(’ Expr ‘)’ | Var | Constant
Constant → ‘‘0’’ | ‘‘1’’
Var → id

Figure 6.1: ll(1) Grammar for F
(reproduced from Figure 3.1)

Inspect token without consuming it. Parboiled has two rule The staff solution code does not use the
Test() method. The FirstOf() method pro-
vides adequate look-ahead functionality
for the F grammar.

constructors that allow you to inspect the next token without con-
suming it: Test() and TestNot. For example, in a rule for Var one might
include TestNot(Keyword()) to ensure that a keyword (e.g., ‘and’, ‘or’) is
not considered as a variable name.

Implicit whitespace handling. As we saw in a previous lab, If you are interested in how this trick
works there is a page devoted to it
on the Parboiled website. This is just
a trick of the tool and not part of the
intellectual content of this course, so
you are not expected to understand
how it works.

Parboiled incorporates both syntactic and lexical specifications.
One of the practical consequences of this is that we cannot delegate
whitespace handling to a separate lexer (as we did when writing re-
cursive descent parsers by hand). The explicit mention of whitespace
after every literal can make the recognizer/parser code look clut-
tered. There is a standard trick in Parboiled that if we add a single
trailing space to each literal then the match for that literal will in-
clude all trailing whitespace. For example, in the rule constructor for
Constant we would write: FirstOf("0 ", "1 ") (notice the trailing space
after the zero and the the one). If you look at the method Constan-
tExpr.make(s) you will see that it looks only at the first character of
its argument s, and so thereby ignores any trailing whitespace. When
you call match() the result will contain the trailing whitespace.
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6.2 Add actions to recognizer to make a parser

Following our standard design method, once your recognizer is
working, copy it to start making the parser. As before, you will in-
troduce a new Sequence at the top level of each rule constructor, and
the parser actions will be additional arguments to this Sequence. See Figure 5.3 for an example of a

sketch of the state of the stack.Your Parboiled F parser should construct BinaryExprs, just as
your recursive descent F parser did. We can apply the same set of We will reuse the F ast classes from

the previous lab.transformations, developed in a previous lab, to produce NaryExprs.

Exercise 6.2.1 Draw the stack as it evolves through a simple parse.

Exercise 6.2.2 How large can the stack grow while parsing F?

6.3 Composite Design Pattern†

The Composite design pattern is commonly used when we need to
construct trees of objects, and we want to work with the leaf nodes
and the interior nodes (‘composite’ nodes) via a common interface
(‘component’). Figure 6.2 illustrates this idea.

The main place we’ve seen the composite design pattern in the
labs is the F ast classes. The classes representing the leaves of an What about classes like BinaryExpr and

UnaryExpr?
ast are ConstantExpr and VarExpr. The classes representing the in-
terior (‘composite’) nodes of the ast are AndExpr, OrExpr, NotExpr,
etc.. The shared interface is Expr (‘component’).

Component

+ operation()

Leaf

+ operation()

Composite

+ operation()
+ add()
+ remove()
+ getChild()

1

0..*

parent

child

Figure 6.2: uml class diagram for
Composite Design Pattern.

From http://en.wikipedia.org/

wiki/File:Composite_UML_class_

diagram_(fixed).svg, where it is
released in the public domain (i.e., free
for reuse).

Why didn’t we use the Composite design pattern for theW ast

classes? BecauseW is a regular language, and so does not have
nested expressions, it will always result in ast’s of a known fixed
height. F , on the other hand, is a context-free language with nested
expressions, so the ast depth will vary from input to input. The
Composite design pattern lets us work with these ast’s of varying
depth in a uniform way.

http://en.wikipedia.org/wiki/File:Composite_UML_class_diagram_(fixed).svg
http://en.wikipedia.org/wiki/File:Composite_UML_class_diagram_(fixed).svg
http://en.wikipedia.org/wiki/File:Composite_UML_class_diagram_(fixed).svg
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6.4 Template Method Design Pattern†

A Template Method defines an algorithm in outline, but leaves some http://en.wikipedia.org/wiki/

Template_method_pattern

http://sourcemaking.com/design_

patterns/template_method

http://www.oodesign.com/

template-method-pattern.html

primitive operations to be defined by the particular datatypes the
algorithm will operate on. For example, most sorting algorithms
depend on a comparison operation that would be defined differently
for strings or integers.

Typically the template algorithm is implemented in an abstract
class that declares abstract method signatures for the primitive oper-
ations. The concrete subclasses of that abstract class provide defini-
tions of the primitive operations for their respective data values.

The abstract class does not know the name of its subclasses, nor
does it perform any explicit type tests.1 The type tests are implicit in 1 An explicit type tests is performed by

the instanceof keyword or the getClass()
method.

the dynamic dispatch performed when the primitive operations are
called.

// ...
doSomething();
// ...
PrimitiveOperation1();
// ...
PrimitiveOperation1();
// ...
doAbsolutelyThis();
// ...

 PrimitiveOperation1()

 PrimitiveOperation2()

 doSomething()

ConcreteClass

 PrimitiveOperation1()

 PrimitiveOperation2()

 TemplateMethod()

 doAbsolutelyThis()

 doSomething()

AbstractClass
Figure 6.3: Template Design Pattern
illustrated by UML Class Diagram.
Image from http://en.wikipedia.

org/wiki/File:Template_Method_

UML.svg. Licensed under GNU Free
Documentation Licence.

http://en.wikipedia.org/wiki/Template_method_pattern
http://en.wikipedia.org/wiki/Template_method_pattern
http://sourcemaking.com/design_patterns/template_method
http://sourcemaking.com/design_patterns/template_method
http://www.oodesign.com/template-method-pattern.html
http://www.oodesign.com/template-method-pattern.html
http://en.wikipedia.org/wiki/File:Template_Method_UML.svg
http://en.wikipedia.org/wiki/File:Template_Method_UML.svg
http://en.wikipedia.org/wiki/File:Template_Method_UML.svg
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Expr:
Primitive Op Implemented By Template Method
operator() every subclass of Expr toString()
simplifyOnce() NaryExpr, AndExpr, OrExpr, NotExpr simplify()

NaryExpr:
Primitive Op Implemented By Template Method
getAbsorbingElement() NaryAndExpr, NaryOrExpr simplifyOnce() helpers
getIdentityElement() NaryAndExpr, NaryOrExpr simplifyOnce() helpers
getThatClass() NaryAndExpr, NaryOrExpr simplifyOnce() helpers

Why?

• No superclass (e.g., NaryExpr) should know what its subclasses
(e.g., NaryAndExpr, NaryOrExpr) are.

• Should be able to add a new subclass without perturbing parent
(e.g., NaryExpr) and siblings (e.g., NaryAndExpr, NaryOrExpr).

• Explicit type tests (e.g., instanceof, getClass()) usually make for
fragile code — unless comparing against own type for purpose of
some equality-like operation.

• Use dynamic (polymorphic) dispatch to perform type tests in a
modular manner.

• Elegant and general implementation of overall transformations.
• Prevent subclasses from making radical departures from general

algorithm.
• Reduce code duplication.
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6.5 Singleton Design Pattern†

http://en.wikipedia.org/wiki/

Singleton_patternThe singleton design pattern is used when the number of objects
to be instantiated for a given class is independent of the program’s
input. If the singleton objects are immutable then the primary moti-
vation is to conserve memory by not creating duplicate objects. If the
singleton objects are mutable then the primary motivation is to create
a set of global variables (which is a controversial decision2). 2 W. Wulf and M. Shaw. Global vari-

ables considered harmful. ACM
SIGPLAN Notices, 8(2):80–86, Feb. 1973

http://c2.com/cgi/wiki?GlobalVariablesConsideredHarmful

The main use of the singleton pattern in our labs is the ConstantExpr

class, which is immutable, so the motivation is to conserve memory
by instantiating just one object for True and one for False, regard-
less of how many times ‘1’ and ‘0’ appear in the F programs ma-
nipulated by the compiler. Figure 6.4 shows the creation of the two
instances of class ConstantExpr.

public final class ConstantExpr extends Expr {

public final Boolean b;

/** The one true instance. To be shared/aliased wherever necessary. */

public final static ConstantExpr TrueExpr = new ConstantExpr(true);

/** The one false instance. To be shared/aliased wherever necessary. */

public final static ConstantExpr FalseExpr = new ConstantExpr(false);

Figure 6.4: The only two instances of
class ConstantExpr

While Figure 6.4 shows the creation of two objects that have global
names so they can be used by anyone, it does not prevent anyone
from creating more objects of class ConstantExpr. To do that we make
the constructor private, and then provide an alternative method to
return a reference to one of the existing objects, as listed in Figure 6.5.

/** Private constructor prevents clients from instantiating. */

private ConstantExpr(final Boolean b) { this.b = b; }

/** To be used by clients instead of the constructor.

* Returns a reference to one of the shared objects. */

public static ConstantExpr make(final Boolean b) {

if (b) { return TrueExpr; } else { return FalseExpr; }

}

Figure 6.5: Preventing clients from
instantiating class ConstantExpr

http://en.wikipedia.org/wiki/Singleton_pattern
http://en.wikipedia.org/wiki/Singleton_pattern
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6.6 Evaluation

We evaluate the code that you have committed and pushed before the
deadline. The test harnesses are run with the F programs we have
released to you and a secret set of staff F programs. The weights for
the test harnesses are as follows:

You do not get any marks for any other
parser tests until TestFParboiledParser-
Basic and TestObjectContractF pass
everything.

Current New
TestFParboiledRecognizerAccept 10 5

TestFParboiledRecognizerReject 5 0

TestFParboiledParserBasic 5 0

TestFParboiledParser 40 10

TestFParboiledParserComparison 20 5

TestFParboiledRecognizer just runs the recognizer to see if it
crashes. TestFParboiledParser checks the following equation:
∀ AST | AST.equals(parse(prettyprint(AST)))

TestFParboiledParserComparison checks that your recursive descent
and Parboiled parsers give isomorphic ast’s when given the same
input file.



Lab 7
Technology Mapping: F → Graphviz

Compiler Concepts: common subexpres-
sion elimination

Programming Concepts: hash struc-
tures, iteration order, object identity,
non-determinism, Visitor design pat-
tern, tree traversals: preorder, postorder,
inorder

Files:
ece351.f.techmapper.TechnologyMapper

Libraries:
ece351.f.techmapper.GraphvizToF
ece351.f.analysis.ExtractAllExprs
ece351.common.visitor.PostOrderExprVisitor

Tests:
ece351.f.techmapper.TestTechnologyMapper

dark circuit elimination? (i.e.,
not connected to inputs or
outputs)

dark circuit elimination? (i.e.,
not connected to inputs or
outputs)

In this lab we will produce gate diagrams of our F programs. We
will do this by translating F programs into the input language of
AT&T GraphViz. Graphviz is an automatic graph layout tool: it reads

http://graphviz.org

Graphviz is a widely used graph
layout tool. Circuit layout is often
done by specialized tools, but the
basic idea is the same as Graphviz:
algorithmic placement of interconnected
components. What differs is the criteria
used for placement and the ways in
which things are connected. Graphical
layout tools such as Graphviz try to
minimize edge crossings, for example,
which is important for people looking
at pictures but may be less relevant for
circuit boards. Graphviz also draws
nice Bezier curve lines that are pleasing
to look at, whereas circuit boards are
typically laid out with orthogonal lines.
Technology mapping and circuit layout
are studied in ece647.

(one dimensional) textual descriptions of graphs and produces (two
dimensional) pictures of those graphs. Graphviz, which is primarily
a visualization tool, attempts to place nodes and edges to minimize
edge crossings. Tools that are intended to do digital circuit layout
optimize the placement of components based on other criteria, but
the fundamental idea is the same: transform a (one dimensional)
description of the logic into a (two dimensional) plan that can be
visualized or fabricated.

Figure 7.1 lists a sample Graphviz input file and its rendered out-
put for the simple F program X <= A or B;. The input pins A and B are
on the left side of the diagram and the output pin X is on the right
hand side of the diagram.

digraph g {

// header

rankdir=LR;

margin=0.01;

node [shape="plaintext"];

edge [arrowhead="diamond"];

// circuit

or12 [label="or12", image="../../gates/or_noleads.png"];

var0[label="x"];

var1[label="a"];

var2[label="b"];

var1 −> or12 ;

var2 −> or12 ;

or12 −> var0 ;

}

Figure 7.1: Example Graphviz input file
and rendered output for F program
X <= A or B;

http://graphviz.org
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The input file in Figure 7.1 contains a header section that will be
common to all of the Graphviz files that we generate. This header
says that the graph should be rendered left to right (instead of the
default top-down), that the whitespace margin around the diagram
should be 0.01 inches, and that the default look for nodes and edges
should be plain.

The main thing to notice in the lines of the input file in Figure 7.1
that describe the formula is that visual nodes are created for both the
pins (A, B, X) and the gates (there is a single or gate in this example).

7.1 Interpreters vs. Compilers†

An programming language interpreter is a special kind of compiler that
executes a program directly, instead of translating the program to
another language that is then executed. Executing a program through
a language interpreter is usually slower than executing the compiled
form of that program. It can take less engineering effort to implement
a language interpreter than a compiler, so language interpreters are
most commonly used when engineering time is more valuable than
machine time. Compilers are used when the converse is true: i.e., it is
worth the engineering effort to make the code run faster.

7.2 Introducing the Interpreter Design Pattern†

The Interpreter design pattern1 names a particular way to structure 1 E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1995

code, that we have been using in previous labs but have not yet
named. Programming language interpreters are often implemented
using the interpreter design pattern, which is how the design pattern
got its name. When learning about both concepts this name collision
can be a bit confusing.

Figure 7.2 shows a uml class diagram for a subset of the F expres-
sion class hierarchy that we’ve been working with recently.

In Lab 4 we wrote a simplifier/optimizer for F programs. How
did we structure that code? We added a method called simplify() to
almost every class in this hierarchy, similar to what is depicted in
Figure 7.3. This is a non-modular change: the simplifier functionality
is scattered across the Expr class hierarchy.

Is it possible to structure this code in another way? Could we add
the simplifier functionality to our compiler in a modular way?
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Expr

BinaryExpr ConstantExpr VarExpr UnaryExpr

AndExpr OrExpr NotExpr

Figure 7.2: A uml class diagram for a
subset of F expression class hierarchy

Expr
simplify()

BinaryExpr
simplify()

ConstantExpr
simplify()

VarExpr
simplify() UnaryExpr

AndExpr OrExpr NotExpr
simplify()

Figure 7.3: A uml class diagram for a
subset of F expression class hierarchy,
showing the simplifier functionality
scattered across the hierarchy by use
of the Interpreter design pattern.
Classes modified to add the simplifier
functionality are highlighted in colour.

Operation
AST Class simplify pretty-printing conversion to gates

AndExpr AndExpr AndExpr AndExpr
(BinaryExpr) (BinaryExpr) (BinaryExpr)

OrExpr OrExpr OrExpr OrExpr
(BinaryExpr) (BinaryExpr) (BinaryExpr)

VarExpr VarExpr VarExpr VarExpr
ConstantExpr ConstantExpr ConstantExpr ConstantExpr
NotExpr NotExpr NotExpr NotExpr
NaryAndExpr NaryAndExpr NaryAndExpr NaryAndExpr

(NaryExpr) (NaryExpr) (NaryExpr)
NaryOrExpr NaryOrExpr NaryOrExpr NaryOrExpr

(NaryExpr) (NaryExpr) (NaryExpr)

Figure 7.4: Matrix view of Interpreter
Design Pattern. Rows for ast leaf
classes. Columns for operations to be
performed on the ast. Cell values in-
dicate where the code for that class/op
pair is located. In some cases we place
the operation in an abstract superclass,
e.g., BinaryExpr, rather than directly in
the leaf class. This location is indicated
with the concrete leaf class name fol-
lowed by the abstract superclass name
in parenthesis. Notice that the pattern
here is that the same value is repeated
across each row.



100 ece351 lab manual [april 5, 2018]

7.3 Introducing the Visitor Design Pattern†

Tiger Book §4.3
The Visitor design pattern2 is an alternative way to structure code 2 E. Gamma, R. Helm, R. Johnson, and

J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1995

Also widely documented on the web.

from the interpreter design pattern. The Visitor pattern is also widely
used in compilers, and is how we will structure our code in this lab
and future labs. If we had used the Visitor design pattern for Lab 4

then we could have added the simplifier functionality in a more
modular manner, as depicted in Figure 7.5.

Expr

BinaryExpr ConstantExpr VarExpr UnaryExpr

AndExpr OrExpr NotExpr

Simplifier
Figure 7.5: A uml class diagram for a
subset of F expression class hierarchy,
showing the simplifier functionality
made modular by use of the Visitor
design pattern.

Well, it’s not quite as simple as Figure 7.5 might lead you to be-
lieve: there is some infrastructure that we need to add to make
this work properly. Figure 7.6 illustrates that we need to add an
accept(Visitor) method to each concrete class.3 Similarly, we add a

3 Notice that in our F Expr class hierar-
chy the only classes that can be directly
instantiated (i.e., are concrete) are the
leaves of the hierarchy. This is some-
times known as the abstract superclass
rule (i.e., all super-classes should be ab-
stract), and is a good design guideline
for you to follow.

visit() for each concrete class to the Simplifier class. These accept(Visitor)

methods can be reused by any Visitor, whether it is the simplifier or
the technology mapper that we will develop in this lab.

With the use of the Visitor design pattern we can add new opera-
tions (e.g., simplification, technology mapping, etc.) to our complex
data structure (ast) in a modular manner, without having to directly
modify the ast classes.

The Visitor design pattern involves two main methods: visit and
accept. The visit methods are written on the Visitor class and the
accept methods are written on the ast classes. The abstract superclass
for the Visitors that we will write is listed in Figure 7.8.
Notice that our visit methods return an object of type Expr. This fea-
ture allows our Visitors to rewrite the ast as they visit it, which is
necessary for transformations such as the simplifier we wrote previ-
ously. The Visitor we write in this lab does not rewrite the ast, and
so all of its visit methods will simply return the ast node that they
are visiting (i.e., return e;).
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Expr
accept(Visitor)

BinaryExpr ConstantExpr
accept(Visitor)

VarExpr
accept(Visitor) UnaryExpr

AndExpr
accept(Visitor)

OrExpr
accept(Visitor)

NotExpr
accept(Visitor)

Simplifier
visit(AndExpr)
visit(OrExpr)
visit(NotExpr)

visit(ConstantExpr)
visit(VarExpr)

Figure 7.6: A uml class diagram for a
subset of F expression class hierarchy,
showing the simplifier functionality
made modular by use of the Visitor
design pattern.

Operation
AST Class simplify pretty-printing conversion to gates

AndExpr Simplifier PPrinter TechMapper
OrExpr Simplifier PPrinter TechMapper
VarExpr Simplifier PPrinter TechMapper
ConstantExpr Simplifier PPrinter TechMapper
NotExpr Simplifier PPrinter TechMapper
NaryAndExpr Simplifier PPrinter TechMapper
NaryOrExpr Simplifier PPrinter TechMapper

Figure 7.7: Matrix view of the Visi-
tor Design Pattern. Rows for ast leaf
classes. Columns for operations to be
performed on the ast. Cell values in-
dicate where the code for that class/op
pair is located. Notice that the pattern
here is that the values are repeated
down each column, rather than across
each row as we saw above in Figure 7.4
for the Interpreter Design Pattern.

In the actual code for our labs we
followed the Interpreter Design Pattern
for the simplify and pretty-printing
operations, so the class names Simplifier
and PPrinter are fictitious. We are
developing the TechnologyMapper visitor
in this lab.

public abstract Expr visitConstant(ConstantExpr e);

public abstract Expr visitVar(VarExpr e);

public abstract Expr visitNot(NotExpr e);

public abstract Expr visitAnd(AndExpr e);

public abstract Expr visitOr(OrExpr e);

public abstract Expr visitNaryAnd(NaryAndExpr e);

public abstract Expr visitNaryOr(NaryOrExpr e);

Figure 7.8: Abstract super class for
Visitors for F expression asts. There is
a visit method for each concrete F ast

class.
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To the FExpr class we add the signature for the accept method,
which is then implemented in each concrete ast class as a call to a
visit method, as shown in Figure 7.9.

public abstract Expr accept(final ExprVisitor exprVisitor);

public Expr accept(final ExprVisitor v) { return v.visitAnd(this); }

Figure 7.9: Signature and implementa-
tion of accept method. The signature
belongs in the Expr class and the im-
plementation is put in each concrete
subclass of Expr.

Together the visit and accept methods implement what is known
as double dispatch: i.e., select which method to execute based on the
polymorphic type of two objects. Languages like Java, C++, C#, and
Objective C are all single dispatch languages: the target of a polymor-
phic call is determined just by the type of the receiver object. CLOS
and Dylan are examples of multiple-dispatch languages, where the tar-
get of a polymorphic call is determined by the runtime types of all of
arguments.

One of the main points of variation in how the Visitor pattern is The point of a Visitor is to traverse, or
‘walk over’, the nodes in an ast.implemented is where the traversal code goes: in the visit methods?

an iterator? somewhere else? All of these options are used in prac-
tice. We have decided to put the traversal code in a set of traverse
methods in the Visitor classes (Figures 7.10 and 7.11).

We can write Visitors that perform a number of useful tasks for
this lab. For example, Figure 7.12 lists a Visitor that builds a set of all
the nodes in an F expression ast.
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7.3.1 Is Visitor always better than Interpreter?†

From the discussion above you might think that it is always better
to use the Visitor pattern than the Interpreter pattern. This is not
correct. Which pattern to choose depends on what changes you antic-
ipate happening to the software in the future. Almost all software evolves or dies.

Donald Knuth’s TEX is a notable
counter-example: it does not grow
new features, it does not have signifi-
cant bugs, it was conceived complete.
Consequently, the version number for
TEX does not increment, it converges:
as the (minor) bugs are removed the
version number approximates π by
another decimal place. This reflects
convergence to an original vision, with
the acknowledgement that perfection
will never truly be achieved within the
finite time available to us here on earth.

Consider this: we have a complex structure (e.g., an ast), and a set
of complex operations that we would like to apply to that structure
(e.g., simplification, technology mapping, etc.). In ece250 you studied
some relatively simple structures, such as lists, and some relatively
simple operations, such as searching or sorting. Those structures
were simple enough that they could be defined in one or two classes,
and those operations were simple enough that they could be defined
in one or two methods. Now we have a complex structure that is
defined across a dozen or more classes, and operations that might
similarly be defined across a dozen or more methods.

The choice of how we organize this code (Visitor or Interpreter)
has consequences, and those consequences are in how difficult the
code will be to change in the future.

If we expect the grammar of our input language (e.g.,W or F ) to
be stable, and if we expect to add more transformations (operations)
to the ast in future labs, then it is better to use the Visitor pattern,
because the Visitor pattern allows us to add new transformations in a
modular fashion.

If, on the other hand, we expect the grammar of our input lan-
guage to change and the set of transformations we might want to
perform is small and known a priori, then it is better to use Inter-
preter. Interpreter lets us change the ast class hierarchy in a modu-
lar fashion, which is what we would need to do if the grammar of the
input language were to change significantly.

These references below are for your
broader educational enrichment. You
will not be tested on them specifically.
You are expected to understand the
trade-offs between the Visitor and
Interpreter design patterns.

What if we anticipate both kinds of change will happen in the
future? Then we have a problem, because there is no widely accepted
programming language that lets us structure our code to facilitate
both kinds of change. This is known as the Expression Problem in
programming language design. The Expression Problem was named
by Wadler in the late nineties4, although the idea goes back at least

4 P. Wadler. The expression problem,
Nov. 1998. Email to Java Generics list

as far as Reynolds work in the mid seventies5. More recent research

5 J. C. Reynolds. User-defined types
and procedural data as complementary
approaches to data abstraction. In
S. A. Schuman, editor, New Directions
in Algorithmic Languages: IFIP Working
Group 2.1 on Algol. INRIA, 1975

papers have proposed some solutions in Java6 or Scala7, but none of

6 M. Torgersen. The Expression Prob-
lem Revisited: Four new solutions
using generics. In M. Odersky, ed-
itor, Proc.18th ECOOP, volume 3344

of LNCS, Oslo, Norway, June 2004.
Springer-Verlag

7 M. Zenger and M. Odersky. Inde-
pendently extensible solutions to the
expression problem. In Proc.12th Work-
shop on Foundations of Object-Oriented
Languages, 2005

these proposals is widely accepted and all have drawbacks.



104 ece351 lab manual [april 5, 2018]

public final Expr traverseExpr(final Expr e) {

if (e instanceof NaryExpr) {

return traverseNaryExpr( (NaryExpr) e );

} else if (e instanceof BinaryExpr) {

return traverseBinaryExpr( (BinaryExpr) e );

} else if (e instanceof UnaryExpr) {

return traverseUnaryExpr( (UnaryExpr) e );

} else {

return e.accept(this);

}

}

public abstract Expr traverseNaryExpr(final NaryExpr e);

public abstract Expr traverseBinaryExpr(final BinaryExpr e);

public abstract Expr traverseUnaryExpr(final UnaryExpr e);

/**

* Visit/rewrite all of the exprs in this FProgram.

* @param p input FProgram

* @return a new FProgram with changes applied

*/

public FProgram traverseFProgram(final FProgram p) {

FProgram result = new FProgram();

for (final AssignmentStatement astmt : p.formulas) {

result = result.append(traverseAssignmentStatement(astmt));

}

return result;

}

/**

* Visit/rewrite the expr in this AssignmentStatement

* @param astmt the AssignmentStatement to be visited/rewritten

* @return a new AssignmentStatement with changes applied

*/

public AssignmentStatement traverseAssignmentStatement(final AssignmentStatement astmt) {

final Expr e = traverseExpr(astmt.expr);

if (e == astmt.expr) {

// no change

return astmt;

} else {

// rewrite occured

return astmt.varyExpr(e);

}

}

}

Figure 7.10: The traverse methods of
ExprVisitor
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/**

* This visitor rewrites the AST from the bottom up.

* Optimized to only create new parent nodes if children have changed.

*/

public abstract class PostOrderExprVisitor extends ExprVisitor {

@Override

public final Expr traverseUnaryExpr(UnaryExpr u) {

// child first

final Expr child = traverseExpr(u.expr);

// only rewrite if something has changed

if (child != u.expr) {

u = u.newUnaryExpr(child);

}

// now parent

return u.accept(this);

}

@Override

public final Expr traverseBinaryExpr(BinaryExpr b) {

// children first

final Expr left = traverseExpr(b.left);

final Expr right = traverseExpr(b.right);

// only rewrite if something has changed

if (left != b.left || right != b.right) {

b = b.newBinaryExpr(left, right);

}

// now parent

return b.accept(this);

}

@Override

public final Expr traverseNaryExpr(NaryExpr e) {

// children first

ImmutableList<Expr> children = ImmutableList.of();

boolean change = false;

for (final Expr c1 : e.children) {

final Expr c2 = traverseExpr(c1);

children = children.append(c2);

if (c2 != c1) { change = true; }

}

// only rewrite if something changed

if (change) {

e = e.newNaryExpr(children);

}

// now parent

return e.accept(this);

}

}

Figure 7.11: Implementation of Post-
OrderExprVisitor. Any Visitors that
extend this class will visit the nodes of
an F expression ast in post-order (i.e.,
parents after children).
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/**

* Returns a set of all Expr objects in a given FProgram or AssignmentStatement.

* The result is returned in an IdentityHashSet, which defines object identity

* by memory address. A regular HashSet defines object identity by the equals()

* method. Consider two VarExpr objects, X1 and X2, both naming variable X. If

* we tried to add both of these to a regular HashSet the second add would fail

* because the regular HashSet would say that it already held a VarExpr for X.

* The IdentityHashSet, on the other hand, will hold both X1 and X2.

*/

public final class ExtractAllExprs extends PostOrderExprVisitor {

private final IdentityHashSet<Expr> exprs = new IdentityHashSet<Expr>();

private ExtractAllExprs(final Expr e) { traverseExpr(e); }

public static IdentityHashSet<Expr> allExprs(final AssignmentStatement f) {

final ExtractAllExprs cae = new ExtractAllExprs(f.expr);

return cae.exprs;

}

public static IdentityHashSet<Expr> allExprs(final FProgram p) {

final IdentityHashSet<Expr> allExprs = new IdentityHashSet<Expr>();

for (final AssignmentStatement f : p.formulas) {

allExprs.add(f.outputVar);

allExprs.addAll(ExtractAllExprs.allExprs(f));

}

return allExprs;

}

@Override public Expr visitConstant(ConstantExpr e) { exprs.add(e); return e; }

@Override public Expr visitVar(VarExpr e) { exprs.add(e); return e; }

@Override public Expr visitNot(NotExpr e) { exprs.add(e); return e; }

@Override public Expr visitAnd(AndExpr e) { exprs.add(e); return e; }

@Override public Expr visitOr(OrExpr e) { exprs.add(e); return e; }

@Override public Expr visitXOr(XOrExpr e) { exprs.add(e); return e; }

@Override public Expr visitNAnd(NAndExpr e) { exprs.add(e); return e; }

@Override public Expr visitNOr(NOrExpr e) { exprs.add(e); return e; }

@Override public Expr visitXNOr(XNOrExpr e) { exprs.add(e); return e; }

@Override public Expr visitEqual(EqualExpr e) { exprs.add(e); return e; }

@Override public Expr visitNaryAnd(NaryAndExpr e) { exprs.add(e); return e; }

@Override public Expr visitNaryOr(NaryOrExpr e) { exprs.add(e); return e; }

}

Figure 7.12: Implementation of Extrac-
tAllExprs
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7.4 Hash Structures, Iteration Order, and Object Identity†

When you iterate over the elements in a List you get them in the
order that they were added to the List. When you iterate over the
elements in a TreeSet you get them sorted lexicographically. When TreeSet, List, HashSet, and HashMap

are all part of the standard JDK Collec-
tions classes.

you iterate over the elements in a HashSet or HashMap, what order
do you get them in? Unspecified, unknown, and non-deterministic:
the order could change the next time you iterate, and will likely
change the next time the program executes.

List list = new ArrayList();

list.add(3);

list.add(1);

list.add(2);

System.out.println(list);

SortedSet tset = new TreeSet();

tset.add(3);

tset.add(1);

tset.add(2);

System.out.println(tset);

Set hset = new HashSet();

hset.add(3);

hset.add(1);

hset.add(2);

System.out.println(hset);

Figure 7.13: Iteration order for different
data structures

Why might the iteration order change with hash structures? Be-
cause the slot into which an element gets stored in a hash structure
is a function of that element’s hash value and the size of the hash table.
As more elements are added to a hash structure then it will resize
itself and rehash all of its existing elements and they’ll go into new
slots in the new (larger) table. If the same data value always produces
the same hash value and the table never grows then it is possible to
get deterministic iteration order from a hash structure — although
that order will still be nonsense, it will be deterministically repeatable
nonsense. But these assumptions often do not hold. For example, if a
class does not implement the equals() and hashCode() methods then
its memory address is used as its hashCode(). The next execution of
the program is highly likely to put that same data value at a different
memory address.

Iterating over the elements in a hash structure is one of the most What benefit could there be to non-
determinism? Not much directly. But
non-determinism is often a conse-
quence of parallel and distributed
systems. In these circumstances we
sometimes choose to tolerate some
non-determinism for the sake of
performance — but we still try to
control or eliminate some of the non-
determinism using mechanisms like
locks or database engines.

common ways of unintentionally introducing non-determinism into
a Java program. Non-determinism makes testing and debugging
difficult because each execution of the program behaves differently.
So unless there is some benefit to the non-determinism it should be
avoided.

The JDK Collections classes provide two hash structures with de-
terministic iteration ordering: LinkedHashSet and LinkedHashMap.
These structures also maintain an internal linked list that records
the order in which elements were added to the hash structure. You
should usually choose LinkedHashMap, LinkedHashSet, TreeMap,
or TreeSet over HashMap and HashSet. The linked structures give
elements in their insertion order (as a list would), whereas the tree
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structures give you elements in alphabetical order (assuming that
there is some alphabetical ordering for the elements).

You could safely use HashMap and HashSet without introduc-
ing non-determinism into your program if you never iterate over their
elements. It’s hard to keep that promise though. Once you’ve got a
data structure you might want to print out its values, or pass it in to
some third party code, etc. So it’s better to just use a structure with a
deterministic iteration ordering.

The skeleton code for this lab makes use of two other hash struc- IdentityHashMap is from the JDK.
IdentityHashSet is from the open-
source project named Kodkod. There
are a number of open source projects
that implement an IdentityHashSet due
to its omission in the JDK. See Java bug
report #4479578.

tures: IdentityHashMap and IdentityHashSet. What distinguishes
these structures from the common structures?

The definition of a set is that it does not contain duplicate ele-
ments. How is ‘duplicate’ determined? We work with four different
definitions of ‘duplicate’ in these labs:

x == y x and y have the same physical memory address.

x.equals(y) any computation that uses x or y will have no observ-
able differences.

x.isomorphic(y) x and y might have some minor structural differ-
ences, but are essentially the same.

x.equivalent(y) x and y are semantically equivalent and might not
have any structural similarities.

Set hset = new HashSet();

hset.add(new VarExpr("Y"));

hset.add(new VarExpr("X"));

hset.add(new VarExpr("X"));

System.out.println(hset);

Set lhset = new LinkedHashSet();

lhset.add(new VarExpr("Y"));

lhset.add(new VarExpr("X"));

lhset.add(new VarExpr("X"));

System.out.println(lhset);

Set iset = new IdentityHashSet();

iset.add(new VarExpr("Y"));

iset.add(new VarExpr("X"));

iset.add(new VarExpr("X"));

System.out.println(iset);

Figure 7.14: Object identity for different
data structuresThe common structures (HashSet, TreeSet, etc.) use the equals()

method to determine duplicates, whereas the IdentityHashSet and
IdentityHashMap use the memory address (==) to determine du-
plicates. In this lab we want to ensure that our substitution table
contains an entry for every single FExpr object (physical memory ad-
dress), so we use IdentityHashSet and IdentityHashMap. Notice that
ExtractAllExprs also returns an IdentityHashSet.

The skeleton code is careful about its use of IdentityHashSet/Map,
LinkedHashSet/Map, and TreeSet/Map. You should think about
the concept of duplicate and the iteration ordering of each data
structure used in this lab, including your temporary variables. The
GraphvizToF converter requires that the edges are printed according
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to a post-order traversal of the ast, so that it can reconstruct the ast

bottom-up.
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7.5 Non-determinism: Angelic, Demonic, and Arbitrary†

We previously saw non-determinism when studying finite automata. In theory they also consider demonic
non-determinism, where the machine
always chooses a path that leads to the
worst possible outcome.

In that case we focused on angelic non-determinism: the automata
would ‘magically’ (non-deterministically) choose the right path that
will lead to success (acceptance).

In this lab we’re seeing arbitrary non-determinism: the machine
choose some path arbitrarily, and that path may lead to a good result
or a bad result.

As engineers, we want to avoid non-determinism. It makes testing
unnecessarily difficult. We transform non-deterministic machines
into deterministic ones. We are careful to avoid unnecessary sources
of non-determinism in our programs, such as iterating over hash
structures or unregulated concurrency.

7.6 Translate one formula at a time

Flesh out the skeleton synthesizer in the provided TechnologyMapper

class. The TechnologyMapper extends one of the Visitor classes, and
in its visit methods it will create edges from the child nodes in the
ast to their parents.

The TechnologyMapper class contains a field called substitutions

that maps FExprs to FExprs. For now populate this data structure
by mapping every FExpr ast node to itself. Populating this data
structure in a more sophisticated manner is the next task.

7.7 Common Subexpression Elimination
We do not have to worry about vari-
ables changing values in F because all
expressions in F are referentially trans-
parent: i.e., they always have the same
value no matter where they occur in the
program. Referential transparency is
a common property of functional pro-
gramming languages such as Scheme,
Lisp, Haskell, ML, and F . Consider the
following program fragment written in
an imperative language:

a = 1;
b = 2;
x = a + b; // = 3
a = 3;
y = a + b; // = 5

The subexpression a + b occurs twice in this
fragment but cannot be eliminated because
the value of a has changed. A dataflow
analysis is required to determine if the
values of the variables have changed.

An F program may contain common subexpressions. A smart syn-
thesizer will synthesize shared hardware for these common subex-
pressions. Consider the following simple F program where the
subexpression A or B appears twice:

X <= D and (A or B);

Y <= E and (A or B);

Figure 7.15 shows the circuit produced by a synthesizer that does
not perform common subexpression elimination: there are two or

gates that both compute A or B. A more sophisticated synthesizer that
does perform common subexpression elimination would synthesize
a circuit like the one in Figure 7.16 in which there is only a single
or gate. It is also possible to have common subexpressions within a
single formula, for example: Z <= (A or B) and !(A or B);



[lab 7] technology mapping: F → graphviz 111

7.8 Designing a Common Subexpression Eliminator for F

The key question that the eliminator needs to answer is, for each sub-
expression, whether that sub-expression should be used, or whether
it should be eliminated in favour of another sub-expression.

What measure of ‘sameness’ should be used for this decision?
What concept of identity should we use? There are four options:
physical memory address (==), equals, isomorphic, and equivalent.

Memory address is (hopefully obviously) not a useful choice: if
our input asts are already sharing physical objects for common
subexpressions then the elimination has already been done. Equiva-
lence is, in some sense, the ideal measure. But computing equivalence
for F formulas is an np-complete problem, and we want to stick with
polynomial complexity. That leaves equals and isomorphic. The equals
method is perhaps easier to work with, since it is already used by the
standard Java collections classes. Isomorphic will give us better results,
at the cost of slightly increased design complexity — but no signifi-
cant change in computational complexity. Possible designs include: These alternatives came out in discus-

sion with the class of the summer of
2017.a. Just use equals via the standard Java collections classes. Easy to

design and implement. Results not as good as they could be if
isomorphic were used.

b. Convert all sub-expressions to a canonical form first, then use
equals as above. We used this kind of approach in lab4: NaryEx-
prs have a canonical form because they sort their children lexico-
graphically. We will never have an NaryOrExpr like B or A, because
it will be sorted to A or B. Once we have all sub-expressions in a
canonical form, then we can use equals as above.

c. Implement a customized data structure based on isomorphic. If
hashCode is consistent with isomorphic then it can be used as a first
step in the search for substitutable sub-expression objects.

d. Write some wrapper code that compares each sub-expression to
every other one using isomorphic, and builds a substitution table
based on physical memory address. This is not necessarily the
most elegant design, but it is one that is described in some detail
below.

There is another design decision about whether the asts get rebuilt
with the substitutions, or whether the substitution table is just used
in the printing process.
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7.8.1 An n2 design using isomorphic and memory address

This is the solution in the staff code, which is hinted at in the skele-
ton. You are welcome to delete those parts of the skeleton go with
another design. Some alternatives are described above.

a. Build up a table of FExpr substitutions. Suppose our F program
has three occurrences of A or B: (A or B)1, (A or B)2, and (A or B)3.
These three expressions are in the same equivalence class accord-
ing to our isomorphic() method. We select one representative from Why do we use the isomorphic()

method here instead of the equiva-
lent() method? Because the isomor-
phic() method runs in polynomial time
whereas the equivalent method runs
in exponential time. Our common
subexpression elimination only makes
engineering sense if it costs polynomial
time. If we were to spend exponential
time then we could do more sophis-
ticated circuit minimization, such as
computing the prime implicants with
the Quine-McCluskey algorithm.

this group, say (A or B)2, and use that to represent all of the iso-
morphic expressions. So our substitution table will contain the
tuples 〈(A or B)1, (A or B)2〉, 〈(A or B)2, (A or B)2〉, 〈(A or B)3, (A or B)2〉.
In other words, we’ll use (A or B)2 in place of (A or B)1 and (A or B)3.

This substitution table can be built in the following way. First,
compare every FExpr in the program with every other FExpr with
the isomorphic() method to discover the equivalence classes. For
each equivalence class pick a representative (doesn’t matter which
one), and then make an entry in the substitution table mapping
each FExpr in the equivalence class to the representative.

b. Visit the ast and produce edges from children FExprs to parent See the provided utility methods in the
skeleton TechnologyMapper class.FExprs using the substitution table.

A

B

X

D

Y

E

Figure 7.15: Synthesized cir-
cuit without common subexpres-
sion elimination for F program
X <= D and (A or B); Y <= E and (A or B).
There are two gates synthesized that
both compute A or B.

A

B

X
D

Y

E

Figure 7.16: Synthesized cir-
cuit with common subexpres-
sion elimination for F program
X <= D and (A or B); Y <= E and (A or B).
There is only one gate that computes
the value A or B, and the output of this
gate is fed to two places.
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7.9 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below.

The first testing equation for this lab is as follows. Let f be the ast

produced by your F parser.
f.equivalent(GraphVizToF(TechnologyMapper(simplify(f))))

In other words, take the output of your F parser, simplify it, convert
it to dot (this is the part that you are doing, the technology mapper),
then convert that output back to an F program (we provide this code
for you), and compare this result to the original ast produced by the
parser.

The second testing equation for this lab compares your output
with the staff output (dot file). Let s name the staff dot file, and f

names the ast produced by your F parser.
simplify(GraphVizToF(s)).equivalent(GraphVizToF(TechnologyMapper(simplify(f))))

The two equations above just check that you produced an equivalent
circuit, but they do not measure the number of gates used in that cir-
cuit. A third component of the evaluation is comparing the number
of gates in your circuit versus the staff circuit.

TestTechnologyMapper Shared Secret
correctness 50 20

gate count 20 10

The baseline gate count marks are 16/20 and 8/10. If you produce
fewer gates than the staff solution you bump up to 20/20 and 10/10.
If you produce more gates than the staff solution than for each ex-
tra gate we subtract one point from the baseline. Some strategies
that might produce fewer gates but probably take too much time to
implement include:

• Using DeMorgan’s Laws or other algebraic identities.
• Implementing the Quine-McCluskey or espresso algorithms to The Quine-McCluskey algorithm

is not used in practice because it is
exponential/NP-complete, which
means it is too expensive for most real
circuits. We can afford the price for the
small circuits considered in this course.
The espresso algorithm is efficient
enough to be used in practice but is not
guaranteed to find the global minimum.
http://en.wikipedia.org/wiki/

Espresso_heuristic_logic_minimizer

http://en.wikipedia.org/wiki/

Quine-McCluskey_algorithm

compute the minimal form of the circuit (a much more advanced
version of our simplifier).

• Translating our FExprs to Binary Decision Diagrams (bdds).8 bdds

8 R. E. Bryant. Graph-based algorithms
for boolean function manipulation.
IEEE Transactions on Computers, C-
35(8):677–691, Aug. 1986

are used in practice for functional technology mapping and circuit
equivalence checking.

Moral: Reducing the gate count is an np-complete problem. Our
simplifier and common subexpression eliminator are both polyno-
mial. No combination of polynomial algorithms is ever going to be
a perfect solution to an np-complete problem. The espresso algo-
rithm is an example of a very good polynomial approximation for
this np-complete problem.

http://en.wikipedia.org/wiki/Espresso_heuristic_logic_minimizer
http://en.wikipedia.org/wiki/Espresso_heuristic_logic_minimizer
http://en.wikipedia.org/wiki/Quine-McCluskey_algorithm
http://en.wikipedia.org/wiki/Quine-McCluskey_algorithm




Lab 8
Simulation: F → Java

Compiler Concepts: program generation,
name capture

Programming Concepts:

Files:
ece351.f.simgen.SimulatorGenerator

Libraries:
ece351.f.analysis.DetermineInputVars

Tests:
ece351.f.simgen.TestSimulatorGenerator

Consider the following F program: X <= A or B;. A simulator for this
F program would read an inputW file describing the values of A
and B at each time step, and would write an outputW file describ-
ing the values of X at each time step. Such a simulator is listed in
Figure 8.1. Your task is to write a program that, given an input F
program, will produce a Java program like the one in Figure 8.1. In
other words, you are going to write a simulator generator. The gener-
ated simulators will perform the following steps:

a. Read the inputW program.
b. Allocate storage for the outputW program.
c. Loop over the time steps and compute the outputs.
d. Write the outputW program.

An alternative to generating a simulator
would be to write an F interpreter.
What we are doing here is a writing
an F compiler. We call it a ‘simulator
generator’ because the term ‘compile’ is
not clear in the context of F : in the last
lab we ‘compiled’ F to a circuit; here
we ‘compile’ it to a simulator.

An interpreter evaluates a program
with an input, but does not transform
the program to another language. A
compiler, by contrast, is almost the
opposite: it translates a program to
another language, but does not evaluate
that program on any input.

It is usually the case that it takes less
effort to write an interpreter, but that
the target program’s runtime is faster if
it is compiled first.

The generated simulator will have a method to compute the value
of each output pin. In our example F program listed above the
output pin is X, and so the generated simulator in Figure 8.1 has a
method named X. The body of an output pin method is generated
by performing a pre-order traversal of the corresponding F expres-
sion AST. F expressions are written with operators in-order: that is,
the operators appear between the variables. For example, in the F
program we have the in-order expression A + B, while in the Java
translation we have the pre-order expression or(A, B).

8.1 Name Collision/Capture†

A name capture problem occurred in
some of the utility code. The FPro-
gram.equivalent() method checks that
the equivalence of two F programs
by translating them to sat. For conve-
nience, that process first translates the
F program to Alloy, and then the Alloy
is translated to sat. An older version
of this translation did not take care to
avoid name capture, so if the input F
program had variables corresponding
to Alloy keywords (e.g., ‘this’, ‘int’) then
the Alloy to sat translation would fail.

When we generate code in another language we need to be careful
that the variable names we generate based on our input program are
legal in the target language, and that they do not collide/capture
an already existing name. All legalW and F variable names are
also legal Java variable names, so we don’t need to worry about the
first point here. On the second point, notice that the generated Java
variable names in Figure 8.1 are prefixed with ‘in_’ or ‘out_’, and that
none of the boilerplate names have such prefixes.
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import java.util.*;
import ece351.w.ast.*;
import ece351.w.parboiled.*;
import static ece351.util.Boolean351.*;
import ece351.util.CommandLine;
import java.io.File;
import java.io.FileWriter;
import java.io.StringWriter;
import java.io.PrintWriter;
import java.io.IOException;
import ece351.util.Debug;

public final class Simulator_ex11 {
public static void main(final String[] args) {

final String s = File.separator;
// read the input F program
// write the output
// read input WProgram
final CommandLine cmd = new CommandLine(args);
final String input = cmd.readInputSpec();
final WProgram wprogram = WParboiledParser.parse(input);
// construct storage for output
final Map<String,StringBuilder> output = new LinkedHashMap<String,StringBuilder>();
output.put("x", new StringBuilder());
// loop over each time step
final int timeCount = wprogram.timeCount();
for (int time = 0; time < timeCount; time++) {

// values of input variables at this time step
final boolean in_a = wprogram.valueAtTime("a", time);
final boolean in_b = wprogram.valueAtTime("b", time);
// values of output variables at this time step
final String out_x = x(in_a, in_b) ? "1 " : "0 ";
// store outputs
output.get("x").append(out_x);

}
try {

final File f = cmd.getOutputFile();
f.getParentFile().mkdirs();
final PrintWriter pw = new PrintWriter(new FileWriter(f));
// write the input
System.out.println(wprogram.toString());
pw.println(wprogram.toString());
// write the output
System.out.println(f.getAbsolutePath());
for (final Map.Entry<String,StringBuilder> e : output.entrySet()) {

System.out.println(e.getKey() + ":" + e.getValue().toString()+ ";");
pw.write(e.getKey() + ":" + e.getValue().toString()+ ";\n");

}
pw.close();

} catch (final IOException e) {
Debug.barf(e.getMessage());

}
}
// methods to compute values for output pins
public static boolean x(final boolean a, final boolean b) { return or(a, b) ; }

}

Figure 8.1: Simulator for F program x
<= a or b;
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Figure 8.2 lists a visitor that determines all of the input variables
used by an F expression ast. This code is listed here for your ref-
erence. It is also in your repository. You will need to call this code
when writing your simulator generator.

public final class DetermineInputVars extends PostOrderExprVisitor {

private final Set<String> inputVars = new LinkedHashSet<String>();

private DetermineInputVars(final AssignmentStatement f) { traverseExpr(f.expr); }

/** Input variables of an AssignmentStatement, in order of occurrence. */

public static Set<String> inputVars(final AssignmentStatement f) {

final DetermineInputVars div = new DetermineInputVars(f);

return Collections.unmodifiableSet(div.inputVars);

}

/** Input variables of an FProgram, sorted lexicographically. */

public static SortedSet<String> inputVars(final FProgram p) {

final SortedSet<String> vars = new TreeSet<String>();

for (final AssignmentStatement f : p.formulas) {

vars.addAll(DetermineInputVars.inputVars(f));

}

return vars;

}

@Override public Expr visitConstant(final ConstantExpr e) { return e; }

@Override public Expr visitVar(final VarExpr e) { inputVars.add(e.identifier); return e; }

@Override public Expr visitNot(final NotExpr e) { return e; }

@Override public Expr visitAnd(final AndExpr e) { return e; }

@Override public Expr visitOr(final OrExpr e) { return e; }

@Override public Expr visitNaryAnd(final NaryAndExpr e) { return e; }

@Override public Expr visitNaryOr(final NaryOrExpr e) { return e; }

@Override public Expr visitXOr(final XOrExpr e) { return e; }

@Override public Expr visitNAnd(final NAndExpr e) { return e; }

@Override public Expr visitNOr(final NOrExpr e) { return e; }

@Override public Expr visitXNOr(final XNOrExpr e) { return e; }

@Override public Expr visitEqual(final EqualExpr e) { return e; }

}

Figure 8.2: Implementation of Deter-
mineInputVars
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8.2 Testing a code generator†

In lab8 here you are writing a code generator: that is, the code that
you write produces code as its output, as shown in Figure 8.3.

F YourLab7

GenJavaCode W_out

W_in

Figure 8.3: Dataflow of lab8

How can the course staff evaluate your lab8 code?

a. Reading your hand-written source code.

• Hard to mechanize. Doesn’t scale.
• Easy to make mistakes in evaluation.

b. Mechanically comparing your hand-written source code to staff code.

• Syntactic comparison: many legitimate differences.
• Semantic comparison: impossible (in theory) — equivalent to

Halting Problem (because Java is Turing Complete).

c. Comparing your generated code to staff generated code.

• Same problems as above.

d. Comparing theW output produced by your generated code with theW
output from the staff generated code. This is one of the main ways that

compilers are tested in industry: by
running the code that they generate,
and examining its output.

• W is regular, so we can compare easily.
• Engineer’s Induction problem: how do we know if we did

enough tests? Test Suite Adequacy.

8.3 Evaluation

The last pushed commit before the deadline is evaluated both on
the shared test inputs and on a set of secret test inputs according to
the weights in the table below. Let ‘f’ name the F program we want
to simulate, let ‘w’ name an inputW program for it, and let ‘wStaff’
name the output of the staff’s simulator for this F/W combination.
The testing equation is:

gen(f).simulate(w).isomorphic(wStaff)

Current New
TestSimulatorGenerator 70 30



Lab 9
Simulation: F → x64 Assembly

This lab developed by past ece351

students Nicholas Champion, Akshay
Joshi, and Jackson Prange.

In Lab 8 you generated Java code from an F program. That Java code
would read and writeW files, simulating the F program for each
clock tick. Now we will do a similar thing, but instead of Java code
we will generate x64 (i.e., x86_64) assembly.

9.1 Reading theW Program

In Lab 8, your generated Java code called yourW parser to read in
theW input. So your generated Java code could work with different
inputW programs.

Calling between Java and native assembler code is possible, but is
annoying and time consuming to set up, so we do not want to do it
in this lab.

Instead, we will hardcode theW program into the x64 assembly
code. This means that the generated assembly will not read any input
when it executes — and also that the generated assembly code will
not have to interact with Java code.

9.2 Register Allocation†

The programmer may use as many variables as they want, but the
machine has only a finite number of registers. Levels of register allo-
cation:

a. Every variable gets a register.

b. Variables that are not live at the same time can share a register.

If there are too many variables live at the same time, then some of
them need to be spilled to main memory.
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9.2.1 Register Allocation in This Lab

We need to store the values for the input variables in registers. We
will use registers r8–r15 for the input variables. Conceptual levels of
register allocation, in order of increasing sophistication:

a. Every input variable gets its own register. Ok if the total number
of input variables is less than 8.

b. Each AssignmentStatement (formula) in the input F program This is the strategy used in the skeleton
code.might use only a subset of the input variables. So we could allo-

cate the registers differently for each AssignmentStatement. Ok so
long as no individual AssignmentStatement uses more than 8 vari-
ables (now the F program as a whole can use as many variables as
it wants).

9.3 Assembling & Linking
You can set the path environment
variable in the Eclipse run configuration
for the test harness to specify where
gcc is, if necessary.

The test harness uses gcc for assembling and linking. It assumes that

gcc is the Gnu Compiler Collection,
which is the standard compiler on
Gnu/Linux systems, and is one of the
most commonly used C/C++ compilers
in the world.

you have gcc installed and available in your path.

9.4 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below.

Let ‘f’ name the F program we want to simulate, let ‘w’ name an
inputW program for it, and let ‘wStaff’ name the output of the staff’s
simulator for this F/W combination. The testing equation is:

genX64(f).simulate(w).isomorphic(wStaff)

Shared Tests Secret Tests
TestSimulatorGenerator_x86_64 90 10

9.4.1 Bonus Marks

As with all labs, bonus marks are available for improving the lab. A
number of such opportunities were discussed in class with respect to
this lab, such as:

• improving register allocation
• improving register usage
• improving tests
• switching to ASMJIT for assembling instead of gcc
• etc.
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You might have other creative ideas of how to improve this lab or
other labs. Bonus marks are assessed by the instructor.
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.text

.globl out_x

.type out_x, @function

out_x:

pushq %rbp // set up a stack frame; rbp is frame pointer

movq %rsp, %rbp // set up a stack frame; rbp is frame pointer; rsp is stack pointer

subq $24, %rsp // making space on stack

pushq %r8 // value of input variable "a" is in r8

popq %rax // return value goes in rax

leave

ret

.globl main

.type main, @function

main:

pushq %rbp

movq %rsp, %rbp

movq $120, %rdi // put char ’x’ in rdi

call putchar // print contents of rdi to console

movq $58, %rdi // put char ’:’ in rdi

call putchar // print contents of rdi to console

movq $32, %rdi // put char ’ ’ in rdi

call putchar // print contents of rdi to console

movq $0, %r8 // load 0 into r8 (value of "a" at first time step)

call out_x // evaluate output pin "x" at first time step

movq %rax, %rdi // move x’s computed value to rdi

add $48, %rdi // convert int to ascii (48 is ASCII value ’0’)

call putchar // print contents of rdi to console

movq $59, %rdi // put char ’;’ in rdi

call putchar // print contents of rdi to console

movq $10, %rdi // put newline char in rdi

call putchar // print contents of rdi to console

popq %rax

leave

ret

Figure 9.1: x64 assembly for x <= a;



Lab 10
vhdl Recognizer & Parser

Compiler Concepts:
Programming Concepts:

Files:
ece351.v.VRecognizer.java
ece351.v.VParser.java

Tests:
ece351.v.test.TestVRecognizerAccept
ece351.v.test.TestVRecognizerReject
ece351.v.test.TestVParser

In this lab we will build a recognizer and a parser using Parboiled for
a very small and simple subset of vhdl. The grammar for this subset
of vhdl is listed in Figure 10.1. Restrictions on our subset of vhdl

include:

In w2013 the median time to complete
this lab was about 9 hours. Therefore,
we have made three changes to this lab
for s2013 to hopefully bring this time
down to the five hour budget.

First, we added append methods
to the vhdl ast classes (as we also
did for F this term). This means that
your parser does not need to place
ImmutableList objects on the stack
directly, which many students found
difficult to manage (and certainly the
syntax for the casting is complex). This
also means that you can construct your
ast in a top-down manner, which
many students seem to find easier. Both
W and F were changed to this style
this term as well, so this is what you are
already familiar with.

Second, we provided implementations
of the object contract methods on the
vhdl ast classes for you, instead of
requiring you to fill them in.

Third, we removed the desugarer and
define before use parts of this lab. So
now it’s just the parser.

• only bit (boolean) variables
• no stdlogic
• no nested ifs
• no aggregate assignment
• no combinational loops
• no arrays
• no generate loops
• no case
• no when (switch)
• inside process: either multiple assignment statements or multi-

ple if statements; inside an if there can be multiple assignment
statements

• no wait
• no timing
• no postponed
• no malformed syntax (or, no good error messages)
• identifiers are case sensitive
• one architecture per entity, and that single architecture must occur

immediately after the entity
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Program → (DesignUnit)*
DesignUnit → EntityDecl ArchBody
EntityDecl → ‘entity’ Id ‘is’ ‘port’ ‘(’ IdList ‘:’ ‘in’ ‘bit’ ‘;’

IdList ‘:’ ‘out’ ‘bit’ ‘)’ ‘;’ ‘end’ ( ‘entity’ | Id )
‘;’

IdList → Id (‘,’ Id)*
ArchBody → ‘architecture’ Id ‘of’ Id ‘is’ (‘signal’ IdList ‘:’

‘bit’ ‘;’)? ‘begin’ (CompInst)* ( ProcessStmts |
SigAssnStmts ) ‘end’ Id ‘;’

SigAssnStmts → (SigAssnStmt)+

SigAssnStmt → Id ‘<=’ Expr ‘;’
ProcessStmts → (ProcessStmt)+

ProcessStmt → ‘process’ ‘(’ IdList ‘)’ ‘begin’ ( IfElseStmts |
SigAssnStmts ) ‘end’ ‘process’ ‘;’

IfElseStmts → (IfElseStmt)+

IfElseStmt → ‘if’ Expr ‘then’ SigAssnStmts ‘else’
SigAssnStmts ‘end’ ‘if’ (Id)? ‘;’

CompInst → Id ‘:’ ‘entity’ ‘work.’ Id ‘port’ ‘map’ ‘(’ IdList
‘)’ ‘;’

Expr → XnorTerm (‘xnor’ XnorTerm)*
XnorTerm → XorTerm (‘xor’ XorTerm)*
XorTerm → NorTerm (‘nor’ NorTerm)*
NorTerm → NandTerm (‘nand’ NandTerm)*
NandTerm → OrTerm (‘or’ OrTerm)*
OrTerm → AndTerm (‘and’ AndTerm)*
AndTerm → EqTerm (‘=’ EqTerm)*
EqTerm → ‘not’ EqTerm | ‘(’ Expr ‘)’ | Var | Constant
Constant → ‘0’ | ‘1’
Var → id
Id → Char ( Char | Digit | ‘_’ )*
Char → [A-Za-z]
Digit → [0-9]

Figure 10.1: Grammar for vhdl.
This grammar has gone through a

number of evolutions. First, David Gao
and Rui Kong (3b) downloaded a com-
plete vhdl grammar implementation
for the antlr tool. They found that
grammar was too complicated to use,
so they started writing their own with
antlr. Then Alex Duanmu and Luke
Li (1b) reimplemented their grammar
in txl and simplified it. Aman Muthrej
(3a) reimplemented it in Parboiled
and simplified it further. Wallace Wu
(ta) refactored Aman’s code. Michael
Thiessen (3a) helped make the expres-
sion sub-grammar more consistent with
the grammar of F .

There will no doubt be improve-
ments and simplifications that you
think of, and we would be happy to
incorporate them into the lab.
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AST

[DesignUnit]

VProgram

DesignUnit

Entity

entity

XNOR_test

identifier

[x,y]

input output

[F]

arch

Architecture

architectureName

entityName

signals components

statements

XNOR_test_arch

[ ] [ ]

[processStatement]

[x,y]

sensitivityList

[AssignmentStatement]

sequentialStatements

AssignmentStatement

VarExpr

XNOrExpr

yx

F VarExpr

VarExpr

processStatement

identifier

identifieridentifier

outputVar
Expr

left right

designUnits

entity XNOR_test is port( 
x, y: in bit;  
F: out bit  
); 
end XNOR_test; 
 
architecture XNOR_test_arch of 
XNOR_test is 
begin 
process(x, y) 
begin 
F <= x xnor y;  
end process; 
end XNOR_test_arch;

VDHL File

identifier

Figure 10.2: Object diagram for example
vhdl ast
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10.1 Keywords and Whitespaces

To make the code for the recognizer and parser a little bit more leg-
ible (and easier to implement), classes VRecognizer and VParser

inherit a common base class called VBase,1 which contains a set of 1 VBase itself extends BaseParser351,
which provides extra utility and de-
bugging methods over Parboiled’s
BaseParser class.

rules that will match keywords found in the language in a case-
independent manner (since vhdl is case-insensitive2 – e.g., both

2 In some vhdl compilers, there may be
some exceptions, where the case sen-
sitivity matters a handful of grammar
productions

‘signal’ and ‘SIGNAL’ represent the same keyword in the language).
Figure 10.3 is an example of one of the rules found in VBase. Here,

the rule matches the keyword ‘signal’ and as there is no whitespace
handling, your code should ensure that at least one whitespace exists
between this keyword and the next token/string that is matched.

Rule NOR() {
Figure 10.3: Implementation of rule
used to match the keyword ‘signal’

10.2 vhdl Recognizer
Sources:

ece351.v.VRecognizer

Tests:
ece351.v.test.TestVRecognizerAccept
ece351.v.test.TestVRecognizerReject

Write a recognizer using Parboiled for the vhdl grammar defined in
Figure 10.1. Follow the methodology that we have been developing
this term:

• Make a method for every non-terminal [Lab 1.3]
• Convert ebnf multiplicities in the grammar into Parboiled library

calls [Lab 5.1]
• Convert the lexical specification into Parboiled library calls [Lab 5.1]
• Remember to explicitly check for EOI

You should be able to copy and paste the code from your F par-
boiled recognizer with minimal modifications, since F is a subset of
our vhdl grammar.

10.3 vhdl Parser
Sources:

ece351.v.VParser
Libraries:

ece351.v.ast.*
ece351.common.ast.*

Tests:
ece351.v.test.TestVParser

Write a parser using Parboiled for the vhdl grammar defined in
Figure 10.1. You do not need to write a pretty-printer nor the ob-
ject contract methods: these are provided for you in the new vhdl

ast classes, and you already wrote them in the shared ast classes
(ece351.common.ast). You do not need to edit the ast classes. Just
write the parser. Follow the steps we learned earlier in the term:

• Draw out the evolution of the stack for a simple input [Figure 5.3].
• Print out our vhdl grammar.
• Annotate the printed copy of the grammar with where stack ma-

nipulations occur according to your diagram.
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• Calculate the maximum and expected size of the stack for different
points in the grammar.

• Copy your recognizer code into the parser class.
• Add some (but not all) actions (push, pop, etc.).
• Add some checkType() and debugmsg() calls [Figure 5.5].
• Run the TestVParser harness to see that it passes.
• Add more actions, checkType() calls, etc..
• Repeat until complete.

When you implement the vhdl parser, there may be a few gram-
mar productions shown in Figure 10.1 where you will need to rewrite
each of these rules in a different way so that you can instantiate all of
the required objects used to construct the AST of the program being
parsed.

10.4 Engineering a Grammar†

For simple languages likeW and F we can write a ‘perfect’ recog-
nizer: that is, a recognizer that accepts all grammatical strings and
rejects all ungrammatical strings. For more complicated languages,
such as vhdl, it is common to design a grammar for a particular
task, and that task may be something other than being an ideal rec-
ognizer. For example, the grammar might accept some strings that
should be rejected.

Industrial programming environments such as Eclipse often in-
clude multiple parsers for the same language. Eclipse’s Java de-
velopment tools include three parsers: one that gives feedback on
code while the programmer is editing it (and so the code is proba-
bly ungrammatical); one that gives feedback on the code when the
programmer saves the file (when the code is expected to be gram-
matical); and one that is part of the compiler. As you may surmise
from this example, the task of giving good feedback to a programmer
about ungrammatical code can be quite different from the task of
translating grammatical code.

The TestVRecognizerReject harness tests for some obvious cases
that should be rejected. Do not invest substantial effort into trying to
reject more cases.
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10.5 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below.

You do not get any marks for any other
parser tests until TestObjectContractF
passes everything. You do not get any
marks for rejection tests until some
acceptance tests pass.

Current New
TestVParboiledRecognizerAccept 20 5

TestVParboiledRecognizerReject 5 0

TestVParboiledParser 45 25

TestVParboiledRecognizer just runs the recognizer to see if it
crashes. TestVParboiledParser checks the following equation:
∀ v : *.vhd | parse(v).isomorphic(parse(prettyprint(parse(v))))



Lab 11
vhdl → vhdl: Desugaring & Elaboration

Compiler Concepts: desugaring, function
inlining

Programming Concepts:

In this lab, you will be writing two vhdl to vhdl transformers us-
ing the Visitor design pattern. The first, and simpler one, will simply
rewrite expressions to replace operators like xor with their equiva-
lent formulation in terms of and, or, and not. We call this desug-
aring, where operators like xor are considered to be syntactic sugar:
things that might be convenient for the user, but do not enlarge the
set of computations that can be described by the language.

The second, and more sophisticated, transformer will expand
and inline any component instance declared within an architecture
of a design unit if the component is defined within the same vhdl

source file. The procedure that this transformer performs is known
as elaboration. Elaboration is essential for us to process the four bit
ripple-carry adder, for example, because it comprises four one-bit full
adders.

11.1 Pointers, Immutability and Tree Rewriting with Visitor†

Go back and reread §1.6. Go to PythonTutor.com and understand the
visualizations that show how variables point to objects. You really
need to understand pointers, aliasing, and immutability to work
on this lab. The ta’s report that although these are fundamental
concepts we reviewed at the beginning of term, many students are
still unclear on them at this point.

Immutable means that an object doesn’t change. But this whole lab
is, in some sense, about changing our vhdl ast: first by rewriting
exotic operators like xor in terms of the basic (and, or, not) opera-
tors (desugaring); and then by inlining the definitions of subcompo-
nents (elaboration). How can we change the ast if it’s immutable?

The same we change any immutable object: we don’t. We create a
new ast that is like the old ast except for the parts that we want to
be different.

TODO: draw pictures of tree rewrite of X <= A or B and ’1’;

PythonTutor.com
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11.2 vhdl → vhdl: Desugaring
Sources:

ece351.v.DeSugarer

Tests:
ece351.v.tests.TestDeSugarer

Often times, languages provide redundant syntactic constructs for the
purpose of making code easier to write, read, and maintain for the
programmer. These redundant constructs provide ‘syntactic sugar’.
In this part of the lab, you will transform vhdl programs that you
parse into valid vhdl source code that ‘desugars’ the expressions
in the signal assignment statements. In other words, the desugaring
process reduces the source code into a smaller set of (i.e., more basic)
constructs.

In vhdl, desugaring may be useful in cases where the types of
available logic gates are limited by the programmable hardware
you might be using to run your vhdl code. For example, if the pro-
grammable hardware only comprises of nand gates, a vhdl synthe-
sizer will be required to rewrite all of the logical expressions in your
code using nand operators.

For this part of the lab, write a ‘desugarer’ that traverses through
an ast corresponding to an input vhdl program and rewrites all
expressions so that all expressions in the transformed ast only consist
of and, or, and not logical operators. This means that expressions
containing xor, nand, nor, xnor, and = operators must be rewrit-
ten. For example, the expression x⊕ y (xor) is equivalent to:

x⊕ y ≡ x·!y+!x · y (11.1)

Table 11.1 is the truth table for the ‘=’ operator: By observation, we
can see that this truth table is equivalent to that of xnor.

x y x = y
0 0 1

0 1 0

1 0 0

1 1 1

Table 11.1: Truth table for the ‘=’
operator. Equivalent to xnor.

11.3 Elaboration
Sources:

ece351.v.Elaborator
Tests:

ece351.v.test.TestElaborator

The following sections describe the expected behaviour of the elabo-
rator.

11.3.1 Inlining Components without Signal List in Architecture

Consider the vhdl source shown in Figure 11.1. Here, we have two
design units, OR_gate_2 and four_port_OR_gate_2, where the archi-
tecture body corresponding to four_port_OR_gate_2 instantiates two
instances of OR_gate_2, namely OR1 and OR2 (lines 20 and 21).
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When the elaborator processes this program, it will check the de-
sign units sequentially. In this example, OR_gate_2 is checked first.
The architecture body corresponding to OR_gate_2 does not instan-
tiate any components, so the elaborator does not do anything to this
design unit and moves onto the next design unit. In the architecture
body, four_port_structure, we see that there are two components
that are instantiated. Since there are components within this architec-
ture body, the elaborator should then proceed to inline the behaviour
of the components into four_port_structure and make the appro-
priate parameter/signal substitutions.

1 entity OR_gate_2 is port (

2 x , y: in bit;

3 F: out bit

4 );

5 end OR_gate_2;

6

7 architecture OR_gate_arch of OR_gate_2 is begin
8 F <= x or y;

9 end OR_gate_arch;

10

11 entity four_port_OR_gate_2 is port (

12 a,b,c,d : in bit;

13 result : out bit

14 );

15 end four_port_OR_gate_2;

16

17 architecture four_port_structure of four_port_OR_gate_2 is
18 signal e, f : bit;

19 begin
20 OR1: entity work.OR_gate_2 port map(a,b,e);

21 OR2: entity work.OR_gate_2 port map(c,d,f);

22 result <= e or f;

23 end four_port_structure;

Figure 11.1: vhdl program used to
illustrate elaboration.

Consider the component OR1. The elaborator will search through
the list of design units that make up the program and determine the
design unit that the component is instantiating. In this example, OR1
is an instance of the design unit OR_gate_2 (see the string immedi-
ately following “work.” on line 20). Then the elaborator proceeds to
determine how the signals used in the port map relate to the ports
defined in the entity declaration of OR_gate_2. OR1 maps the signals
a, b, and e, to the ports x, y, and F of the entity OR_gate_2, respec-
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tively. Using the private member, current_map, in the Elaborator
class will help you with the signal substitutions that occurs when a
component is inlined. After the mapping is established, the elabo-
rator then proceeds to replace OR1 by inlining the architecture body
corresponding to the entity OR_gate_2 into four_port_structure.

The same procedure is carried out for the component OR2 and
we now will have an equivalent architecture body as shown in Fig-
ure 11.2. Lines 5 and 6 in Figure 11.2 corresponds to the inlining of
OR1 and OR2 (found in lines 20 and 21 from Figure 11.1).

1 begin
2 result <= ( e or f );

3 e <= ( a or b );

4 f <= ( c or d );

5 end four_port_structure;

6

7 entity eight_port_OR_gate_2 is port(
8 x0, x1, x2, x3, x4, x5, x6, x7 : in bit;

Figure 11.2: Elaborated architecture
body, four_port_structure.

11.3.2 Inlining Components with Signal List in Architecture

In addition to substituting the input and output pins for a port map,
you will also encounter situations where there are signals declared in
the architecture body that you are trying to inline to the design unit
the elaborator is currently processing.

For example, consider vhdl source in Figure 11.3, which is the
extension of the program in Figure 11.1.

The two components in eight_port_structure are instances of
four_port_OR_gate_2; the architecture of four_port_OR_gate_2 de-
fines signals e and f. Now, if we elaborate, say, OR1, we determine the
mapping as before for the input and output pins, but we also need
to consider the signals defined within the architecture. If we simply
add e and f to the list of signals of eight_port_structure, we will
run into problems of multiply defined signals when we elaborate OR2;
we will obtain a signal list with two e’s and two f’s. Furthermore, we
will change the logical behaviour defined in eight_port_structure.

To address this issue, all internal signals that are added as a re-
sult of elaboration will be prefixed with ‘comp<num>_’, where <num>

is a unique identifier1 used to ensure that the elaboration does not 1 This number starts at 1 and increments
for each component that is instantiated
in the vhdl program. <num> is never
reset.

change the logical behaviour of the program. The result of elaborat-
ing eight_port_OR_gate_2 is shown Figure 11.4.
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1 entity eight_port_OR_gate_2 is port (

2 x0, x1, x2, x3, x4, x5, x6, x7 : in bit;

3 y : out bit

4 );

5 end eight_port_OR_gate_2;

6

7 architecture eight_port_structure of eight_port_OR_gate_2 is
8 signal result1, result2 : bit;

9 begin
10 OR1: entity work.four_port_OR_gate_2 port map(x0, x1, x2, x3, result1);

11 OR2: entity work.four_port_OR_gate_2 port map(x4, x5, x6, x7, result2);

12 y <= result1 or result2;

13 end eight_port_structure;

Figure 11.3: Extension of the vhdl

program shown in Figure 11.1.

1 entity eight_port_OR_gate_2 is port(
2 x0, x1, x2, x3, x4, x5, x6, x7 : in bit;

3 y : out bit

4 );

5 end eight_port_OR_gate_2;

6 architecture eight_port_structure of eight_port_OR_gate_2 is
7 signal result1, result2, comp3_e, comp3_f, comp4_e, comp4_f : bit;

8 begin
9 y <= ( result1 or result2 );

10 result1 <= ( comp3_e or comp3_f );

11 comp3_e <= ( x0 or x1 );

12 comp3_f <= ( x2 or x3 );

13 result2 <= ( comp4_e or comp4_f );

14 comp4_e <= ( x4 or x5 );

15 comp4_f <= ( x6 or x7 );

16 end eight_port_structure;

Figure 11.4: Elaborated architecture
body, eight_port_structure.
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11.3.3 Inlining Components with Processes in Architecture

The previous examples demonstrated the behaviour of inlining com-
ponents with architectures that only contain signal assignment state-
ments. When the elaborator encounters processes in the inlining, a
similar procedure is performed. The main difference in the proce-
dure for processes is to make the appropriate signal substitutions in
sensitivity lists and if-else statement conditions.

11.3.4 Notes

• The elaborator will only expand components when its correspond-
ing design unit is also defined in the same file.

• The elaborator processes the design units in sequential order. We
assume that the vhdl programs we are transforming are written
so that you do not encounter cases where the architecture that you
are inlining contains components that have not yet been elabo-
rated.

• We will assume that the vhdl programs being elaborated will
not result in architecture bodies with a mixture of parallel signal
assignment statements and process statements (so that the parser
from Lab 10 can parse the transformed programs).

11.4 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below. The testing equation for desugaring is:

parse(v).desugar().isomorphic(parse(vStaff))

Similarly, the testing equation for elaboration is:
parse(v).elaborate().isomorphic(parse(vStaff))

Shared Secret
TestDeSugarer 20 10

TestElaborator 50 20



Lab 12
vhdl Process Splitting & Combinational Synthesis

Choice: either do this lab or do the lab
marked as lab12. Do not do both.

Files:
ece351.v.Splitter.java
ece351.v.Synthesizer.java

Tests:
ece351.v.test.TestSplitter
ece351.v.test.TestSynthesizer

For this lab, you will be writing code to perform two other transfor-
mations on vhdl programs. The first transformation is a vhdl to
vhdl transformation, which we call process splitting. Process splitting
involves breaking up if/else statements where multiple signals are
being assigned new values in the if and else clauses.

In the second part of this lab, you will be translating vhdl to F ,
which we call combinational synthesis. The combinational synthesizer
will take the vhdl program output from the process splitter and
generate a valid F program from it.

12.1 Process Splitter

The process splitter will perform the necessary transformations to
vhdl program ASTs so that exactly one signal is being assigned a
value in a process. Consider the vhdl code shown in Figure 12.1.

Here, we have a process in the architecture behv1 of the entity Mux

the requires splitting because in the if and else clauses, there are two
signals that are being assigned new values: O0 and O1. The splitter
should observe this and proceed to replace the current process with
two new processes: one to handle the output signal O0 and the other
to handle O1. Figure 12.2 shows the splitter’s output when the code
in Figure 12.1 is processed. Note that the sensitivity lists for the two
new processes only contain the set of signals that may cause a change
to the output signals. This desugaring highlights the im-

portance of syntactic sugar in terms
of usability for the programmer, and
the importance of desugaring for the
compiler engineer. Imagine if the pro-
grammer had to write the condition in
Figure 12.2: unusable! But conversely,
imagine if the compiler engineer had
to enhance the entire F toolchain to
deal with so many more operators: too
much work; too many opportunities for
error.

You might also notice that it appears that the condition becomes
longer and more complicated from Figure 12.1 to Figure 12.2. That
is not related to process splitting: it’s the result of desugaring the ‘=’
in the condition. Recall that ‘=’ does not exist in F , so it needs to be
expressed in terms of the operators that do exist in F : and, or, not.
Table 11.1 shows that ‘=’ is equivalent to xnor.



136 ece351 lab manual [april 5, 2018]

1 entity Mux is port(
2 I3,I2,I1,I0,S: in bit;

3 O0,O1: out bit

4 );

5 end Mux;

6

7 architecture behv1 of Mux is
8 begin
9 process(I3,I2,I1,I0,S)

10 begin
11 if (S = ’0’) then
12 O0 <= I0;

13 O1 <= I2;

14 else
15 O0 <= I1;

16 O1 <= I3;

17 end if;
18 end process;

19

20 end behv1;

Figure 12.1: Example vhdl program
used to illustrate process splitting.
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1 entity Mux is port(
2 I3, I2, I1, I0, S : in bit;

3 O0, O1 : out bit

4 );

5 end Mux;

6 architecture behv1 of Mux is
7

8 begin
9 process ( S, I0, I1 )

10 begin
11 if ( ( not ( ( ( S and ( not ( ’0’ ) ) ) or ( ( not ( S ) ) and ’0’ ) ) ) ) ) then
12 O0 <= I0;

13 else
14 O0 <= I1;

15 end if;
16 end process;

17 process ( S, I2, I3 )

18 begin
19 if ( ( not ( ( ( S and ( not ( ’0’ ) ) ) or ( ( not ( S ) ) and ’0’ ) ) ) ) ) then
20 O1 <= I2;

21 else
22 O1 <= I3;

23 end if;
24 end process;

25 end behv1;

Figure 12.2: The resulting vhdl pro-
gram of Figure 12.1 after process
splitting.

12.2 Splitter Notes

• Assume that there is exactly one assignment statement in the if
body and one assignment statement in the else body that write to
the same output signal. This implies that you do not need to han-
dle the case where latches are inferred. Making this assumption
should reduce the amount of code you need to write for this lab.

• The private variable usedVarsInExpr is used to store the vari-
ables/signals that are used in a vhdl expression. This is helpful
when you are trying to create sensitivity lists for new processes.
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12.3 Synthesizer

After parsing the input vhdl source file and performing all of the
transformations (i.e., desugaring, elaborating, and process splitting),
the synthesizer will traverse the (transformed) ast (of the vhdl

program), extract all expressions in the program, and generate an F
program containing these expressions.

In §8 we generated a Java program by constructing a string. We
noted that there was no guarantee that the string we generated
would be a legal Java program. One way to ensure that we gener-
ate a legal program is to build up an ast instead of building up a
string. Of course, to do that we need to have ast classes, which we
do not have for Java — but do have for F .

Because the F grammar and ast classes are a subset of those for
vhdl, we can simply reuse many of the expressions from the input
vhdl program with only minor modification to rename the variables
to avoid name collision.

12.3.1 If/Else Statements

Whenever an if/else statement is encountered, first extract the con-
dition and add it to the F program. Because there is no assignment
that occurs in the condition expression, generate an output variable
for the condition when you output the condition to the F program.
The output variable will be of the form: ‘condition<num>’, where
<num> = 1, 2, 3, . . . . <num> is incremented each time you encounter a
condition in the vhdl program and is never reset.

After appending the condition of the if/else statement to the F
program, construct an assignment for the output variable like so:1 1 Note that process splitting is useful

here because we will only have one
signal assignment statement in the if-
and else- bodies, where both statements
assign the expressions to the same
output signal.

if ( vexpr ) then
output <= vexpr1;

else
output <= vexpr2;

end if;

The formulas that should be appended to the F program is:

condition<num> <= vexpr;

output <= ( condition<num> and (vexpr1) or (not condition<num>) and (vexpr2) );

Let’s refer to the variable named conditionX as an intermediate variable The synthesizer here is not the only
place where these intermediate vari-
ables are created. They also occur in
elaboration. They are helpful for debug-
ging, so it’s worth keeping them here
and removing them later.

because it is not intended as part of the circuit’s final output, but is
used in computing the final output pins. Our F simulator generator
and technology mapper do not support these intermediate variables.
Removing them is not hard: we just inline their definition wherever
they are used. We will provide you with code to do that later.
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12.3.2 Example Synthesizing Signal Assignment Statements

Consider the vhdl program shown in Figure 12.3. When the synthe-
sizer processes this program2, an F program consisting of a single 2 after desugaring, elaborating, and

splittingformula (corresponding to ) is generated (see Figure 12.4).

1 entity NOR_gate is port(
2 x,y: in bit;

3 F: out bit

4 );

5 end NOR_gate;

6

7 architecture NOR_gate_arch of NOR_gate is
8 begin
9

10 F <= x nor y;

11

12 end NOR_gate_arch;

Figure 12.3: Example used to illustrate
synthesizing assignment statements.

1 NOR_gateF <= ( not ( NOR_gatex or NOR_gatey ) );
Figure 12.4: Synthesized output of the
program in Figure 12.3.

12.3.3 Example Synthesizing If/Else Statements

Consider the vhdl program show in Figure 12.5. After performing
all of the vhdl transformations that you have written, the synthe-
sizer will generate the F program shown in Figure 12.6.

In Figure 12.6, observe that the synthesizer translates the if/else
statement in Figure 12.5 into two F formulae. The first formula that
is generated corresponds to the condition that is checked in the state-
ment (i.e., x=‘0’ and y=‘0’). The second formula combines the ex-
pressions found in the if and else bodies so that the expression in
the if-body is assigned to F if the condition is true; otherwise, the
expression in the else-body is assigned to F.
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1 entity NOR_gate is port(
2 x, y: in bit;

3 F: out bit

4 );

5 end NOR_gate;

6

7 architecture NOR_gate_arch of NOR_gate is
8 begin
9 process(x, y)

10 begin
11 if (x=’0’ and y=’0’) then
12 F <= ’1’;

13 else
14 F <= ’0’;

15 end if;
16 end process;

17 end NOR_gate_arch;

Figure 12.5: Example used to illustrate
synthesizing assignment statements.

1 condition1 <= ( ( not ( ( NOR_gatex and ( not ’0’ ) ) or ( ( not NOR_gatex )

and ’0’ ) ) ) and ( not ( ( NOR_gatey and ( not ’0’ ) ) or ( ( not
NOR_gatey ) and ’0’ ) ) ) );

2 NOR_gateF <= ( condition1 and ( ’1’ ) ) or ( ( not condition1 ) and ( ’0’ ) );

Figure 12.6: Synthesized output of the
program in Figure 12.5.

12.4 Evaluation

The last pushed commit before the deadline is evaluated both on the
shared test inputs and on a set of secret test inputs according to the
weights in the table below.

Current New
TestSplitter 40 10

TestSynthesizer 40 10



Lab 13
Simulation: F → Assembly

This lab by Nicholas Champion.

Choice: You can do either this lab or the
original lab11. Don’t do both.

There is no official instructional
support for this lab. Do not attempt this
lab if you are not comfortable learning
assembly on your own and configuring
your system to work with the assembler
that you have chosen.

In Lab 8 you generated Java code from an F program. That Java
code would read and writeW files, simulating the F program for
each clock tick. In this lab you will make a variation of the simulator
generator from Lab 8. The main loop is still the same, with the call to
theW parser etc.. The only part that will be different is the methods
you generate to compute the values of the output pins. For example,
in Lab 8 you might have generated a method like the one shown
in Figure 13.1. The point of this lab is to generate these methods in
assembly, and have the main body (still in Java) call the assembly
versions.

// methods to compute values for output pins
public static boolean x(final boolean a, final boolean b) { return or(a, b) ; }

Figure 13.1: Generate this method in
assembly rather than in Java

13.1 Which assembler to use?

Options include:

• masm32. Requires a 32 bit jdk. This is the option supported by
the description below and the skeleton code. The other options
have no instructional support.

• gcc with inline assembly.

• JWasm http://www.japheth.de/JWasm.html. JWasm is an open-
source fork of the Watcom assembler (Wasm). It is written in C
and is masm compatible. The ‘J’ here apparently stands for the
maintainer (Japheth), and not for Java.

Watcom, as you know, is from the University of Waterloo. UW has
a long and famous history with compilers, that you can read a lit-
tle bit about at http://www.openwatcom.com/index.php/Project_

History

http://www.japheth.de/JWasm.html
http://www.openwatcom.com/index.php/Project_History
http://www.openwatcom.com/index.php/Project_History
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• MIPS Assembler and Runtime Simulator (MARS). A Java implemen- There might be some bonus marks
available if you develop a skeleton
and some instructional support for
an assembler such as mars that has
no system dependencies outside of a
regular jvm.

tation of the risc machine described in the Hennessey & Patterson
computer architecture textbook. http://courses.missouristate.
edu/kenvollmar/mars/ Because this is a simulator written in Java,
it might avoid a lot of the systems issues of going to x86 assembly.
Also, it might be easier to generate MIPS assembly than x86 (RISC
instruction sets are usually simpler than CISC ones).

13.2 masm32 Configuration

• MASM32 requires Windows (any version should work). MASM32

includes an old version of Microsoft’s assembler ml.exe. Newer
version are included with releases of Visual Studio releases and
support newer instruction.

• Install the 32-bit JDK and configure your Eclipse installation to use
this JDK. JNI and Windows operating systems require that 64-bit
programs use 64-bit dynamic libraries (i.e., what MASM32 will
generate). 64-bit programs cannot use 32-bit libraries.

• A possible multi-platform alternative to experiment with, which is
NOT-supported by the skeleton or test harness, is JWASM.

• It can be downloaded from http://www.masm32.com/

• It is recommended that you install MASM32 to C:\masm32

• Add (<Install Path>\bin) to your system path environment variable
(i.e., C:\masm32\bin)

• To check if it was added to the path, open a new command win-
dow and type "ml.exe". It should output "Microsoft (R) Macro
Assembler Version 6.14.8444...".

13.3 masm32 JNI and x86 Assembly
You can use the JavaH tool in order
to see the function signatures. It is in-
cluded with the JDK to generate the C
header for a java class. You can modify
TestSimulatorGeneratorMasm32.java to
generate the headers files by uncom-
menting the lines which write the batch
file. You will need to change the path
to point to your JDK. To see how java
call types map to standard C types (and
hence ASM), see jni.h (in the JDK).

The skeleton and test harness created for solving this lab using
MASM32 are based on the Lab 8 and so approximately a third of
the redacted skeleton code can be taken from a lab 8 solution. The
main difference from lab 8 is the means in which the F-statements
are evaluated. In lab 8, methods were created and defined in Java for
each statement by walking the tree using pre-order. In lab 12, these
methods are to be implemented in x86 assembly. It is not possible to
include inline assembly in Java as Java is executed in the JVM. There-
fore the x86 is assembled and linked into a shared library (dynamic
link library (DLL) on Windows). This library must be loaded by the
generated java code using the Java Native Interface (JNI). JNI allows
native functions to be added to the class which loads the library. The
library load in the skeleton is static while the methods are not static.
Hence the main method will instantiate its own class and make calls

http://courses.missouristate.edu/kenvollmar/mars/
http://courses.missouristate.edu/kenvollmar/mars/
http://www.masm32.com/
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to its non-static native methods. JNI also imposes certain naming
conventions on the signatures of functions declared in the shared
library. For example the native method

public native boolean Simulator_opt1_or_true1 (final boolean a);

translates to the C shared library export signature
JNIEXPORT jboolean JNICALL Java_Simulator_1opt1_1or_1true1_Evalx(JNIEnv *, jobject, jboolean);

This C export translates to the x86 assembly signature (for the pur-
poses of the this lab)

Java_Simulator_1opt1_1or_1true1_Evalx proc JNIEnv:DWORD, jobject:DWORD, in_a:BYTE

It is notable that JNI requires including pointers to the Java environ-
ment and the Java class instance. It is also notable that the under-
scores in the class name and the method name must be replaced with
_1. Most of the function prototype details are already included in the
skeleton.

Figure 13.2 is a simple example of the generate code for a shared
library for a F Program.

.386

.model flat,stdcall

option casemap:none

Java_Simulator_1opt1_1or_1true1_Evalx PROTO :DWORD, :DWORD, :BYTE

.code

LibMain proc hInstance:DWORD, reason:DWORD, reserved1:DWORD

mov eax, 1

ret

LibMain endp

Java_Simulator_1opt1_1or_1true1_Evalx proc JNIEnv:DWORD, jobject:DWORD, in_a:BYTE

; (a, true)or

mov EAX, 0

mov EBX, 0

mov AL,in_a

mov EBX,1

or EAX, EBX

ret

Java_Simulator_1opt1_1or_1true1_Evalx endp

End LibMain

Figure 13.2: Example assembly for an F
Program
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Figure 13.3 the linker for MASM32 uses a definitions file to deter-
mine which symbols should be exported. Note that the library name
does not require the replacing underscores. Additional exports are
added on separate lines.

LIBRARY Simulator_opt1_or_true1

EXPORTS Java_Simulator_1opt1_1or_1true1_Evalx

Figure 13.3: Example definitions file for
a dynamic link library (DLL)

Edit SimulatorGeneratorMasm32.java
and run TestSimulatorGenerator-
Masm32.java

This lab requires generating the instructions for the F-statement.
Most of the other code is generated by the skeleton. To generate the
instructions, the ast should be walked in post order as a simple
topological sort and stored in the operations list. It is then necessary
to assign signals and intermediate signals to registers and write in-
structions for each ast object. For example VarExpr or ConstantExpr
can be converted into 8-bit immediate-mode mov instructions. The
other operators can be implemented using various Boolean operator
instruction. It is possible to implement all expressions including a
NotExpr using a single instruction and no conditionals. The result
of the last computation for the statement should be stored in EAX
as the return value for the function. x86 has four 32-bit general pur-
pose registers EAX, EBX, ECX, and EDX and supports 16-bit and
8-bit access modes. A helper class is provided which contains the
names of that correspond to the other addressing modes (i.e., AL ref-
erences the low byte of EAX). Since there are only four registers (or
fewer if you remove some from the Register.General list for debug-
ging purposes), it is possible that large assignment statements will
require the use of memory. A simple FIFO (registerQueue) strategy
is used to determine which register to save to memory and reassign
before performing an operation. Memory can be allocated using
the LOCAL keyword: LOCAL m0 :BYTE. These allocation statements
should be immediately following the function signature before any
instructions. In order to track which memory is in use the hash map
memoryMap maps the name of the memory allocation to a Boolean
value of whether it is used. For convenience the IdentityHashMap
storageMap maps an Expr to the name of either the memory or regis-
ter currently storing its output value.
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13.4 Evaluation

There is no automated evaluation for this lab due to the variety of
possible system dependencies. You will have to meet with the course
staff to be evaluated, which will include you answering questions
about how your design works. Your generated assembly code should
pass all of the tests from Lab 8.

There are potentially bonus marks if you find a cross-platform
assembler with minimal system dependencies and develop a bit of a
skeleton and instructional support for it. The mars mips simulator
mentioned above is the best possibility for this that we are aware of.





Lab 14
Simulation: F → JVM

Compiler Concepts: code generation
Programming Concepts: assembly

14.1 How javac compiles boolean logical operators†

The Java operand stack treats booleans as integers because each slot on
the operand stack is 32-bits. Zero is false and one is true (as in C).
Boolean logic operators are translated into if comparisons against
zero. There are no jvm opcodes for boolean logic.

Also note the short-circuiting semantics of boolean logic opera-
tors in Java (as in C): operands are only evaluated if necessary. For
example, if the first operand of a conjunction (and) is false, then the
second operand is not evaluated. Similarly, if the first operand of a
disjunction (or) is true, the second operand is not evaluated.

public class javac_code {

boolean or (boolean x, boolean y) { return x || y; }

boolean and(boolean x, boolean y) { return x && y; }

boolean not(boolean x) { return ! x; }

}
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Compiled from "javac_code.java"

public class javac_code {

public javac_code();

Code:

0: aload_0

1: invokespecial #1 // Method java/lang/Object."<init >":() V

4: return

boolean or(boolean, boolean); // x || y

Code:

0: iload_1 // push x

1: ifne 8 // if (x != 0) goto instruction 8

4: iload_2 // push y

5: ifeq 12 // if (y == 0) goto instruction 12

8: iconst_1 // push true (one)

9: goto 13 // goto return true

12: iconst_0 // push false (zero)

13: ireturn // return top of stack

boolean and(boolean, boolean); // x && y

Code:

0: iload_1 // push x

1: ifeq 12 // if (x == 0) goto instruction 12

4: iload_2 // push y

5: ifeq 12 // if (y == 0) goto instruction 12

8: iconst_1 // push true (one)

9: goto 13 // goto return true

12: iconst_0 // push false (zero)

13: ireturn // return top of stack

boolean not(boolean); // ! x

Code:

0: iload_1 // push x

1: ifne 8 // if (x != 0) goto instruction 8

4: iconst_1 // push true (one)

5: goto 9 // goto return true

8: iconst_0 // push false (zero)

9: ireturn // return top of stack

}



[lab 14] simulation: F → jvm 149

14.2 How we will generate code
Files:

ece351.f.SimulatorGeneratorASM
ece351.f.DepthCounter

Tests:
ece351.f.TestSimulatorGeneratorASM

We do not need to respect the short-circuiting semantics of boolean
logic operators in Java/C — because our input language is not
Java/C. Our input language is F , which does not have short-circuiting
semantics. So we can compute disjunction (or) with integer addition
and conjunction (and) with integer multiplication.

We can keep all of our temporary values on the jvm operand
stack, so we do not need to use any locals/registers beyond what is
necessary to hold the method arguments. A simple post-order Infix: a + b

Prefix: + a b
Postfix: a b +

traversal of the F ast produces the opcodes we need. In other
words, we are converting the F ast from infix form to postfix (suffix)
form (i.e., rpn: Reverse Polish Notation). In lab8 we converted the
F ast from infix form to prefix form (i.e., Polish Notation). At the
end of our generated methods we will convert our computed value to
either zero (false) or one (true) before returning it.

x <= ’0’;

In these listings there appears to be
a space in Object.<init >()V. That is a
phantom space inserted by the LATEX
package that formats the source code.
There is no space in the underlying
source file. You should not have that
space in your generated code.

. class public Simulator_ex00_asm

. super java/lang/Object

. method public <init>()V

aload_0

invokespecial java/ lang/Object.<init >()V

return
. end method

. method public static x()Z

. limit locals 0 ; one for each argument

. limit stack 1 ; depth of the AST

iconst_0 ; push false
ifeq False ; if top of stack is zero, then jump to False

True: ; the true case
iconst_1 ; push true
ireturn ; return top of stack ( true)

False: ; label we can jump to

iconst_0 ; push false
ireturn ; return top of stack ( false)

. end method
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x <= ’1’;. class public Simulator_ex01_asm

. super java/lang/Object

. method public <init>()V

aload_0

invokespecial java/ lang/Object.<init >()V

return
. end method

. method public static x()Z

. limit locals 0 ; one for each argument

. limit stack 1 ; depth of the AST

iconst_1 ; push true
ifeq False ; if top of stack is zero, then jump to False

True: ; the true case
iconst_1 ; push true
ireturn ; return top of stack ( true)

False: ; label we can jump to

iconst_0 ; push false
ireturn ; return top of stack ( false)

. end method

x <= a;. class public Simulator_ex02_asm

. super java/lang/Object

. method public <init>()V

aload_0

invokespecial java/ lang/Object.<init >()V

return
. end method

. method public static x(Z)Z

. limit locals 1 ; one for each argument

. limit stack 1 ; depth of the AST

iload_0 ; a

ifeq False ; if top of stack is zero, then jump to False

True: ; the true case
iconst_1 ; push true
ireturn ; return top of stack ( true)

False: ; label we can jump to

iconst_0 ; push false
ireturn ; return top of stack ( false)

. end method
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x <= a or b;
. class public Simulator_ex05_asm

. super java/lang/Object

. method public <init>()V

aload_0

invokespecial java/ lang/Object.<init >()V

return
. end method

. method public static x(ZZ)Z

. limit locals 2 ; one for each argument

. limit stack 2 ; depth of the AST

iload_0 ; a

iload_1 ; b

iadd ; ( a or b )

ifeq False ; if top of stack is zero, then jump to False

True: ; the true case
iconst_1 ; push true
ireturn ; return top of stack ( true)

False: ; label we can jump to

iconst_0 ; push false
ireturn ; return top of stack ( false)

. end method

x <= c and ( a or b );. class public Simulator_ex06_asm

. super java/lang/Object

. method public <init>()V

aload_0

invokespecial java/ lang/Object.<init >()V

return
. end method

. method public static x(ZZZ)Z

. limit locals 3 ; one for each argument

. limit stack 3 ; depth of the AST

iload_0 ; c

iload_1 ; a

iload_2 ; b

iadd ; ( a or b )

imul ; ( c and ( a or b ) )

ifeq False ; if top of stack is zero, then jump to False

True: ; the true case
iconst_1 ; push true
ireturn ; return top of stack ( true)

False: ; label we can jump to

iconst_0 ; push false
ireturn ; return top of stack ( false)

. end method
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14.3 Negation

Negation (not) needs special consideration in this encoding. There
are multiple ways it can be done.

One possibility is to generate conditionals (ifs) to test if the integer
on the top of the stack is zero (i.e., false) or non-zero (i.e., true).

There is another possibility that does not introduce any condition-
als into the generated code. Conditionals are relatively expensive,
compared to integer operations. We can use bitwise xor (exclusive
or) will toggle the 1-bit of an integer, which is what logical negation
does. For this to work, we need a normalization function that reduces
non-zero integers to one, yet still leaves zero as zero. Here is such a
function that will work for non-negative integers up to half-max-int:

2x
1 + x

14.4 Evaluation

The last pushed commit before the deadline is evaluated both on
the shared test inputs and on a set of secret test inputs according to
the weights in the table below. Let ‘f’ name the F program we want
to simulate, let ‘w’ name an input W program for it, and let ‘wStaff’
name the output of the staff’s simulator for this F/W combination.
The testing equation is:

genASM(f).simulate(w).isomorphic(wStaff) The previously mentioned z_challenge.f
input file turns out to be not that chal-
lenging: specifically, it is not triggering
overflow in anyone’s implementation.
So it did not meet its design objective.

One of the students this term pointed
out that the handling of negation
previously proposed was not fully
correct. So the new ‘challenge’ is to use
one of the two correct ways of handling
negation now described in this manual
(or come up with your own correct
way).

Regular Cases Negation
TestSimulatorGenerator 70 30

14.5 Bonus Lab: F to x86/x64/etc

See Lab 13. This is completely bonus. In past terms only one or two
students have attempted it. It is hard. It is time consuming. It is
intellectually rewarding.



Appendix A
Extra vhdl Lab Exercises

A.1 Define-Before-Use Checker

Compilers generally perform some form of semantic analysis on the
AST of the program after the input program is parsed. The analysis
might include checking that all variables/signals are defined be-
fore they are used. In this part of the lab, write a define-before-use
checked that traverses through a vhdl AST and determines whether
all signals that are used in the signal assignment statements are de-
fined before they are used. In addition, for all signal assignment
statements, a signal that is being assigned (left-hand side) to an ex-
pression (right-hand side) must not be an input signal. Driving an
input signal simultaneously from two sources would cause undefined
behaviour at run time.

Within a design unit, a signal may be defined in the entity dec-
laration as an input bit or output bit; it may also be defined in the
optional signal declaration list within the body of the correspond-
ing architecture. For example, if we consider the vhdl program
shown in Figure A.1, the following signals are defined in this entity-
architecture pair: a0, b0, a1, b1, a2, b2, a3, b3, Cin, sum0, sum1, sum2,
sum3, Cout, V, c0, c1, c2, c3, and c4.

The define before use checker should throw an exception if it
checks the program shown in Figure A.1. This figure illustrates the
two violations your checker should detect:

a. The assignment statement in line 16 uses a signal called ‘c’, which
is undefind in this program.

b. The assignment statement in line 17 tries to assign an input
pin/signal (‘Cin’) to an expression.

The checker should throw a RuntimeException exception upon the
first violation that is encountered.

All of the code that you will write for the checker should be in the
class DefBeforeUseChecker in the package ece351.v. TestDefBeforeUseCheckerAccept
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and TestDefBeforeUseCheckerReject are JUnit tests available for
testing the checker. These two classes are found in the package
ece351.v.test.

A.1.1 Some Tips

• For vhdl programs that have multiple design units, apply the
violation checks per design unit (i.e., treat them separately).

• Maintain the set of declared signals in such a way that it is easy to
identify where the signals are declared in the design unit.

1 entity four_bit_ripple_carry_adder is port (

2 a0, b0, a1, b1, a2, b2, a3, b3, Cin : in bit;

3 sum0, sum1, sum2, sum3,Cout, V: out bit

4 );

5 end four_bit_ripple_carry_adder;

6

7

8 architecture fouradder_structure of four_bit_ripple_carry_adder is
9 signal c1, c2, c3, c4: bit;

10 begin
11 FA0 : entity work.full_adder port map(a0,b0,Cin,sum0,c1);

12 FA1 : entity work.full_adder port map(a1,b1,c1,sum1,c2);

13 FA2 : entity work.full_adder port map(a2,b2,c2,sum2,c3);

14 FA3 : entity work.full_adder port map(a3,b3,c3,sum3,c4);

15

16 V <= c xor c4;

17 Cin <= c4;

18 end fouradder_structure;

Figure A.1: vhdl program used to
illustrate signal declarations and the
use of undefined signals in signal
assignment statements.

A.2 Inline F intermediate variables

X <= A or B;

Y <= X or C;

...

Y <= (A or B) or C;



Appendix B
Advanced Programming Concepts

These are some advanced programming ideas that we explored in the
labs.

B.1 Immutability
Pragmatics: ast classes

Immutability is not a ‘design pattern’ in the sense that it is not in the
design patterns book.1 It is, however, perhaps the most important 1 E. Gamma, R. Helm, R. Johnson, and

J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1995

general design guideline in this section. Immutability has a number
of important advantages:

• Immutable objects can be shared and reused freely. There is no
danger of race conditions or confusing aliasing. Those kinds of
bugs are subtle and difficult to debug and fix.

• No need for defensive copies. Some object-oriented programming
guidelines advocate for making defensive copies of objects in order
to avoid aliasing and race condition bugs.

• Representation invariants need to be checked only at object con-
struction time, since there is no other time the object is mutated.

There are also a number of possible disadvantages:

• Object trees must be constructed bottom-up. This discipline can be
useful for understanding the program, but sometimes requires a
bit of adjustment for programmers who are not familiar with this
discipline.

• Changing small parts of large complex object graphs can be diffi-
cult. If the object graphs are trees then the visitor design pattern
can be used to make the rewriting code fairly simple.

• Sometimes data in the problem domain are mutable, and so are
best modelled by mutable objects. A bank account balance is a
classic example.
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B.2 Representation Invariants
Tiger: repOk() methods

Representation invariants are general rules that should be true of all
objects of a particular class. For example:

• LinkedList.head != null
• LinkedList.size is the number of nodes in the list
• that the values in a certain field are sorted

These rules are often written in a repOk() method, which can be
called at the end of every method that mutates the object (for im-
mutable objects these methods are just the constructors). It is a good
idea to check these rules right after mutations are made so that the
failure (bad behaviour) of the software occurs close to the fault (error
in the source code). If these rules are not checked right away, then
the failure might not occur until sometime later when the execution
is in some other part of the program: in those circumstances it can be
difficult to find and fix the fault.

B.3 Functional Programming

Some ideas from functional programming that are useful in the
object-oriented programming context:

• immutability
• recursion
• lazy computation
• higher-order functions
• computation as a transformation from inputs to outputs

In w2013 we’ve talked about immutability, and the code has embod-
ied both immutability and computation as a transformation from
inputs to outputs.



Appendix C
Design Patterns

See the Design Patterns book or
Wikipedia or SourceMaking.com

The material in this section is mostly
copied from SourceMaking.com.

Design patterns represent a standard set of ideas and terms used by
object-oriented programmers. If you get a job writing object-oriented
code these are concepts and terms you will be expected to know.

Design patterns1 are classified into three groups


creational
structural
behavioural

1 E. Gamma, R. Helm, R. Johnson, and
J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software.
Addison-Wesley, 1995

C.1 Iterator

• Behavioural
• Provide a way to access the elements of an aggregate object se-

quentially without exposing its underlying representation.
• Enables decoupling of collection classes and algorithms.
• Polymorphic traversal

C.2 Singleton
Pragmatics: ConstantExpr

• Creational
• Ensure a class has only predetermined small number of named

instances, and provide a global point of access to them.
• Encapsulated ‘lazy’ (‘just-in-time’) initialization.

C.3 Composite
Pragmatics: Expr class hierarchy

• Structural
• Compose objects into tree structures to represent whole-part hier-

archies. Composite lets clients treat individual objects and compo-
sitions of objects uniformly.

• Recursive composition
• e.g., ‘Directories contain entries, each of which could be a file or a

directory.’
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C.4 Template Method
Pragmatics: BinaryExpr.simplifySelf()

Tiger: Lab manual

• Behavioural
• Define the skeleton of an algorithm in an operation, deferring

some steps to client subclasses. Template Method lets subclasses
redefine certain steps of an algorithm without changing the algo-
rithm’s structure.

• Base class declares algorithm ‘placeholders’, and derived classes
implement the placeholders.

C.5 Interpreter
Pragmatics: Expr.simplify()

• Behavioural
• Given a language, define a representation for its grammar along

with an interpreter that uses the representation to interpret sen-
tences in the language.

• Map a domain to a language, the language to a grammar, and the
grammar to a hierarchical object-oriented design.

• In other words, add a method to the AST for the desired opera-
tion. Then implement that method for every leaf AST class.

• An alternative to Visitor. Interpreter makes it easier to modify the
grammar of the language than Visitor does, but with Visitor it is
easier to add new operations.

C.6 Visitor
Pragmatics: Expr class hierarchy

Tiger: §4.3 + lab manual

• Behavioural
• Represent an operation to be performed on the elements of an

object structure. Visitor lets you define a new operation without
changing the classes of the elements on which it operates.

• Do the right thing based on the type of two objects.
• Double dispatch
• An alternative to Interpreter.



Appendix D
Lab Instructor Notes

Term names follow the UW convention:
cyym, where c is century (0 for 20th,
1 for 21st); yy is the last two digits of
the year; m is the number of the month
at the start of the term (either 1, 5, or
9). So 1151 is the term that starts in
January of 2015.

D.1 Repository URLs

Staff: Same repositories used over time.
git@ecgit.uwaterloo.ca:drayside/ece351-text Source for Lab Manual + Course Notes

git@ecgit.uwaterloo.ca:drayside/ece351-code Staff source code

Staff: Metadata for each offering (create fresh; §D.2):
git@ecgit.uwaterloo.ca:ece351/term/metadata Offering metadata

Students: Need to be created fresh each term (see §D.2).
git@ecgit.uwaterloo.ca:ece351/term/ece351-notes Compiled version of lab manual, etc.

git@ecgit.uwaterloo.ca:ece351/term/lib Shared libraries

git@ecgit.uwaterloo.ca:ece351/term/skeleton Code to be distributed to students

git@ecgit.uwaterloo.ca:ece351/term/student/labs Each student’s individual repo

D.2 Setting Up

D.2.1 Creating the Wildcard Repo ece351/term
Gitolite documentation:
http://gitolite.com/gitolite/

conf.html

These steps done by the Gitolite administrator:

a. git clone git@ecgit.uwaterloo.ca:gitolite-admin

b. cp conf/courses/ece351-last.conf conf/courses/ece351-term.conf
c. edit conf/courses/ece351-term.conf

• define staff group @ece351-term-staff
• define student group @ece351-term-students

(student group should include staff IDs)

d. edit conf/gitolite.conf

• add include for conf/courses/ece351-term.conf

e. git add conf/gitolite.conf conf/courses/ece351-term.conf
f. git commit -m ’creating new wildcard repo for ECE351 term term’ The post-commit hooks might take a

long time to run (maybe an hour or
more). The permissions changes will
take effect almost immediately. What
takes so long is updating all of the web
pages: it checks which repositories are
visible for each user.

g. git push

The subsequent steps can be done by the course lab instructor.

git@ecgit.uwaterloo.ca:drayside/ece351-text
git@ecgit.uwaterloo.ca:drayside/ece351-code
http://gitolite.com/gitolite/conf.html
http://gitolite.com/gitolite/conf.html
git@ecgit.uwaterloo.ca:gitolite-admin
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D.2.2 Notes/PDF Repository

• git clone git@ecgit.uwaterloo.ca:ece351/term/ece351-notes To create the repo

• outline.pdf
• lab-manual.pdf
• course-notes.pdf
• practice-questions/
• ssh git@ecgit.uwaterloo.ca perms ece351/term/ece351-notes + READERS @ece351-term-students
• ssh git@ecgit.uwaterloo.ca perms ece351/term/ece351-notes + WRITERS @ece351-term-staff

D.2.3 Lib Repository

• git clone git@ecgit.uwaterloo.ca:ece351/term/lib To create the repo

• README.txt as first commit to create master branch
• jar files
• ssh git@ecgit.uwaterloo.ca perms ece351/term/lib + READERS @ece351-term-students
• ssh git@ecgit.uwaterloo.ca perms ece351/term/lib + WRITERS @ece351-term-staff

D.2.4 Course Offering Metadata Repository

• git clone git@ecgit.uwaterloo.ca:ece351/term/metadata To create the repo

• README.txt as first commit to create master branch
• ssh git@ecgit.uwaterloo.ca perms ece351/term/metadata + WRITERS @ece351-term-staff
• download roster from Quest
• extract student userids

D.2.5 Skeleton Repository

• git clone git@ecgit.uwaterloo.ca:ece351/term/skeleton To create the repo

• README.txt as first commit to create master branch
• git submodule add git@ecgit.uwaterloo.ca:ece351/term/lib
• meta/
• .project + .classpath
• .gitignore
• build.xml
• prelab: src/ece351/util/* [Note: See §D.6]
• ssh git@ecgit.uwaterloo.ca perms ece351/term/skeleton + READERS @ece351-term-students
• ssh git@ecgit.uwaterloo.ca perms ece351/term/skeleton + WRITERS @ece351-term-staff

Fork student repos (see §D.3 below). Then add: Students will have to pull from skeleton
during the prelab exercise to get these
test files.• TestPrelab*.java

• TestImports.java
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D.3 Forking Student Repos
See scripts/fork.sh

#!/bin/bash

echo "copy this script to the appropriate location and customize it"

exit 1

t=1181

for s in ‘cat students.txt‘

do

echo "********************************************************************"

echo $s

git clone git@ecgit.uwaterloo.ca:ece351/$t/$s/labs $s

cd $s

git remote add skeleton git@ecgit.uwaterloo.ca:ece351/$t/skeleton

git pull skeleton master

git push

ssh git@ecgit.uwaterloo.ca perms ece351/$t/$s/labs + WRITERS $s

ssh git@ecgit.uwaterloo.ca perms ece351/$t/$s/labs + WRITERS @ece351−$t−staff

#ssh git@ecgit.uwaterloo.ca perms ece351/$t/$s/labs −l

cd ..

done

D.4 Marking Script: Build.xml

The students also have a copy of this.

D.5 Web User Interface for Gitolite Server

Written with Django/Python. Source available at:
https://github.com/eyolfson/site-ecegit

It depends on two Django apps:
https://github.com/eyolfson/django-gitolite

https://github.com/eyolfson/django-ssh

https://github.com/eyolfson/site-ecegit
https://github.com/eyolfson/django-gitolite
https://github.com/eyolfson/django-ssh
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D.6 Exporting to Skeleton: export.sh
Don’t forget to also copy the test input files
into the skeleton!Use the export.sh script to prepare the source files for the skeleton.

Never copy source files directly from the staff repo to the skeleton. The Never copy source files directly from
the staff repo to the skeleton.export.sh script performs two functions: (1) snips out the parts that

the students are supposed to write, and (2) inserts the intellectual
property header.

If export.sh runs successfully you should see many lines of output export.sh makes a clone of your local
copy of the instructor code repo and
works from that. So if you have uncom-
mitted changes in your local copy of the
repo they will not be included in the
export.

that start with ‘dos2unix’. If you get a message that the temporary
directory exists and the script is exiting, you need to delete that old
temporary directory first and then run export.sh.

After running export.sh use a visual diff tool such as meld to com-
pare the snipped source code with the skeleton. Merge manually.
Sometimes there will be changes that are made to the skeleton manu-
ally that should not be overwritten by a future export.

D.6.1 Update header.txt at the start of term

At the beginning of each term, update the file src/ece351/header.txt
to have the current term date and number. This file is pre-pended to
each source file by the export script.

D.6.2 Export on an as-needed basis

Experience has shown that it’s best to do four major releases during
the term: prelab,W , F , and vhdl. Exporting all of the code at the
beginning is overwhelming for many students. Also, the gradual
export strategy makes it easier for the staff to revise later labs after
the term has started.

D.6.3 Exporting to skeleton dev branch

Sometimes it is a good idea to make a dev branch in the skeleton
repo and export to that first. This way staff and advanced students
can test the code before it is released to the class as a whole. Also,
usually the code for lab k + 1 is released to dev before the deadline
for lab k. After the deadline for k then dev is merged to skeleton mas-
ter. If code for lab k + 1 is released to students before the deadline for
lab k it can cause a lot of confusion, especially if that code is mixed
with critical patches for lab k.
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D.6.4 Files to Release for Each Lab

After the base files, fork student re-
pos. Then add TestImports.java and
TestPrelab.java

0. update header.txt before populating skeleton §D.6.1
README.txt
lib submodule
.gitignore
.project
.classpath
build.xml
meta/hours.txt + meta/collaboration.txt
src/ece351/util/*.java

1. tests/wave/*.wave
src/ece351/w/ast/*
src/ece351/w/rdescent/* Manually remove Todo351Exception

from TestWRegexSimpleData.src/ece351/w/regex/*
2. tests/wave/staff.out/*

src/ece351/objectcontract/*
src/ece351/w/svg/* Excluding tests/f/secret!

3. tests/f/* including ungrammatical/, gates/ and staff.out/
src/ece351/common/ast/*
src/ece351/common/visitor/* for compilation dependencies
src/ece351/f/FParser.java
src/ece351/f/analysis/* for compilation dependencies
src/ece351/f/ast/*
src/ece351/f/rdescent/*
src/ece351/f/test/*

4. src/ece351/f/simplifier/*
5. src/ece351/w/parboiled/*
6. src/ece351/f/parboiled/* FParser linking issueFParser linking issue
7. src/ece351/f/techmapper/*

tests/f/staff.out/graph/*
8. tests/f/staff.out/simulator/*

src/ece351/f/simgen/TestSimulatorGenerator.java
src/ece351/f/simgen/SimulatorGenerator.java

9. tests/v/*
src/ece351/v/VBase.java
src/ece351/v/ast/*
src/ece351/v/test/*
src/ece351/v/test/VRecognizer.java (or class)
src/ece351/v/test/VParser.java (or class)
src/ece351/v/test/TestArchitectureEquivalence

10. src/ece351/v/PostOrderVVisitor.java
src/ece351/v/DeSugarer.java
src/ece351/v/Elaborator.java
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src/ece351/v/test/TestDeSugarer.java
src/ece351/v/test/TestElaborator.java
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