
ECE351 Course Outline, Winter 2018
Derek Rayside drayside@uwaterloo.ca

January 11, 2018

[DRAFT until Jan 12]

1 Introduction

Welcome to ece351! This is an introductory compilers course. The
calendar description lists a number of topics:

Programming paradigms, compilation, interpretation, virtual machines.
Lexical analysis, regular expressions and finite automata. Parsing,
context-free grammars and push-down automata. Semantic analysis,
scope and name analysis, type checking. Intermediate representations.
Control flow. Data types and storage management. Code generation.

1.1 Course Objective

The objectives of the course are two-fold: First, to teach students the
theoretical aspects of compilers and language design, and second,
to enable students to build a practical rudimentary compiler of their
own. Monday lectures will usually discuss theory, and Friday lec-
tures will usually discuss practice.

This course is very hands on, i.e., you will write a circuit syn- vhdl is a very complicated hardware
description language to specify circuits.
The language for which you will
develop a synthesizer is a very small
subset of vhdl.

thesizer and a circuit simulator for circuits described in a subset of
vhdl. A circuit synthesizer is essentially a compiler for circuits. The
lab notes describe these exercises in detail.

Through the lab you will learn two important skills: First, you
will understand how language design can be seen as a general form
of problem solving. Second, you will learn how to “implement” a
language by constructing an appropriate compiler.

Often language design and problem solving are seen as distinct ac-
tivities. The point of the lab is to show that language design, in many
ways, is the most general way to solve a problem. By most general
solution I mean that your solution solves an entire class of problems,
not merely one problem or an instance of a problem. For example,
suppose that you need to multiply two matrices. The least general, Solve an entire class of problems by

designing a language to describe those
problems.

and most direct, thing you could do is to actually multiply the matri-
ces. More generally, you could write a program that multiplies two
arbitrary matrices, and then use that program to multiply your two
matrices of interest. Most generally, you could design a language Good engineers do a cost/benefit

analysis before designing and building.
Good engineers also have have the skills
to design a range of solutions.

that not only allows you to write programs to multiply matrices but
also allows you to express programs to do more complex mathe-
matical operations. Your language could be something similar to a
suitable subset of Matlab, then write a program in that language that
requests your two matrices be multiplied, then execute that program



ece351 course outline, winter 2018 2

with the interpreter/compiler you just developed. In order to solve
problems at this level of abstraction you need to understand the ideas
listed in the course description, and you will need to improve your
programming skills.

We will use the term transformer or translator to describe a pro-
gram that reads and writes structured text. As you will see, any A compiler is a particular kind of

transformer that reads source code and
produces assembly or machine code.

sufficiently large transformer is actually comprised of many small
transformers: the transformation is broken down into steps that typ-
ically pass through one or more intermediate forms before the final
output is produced. These intermediate forms are typically simpler For example, the GNU Compiler Col-

lection (GCC) has an intermediate form
called RTL (Register Transfer Lan-
guage). C/C++/Java/Fortran/etc. are
first translated to RTL, then optimiza-
tions are performed on the RTL, and
finally assembly code is generated for
some particular chip.

to process mechanically and less convenient for human use than the
original input language.

2 Coordinates

Instructor: Derek Rayside dc-2597d drayside@uwaterloo.ca

https://ece.uwaterloo.ca/~drayside/cal/

Lab Instructor: Not Assigned
TAs: Gabe Wong in lab gbwong@uwaterloo.ca

Hari Krishnan in lab hgvedira@uwaterloo.ca

Jakub Kuderski in lab jkudersk@uwaterloo.ca

Regular Lectures: MF 10:00am–11:20am dwe-1501 Theory Mondays, Lab Fridays (usually)
Extra Lectures: Thu 4:30pm–5:20pm dwe-1501 See schedule
Theory Tutorials: F 12:30pm–1:20pm eit-1015 Even weeks (see schedule), if needed
Regular Labs: TWTh 3pm–4:20pm e2-2356a http://sun5.vlsi.uwaterloo.ca/~ecepc/TimeTables/

Lab Tutorial: Thu 4:30pm–5:20pm e2-2356a Weeks with a Lab due
Midterm: Midterm Week See

schedule
https://ece.uwaterloo.ca/

electrical-computer-engineering/

current-undergraduate-students/

academic-planning-and-support/

mid-term-examinations/

Reports: Thursdays 10pm Git every week (except midterm week)
Files: Git https://ecgit.uwaterloo.ca/

Discussion: Piazza https://piazza.com/uwaterloo.ca/winter2018/ece351

Files will be distributed and collected through Git. Each student will
have their own private repository. We will have shared repositories
for documents and skeleton code. Your Nexus credentials (username
and password) should give you appropriate access to the repositories.

drayside@uwaterloo.ca
https://ece.uwaterloo.ca/~drayside/cal/
gbwong@uwaterloo.ca
hgvedira@uwaterloo.ca
jkudersk@uwaterloo.ca
http://sun5.vlsi.uwaterloo.ca/~ecepc/TimeTables/
https://ece.uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-planning-and-support/mid-term-examinations/
https://ece.uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-planning-and-support/mid-term-examinations/
https://ece.uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-planning-and-support/mid-term-examinations/
https://ece.uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-planning-and-support/mid-term-examinations/
https://ece.uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-planning-and-support/mid-term-examinations/
https://ecgit.uwaterloo.ca/
https://piazza.com/uwaterloo.ca/winter2018/ece351


ece351 course outline, winter 2018 3

3 Schedule — NEEDS UPDATING FOR W2018

Lecture topic schedule is subject to
change as the term progresses, depend-
ing on the class’s needs and interests.
The deadlines will not change.
‘+’ indicates date of a potential Friday tutorial

Week Monday 10am (Theory) Thursday 4:30pm Friday 10am (Practice)
1 Jan 01 New Year’s Day Course Intro
2 Jan 08 Theory [N 0] Finite Automata [N 1] Lab1 intro (recursive descent)

Lab0 due 10pm Tutorial 12:30pm (Automata) +
3 Jan 15 Program State [N 1] Ambiguity [N 2.4] Lab2 intro (transformations)

Lab1 due 10pm

4 Jan 22 Grammar complexity [N 2.0–2.3] Lab2 due 10pm Lab3 intro (oop, equivalence)
Tutorial 12:30pm +

5 Jan 29 ll(1) analysis [N 2.6] Lab3 due 10pm Lab4 intro (term rewriting)
6 Feb 05 Grammar refactoring [N 2.5] Lab4 due 10pm Lab5 intro (Parboiled)

(no late penalty until Lab6 intro (patterns) +
after Sunday 10pm) Midterm Review 12:30pm +

7 Feb 12 No class No lab Midterm Week
https://ece.uwaterloo.ca/electrical-computer-engineering/

current-undergraduate-students/academic-planning-and-support/

mid-term-examinations/
– Feb 19 Reading Week
8 Feb 26 Midterm results Code Review Optimization [N 4.0–4.2.2] +

Lab7 intro (visitor, hashing, etc.) Lab 6 due 10pm

9 March 5 Optimization [N 4.2.3] Lab7 due 10pm LabX intro
10 March 12 Optimization [N 4.2.4 + 4.3] LabX due 10pm LabY intro +
11 March 19 Register Allocation [N 5.1] LabY due 10pm LabZ intro
12 March 26 Garbage Collection [N 5.2] LabZ due 10pm Good Friday +
13 April 2 Object Allocation [N 5.3] Wednesday, April 4 Exam Period

10am Logical Friday
Review

Note: Labs X, Y, and Z will be chosen from the labs numbered 8+ in the Lab Manual.

https://ece.uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-planning-and-support/mid-term-examinations/
https://ece.uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-planning-and-support/mid-term-examinations/
https://ece.uwaterloo.ca/electrical-computer-engineering/current-undergraduate-students/academic-planning-and-support/mid-term-examinations/


ece351 course outline, winter 2018 4

4 Marking Scheme
Labs are weighted equally, except for
lab0, which has no marks.
Lab marks are based primarily on how
your code performs on automated tests.

Lab marks might also be based partly
on quizzes administered online. If there
are quizzes associated with a lab, then
they will be worth 25% of the grade for
the lab.

Labs (incl. quizes) 40%
Midterm 10%
Final Exam 50%
Total 100%

a. You must pass the final exam in order to pass the course. If you
do not pass the final exam, then your final mark will be the lower
of your earned mark or 48%.

b. You must pass the labs in order to pass the course. If you do Note that lab code is cumulative: there
are earlier labs that you will need to
have solutions for in order to complete
later labs. Dependencies are discussed
in the Lab Manual. If you are going to
skip a lab, be strategic in your choices.

not pass the labs, then your final mark will be the lower of your
earned mark or 48%.

c. Late lab submissions are worth half.

We will cut you some slack for one Git
hiccup, subject to a personal interview
with course staff.

• The labs are cumulative, so you need to keep up.
• You may commit+push your work as many times as you want.

We recommend that you commit+push
frequently — at least at the end of every
work session.

• We mark the code on the master branch.

d. There might be bonus marks available for class participation:
creating new tests, submitting patches, answering forum ques-
tions, mentoring other students, scribing lectures etc. Any positive
contribution outside of the regular marking scheme is open for
consideration.

5 Reference Material

The Course Notes and Lab Manual are intended to be fairly self-
contained. Nevertheless, you may find it useful to read a text book
some times. We will make an effort to cross-reference the following
three books, which are available in the library:

• Crafting a Compiler1 1 Charles N. Fischer, Ron K. Cytron,
and Richard J. LeBlanc, Jr. Crafting a
Compiler. Addison-Wesley, 2010

• Modern Compiler Implementation in Java2

2 Andrew W. Appel and Jens Palsberg.
Modern Compiler Implementation in Java.
Cambridge, 2004

• Programming Language Pragmatics3

3 Michael L. Scott. Programming Lan-
guage Pragmatics. Morgan Kaufmann, 3

edition, 2009

The tools that we will use are documented largely online.4

4 parboiled.org

parboiled.org


ece351 course outline, winter 2018 5

6 Collaboration

Interaction is an essential part of learning for most people. We are Pre-lab material on the computing
environment is excluded from these
collaboration restrictions. By all means,
please help each other out getting the
computing environment working.

Skeleton code provided by course staff
is excluded from these collaboration
restrictions. You may look at the skele-
ton code on a computer collaboratively
before you or your partner start writing
your solutions and still declare verbal
collaboration.

going to try a novel structure in ece351 to facilitate learning collabo-
ratively and honestly. We here define different levels of collaboration
that correspond to different maximum grades. Your grade for a lab
will be the lower of your earned grade or the cap. For each lab you
will declare your level of collaboration. The levels are:

Individual: You discuss the labs with fellow students, perhaps mak-

cap 100%

ing sketches on a blackboard/whiteboard. No written artifacts
leave the discussion and get transferred to your code, i.e., your
code is completely written by you.

Partner: You and a partner collaborate. You may look at each other’s cap 85%

code. Each student is expected to do all of the typing on his or her
computer. Partners are expected to have roughly equivalent skills.

Mentor: A mentor teaches a protégé. The mentor is expected to teach mentor cap 100%
protégé cap 80%
mentor is eligible for bonus points

the protégé at the protégé’s computer, and only the protégé op-
erates the computer. The protégé does not look at the mentor’s
computer.

At every level of collaboration, every student is expected to physi- Course staff are excluded from the
collaboration caps, i.e., you may ask
questions of the staff, they may look at
your code, etc., without that imposing a
cap on your mark.

cally key in every character that he or she commits. Students are not
permitted to share electronic files with each other, or with students
who have taken this course in the past, except as facilitated by the

We will share test cases this way, for
example.

instructors using the course version control system.

6.1 Collaboration & Other Programming Languages

If you choose to implement the labs in another programming lan-
guage, besides Java, it will be significantly more work, because you
will have to build everything from scratch, without being able to use
the skeleton code provided by the course staff.

As dispensation for this extra effort, you may collaborate at the
partner level without the grade cap. You might also be eligible for
bonus marks for tackling a more significant technical challenge.



ece351 course outline, winter 2018 6

7 Classroom Conduct Policy
New for 2018! Prof Patrick Lam
(ece459) and I are going to try this
out. Let’s see how it works. The goal is
to balance the benefits of having access
to computing devices and the internet
against the distractions of same.

Tigers! The human visual system has evolved to perceive saber-
toothed tigers in the savannah. Fortunately, tigers are rare in Wa-
terloo, Ontario. Unfortunately, your classmates are still human and
hence their attention will be drawn to flashing lights (or Facebook,
or movies, or video games) in their peripheral vision. We’d like to
encourage everyone to be respectful of their classmates and to not
distract them.

Prudence. Wise use of computers and the Internet can be helpful
for fully engaging in class. You might want to try out some syntax, or
you might want to look up an api call, or you might want to verify
your instructor’s somewhat outrageous-sounding claim. tl;dr: paper or text-oriented programs

only in first 8 rows of class.

Text Mode. Devices in the first 8 rows of class should be operated
in text-mode only: command prompt, text editor, ide — in full screen
mode. Paper is always good, of course.

Using the terminal is a good technical
skill that complements your learning in
this course.

Notifications should be turned off. Nothing moving on the screen.
Web browsing should be done with a text-mode browser. e.g., w3m, lynx, etc.

Tuning Out. There are some old-fashioned ways of tuning out that
are less distracting for your classmates than the flashing lights on
your new-fangled gizmo:

• Doodling.5 5 Drawing uses the right side of your
brain. Language and mathematics are
done on the left side of your brain. So
doodling gives your brain something
to do, but still leaves the left side of
it available to tune back in to class if
something interesting happens.

• Do homework. On paper. Maybe for another class.

• Read a textbook. Or a novel.

• Knit. Crochet. Those of you feeling in an especially masculine
mood can explore needlepoint6 or macramé.7

6 See Roosevelt Grier’s book Rosey
Grier’s Needlepoint For Men. Grier was
an all-star defensive tackle for the New
York Giants and the Los Angeles Rams
(both in the National Football League).
He is 6’5" tall and weighed 284lbs.
7 Macramé is what sailors used to do
pass the time productively at sea and
practice their knots. Make something
fancy for your sweatheart.

• Pass notes. Write a joke to your friend. Pass it on.

Exceptions. You might have a good reason why you want to use
gui programs to support your learning and sit at the front of the
class. Just let the instructor know.

Enforcement. This policy is part of our broader culture of trust
and honesty. You are on your honour.



ece351 course outline, winter 2018 7

8 University Policies
New for 2017! https://uwaterloo.
ca/secretariat-general-counsel/

faculty-staff-and-students-entering-relationships-external

Don’t post your code on GitHub!

Intellectual Property: Students should be aware that this course con-
tains the intellectual property of their instructor, TA, and/or the
University of Waterloo. Intellectual property includes items such as:
source code, course notes, lab notes, questions or solution sets, lecture
content (and any audio/video recording thereof), etc.

Academic Integrity: In order to maintain a culture of academic in-
tegrity, members of the University of Waterloo community are ex- http://uwaterloo.ca/

academicintegrity/pected to promote honesty, trust, fairness, respect and responsibility.

Code Clone Detection Software: ece351 encourages a culture of trust
and honesty, which the pedagogical literature has shown to be the
most effective way to encourage learning and reduce cheating. While
all labs in this course are to be done individually, the course collabo-
ration policy provides a variety of options for legitimate engagement
and learning with your peers.

The instructors might, at their discretion, use code clone detection moss is the most common code
clone detection tool for academic
use, developed by compiler Prof
Alex Aiken at Stanford: https:
//theory.stanford.edu/~aiken/moss/

software on your lab submissions, to cross-check compliance with the
course collaboration policy. Please inform the instructors if you object
to mechanical analysis of your code.

AccessAbility: AccessAbility Services collaborates with all academic Needles Hall, Room 1401.
https://uwaterloo.ca/

accessability-services/
departments to arrange appropriate accommodations for students
without compromising the academic integrity of the curriculum. If
you require academic accommodations, please register with Access-
Ability Services at the beginning of each academic term.

Grievance: A student who believes that a decision affecting some
aspect of his/her university life has been unfair or unreasonable may Policy 70, Student Petitions and

Grievances, §4, http://secretariat.
uwaterloo.ca/Policies/policy70.htm

have grounds for initiating a grievance. When in doubt please be
certain to contact the department’s administrative assistant who will
provide further assistance.

http://uwaterloo.ca/

academicintegrity/

For information on categories of of-
fences and types of penalties, students
should refer to Policy 71, Student Disci-
pline, http://secretariat.uwaterloo.
ca/Policies/policy71.htm

For typical penalties check Guide-
lines for the Assessment of Penalties,
http://secretariat.uwaterloo.ca/

guidelines/penaltyguidelines.htm

Discipline: A student is expected to know what constitutes academic
integrity to avoid committing an academic offence, and to take re-
sponsibility for his/her actions. A student who is unsure whether
an action constitutes an offence, or who needs help in learning how
to avoid offences (e.g., plagiarism, cheating) or about rules for group
work/collaboration should seek guidance from the course instructor,
academic advisor, or the undergraduate Associate Dean.

https://uwaterloo.ca/secretariat-general-counsel/faculty-staff-and-students-entering-relationships-external
https://uwaterloo.ca/secretariat-general-counsel/faculty-staff-and-students-entering-relationships-external
https://uwaterloo.ca/secretariat-general-counsel/faculty-staff-and-students-entering-relationships-external
http://uwaterloo.ca/academicintegrity/
http://uwaterloo.ca/academicintegrity/
https://theory.stanford.edu/~aiken/moss/
https://theory.stanford.edu/~aiken/moss/
https://uwaterloo.ca/accessability-services/
https://uwaterloo.ca/accessability-services/
http://secretariat.uwaterloo.ca/Policies/policy70.htm
http://secretariat.uwaterloo.ca/Policies/policy70.htm
http://uwaterloo.ca/academicintegrity/
http://uwaterloo.ca/academicintegrity/
http://secretariat.uwaterloo.ca/Policies/policy71.htm
http://secretariat.uwaterloo.ca/Policies/policy71.htm
http://secretariat.uwaterloo.ca/guidelines/penaltyguidelines.htm
http://secretariat.uwaterloo.ca/guidelines/penaltyguidelines.htm


ece351 course outline, winter 2018 8

Appeals: A decision made or penalty imposed under Policy 70 (Stu-
dent Petitions and Grievances) (other than a petition) or Policy 71 http://secretariat.uwaterloo.ca/

Policies/policy70.htm(Student Discipline) may be appealed if there is a ground. A stu-
http://secretariat.uwaterloo.ca/

Policies/policy71.htmdent who believes he/she has a ground for an appeal should refer to
Policy 72 (Student Appeals). http://secretariat.uwaterloo.ca/

Policies/policy72.htm

References

[1] Andrew W. Appel and Jens Palsberg. Modern Compiler Implemen-
tation in Java. Cambridge, 2004.

[2] Charles N. Fischer, Ron K. Cytron, and Richard J. LeBlanc, Jr.
Crafting a Compiler. Addison-Wesley, 2010.

[3] Michael L. Scott. Programming Language Pragmatics. Morgan
Kaufmann, 3 edition, 2009.

http://secretariat.uwaterloo.ca/Policies/policy70.htm
http://secretariat.uwaterloo.ca/Policies/policy70.htm
http://secretariat.uwaterloo.ca/Policies/policy71.htm
http://secretariat.uwaterloo.ca/Policies/policy71.htm
http://secretariat.uwaterloo.ca/Policies/policy72.htm
http://secretariat.uwaterloo.ca/Policies/policy72.htm

	Introduction
	Coordinates
	Schedule — NEEDS UPDATING FOR W2018
	Marking Scheme
	Reference Material
	Collaboration
	Classroom Conduct Policy
	University Policies

