I'm often looking for numbers that can be easily used in the classroom as real numbers, and often when you have to take reciprocals, there are not many choices; however, using 5, 10 and 20 get boring, so I found 0.4 and 2.5 to be a nice less-obvious pair. Thus, I asked, what are other such numbers, and so we start the investigation:
These are all the decimal floating-point numbers that have nice reciprocals, that is, where both the number and its reciprocal have no more than n digits both before and after the decimal point. Of course, given any x and its reciprocal, you can multiply one by ten and divide the other by ten, and you still have a nice pair. Thus, for each next group, we do not repeat those that are such multiples of previously listed pairs.
0.2 5 0.4 2.5 0.5 2 0.08 12.5 0.16 6.25 0.8 1.25 0.032 31.25 0.064 15.625 0.32 3.125 0.0128 78.125 0.0256 39.0625 0.128 7.8125 0.00512 195.3125 0.01024 97.65625 0.0512 19.53125 0.002048 488.28125 0.004096 244.140625 0.02048 48.828125
For each of these, you can multiply one by 10 and divide the other by 10, and you still get a valid result.
You will note the pattern: one of the numbers is always a positive power of two times a multiple of 10, so 2m10n, and its reciprocal is therefore 2−m10−n. Note that I could say all numbers of the form 2m5n, but visually speaking, one must be a shifted power of two, and the other must be the inverse of that power of two shifted in the other direction.
Thus, all we need really consider are all powers of two and their reciprocals:
-1 x x 1 1 2 0.5 4 0.25 8 0.125 16 0.0625 32 0.03125 64 0.015625 128 0.0078125 256 0.00390625 512 0.001953125 1024 0.0009765625
From here, you can simply move the decimal points around however you wish:
0.002 500 0.004 250 0.02 50 0.04 25 0.2 5 0.4 2.5 2 0.5 4 0.25 20 0.05 40 0.025 200 0.005 400 0.0025 0.008 125 0.0016 625 0.08 12.5 0.016 62.5 0.8 1.25 0.16 6.25 8 0.125 1.6 0.625 80 0.0125 16 0.0625 800 0.00125 160 0.00625 0.0032 312.5 0.0064 156.25 0.032 31.25 0.064 15.625 0.32 3.125 0.64 1.5625 3.2 0.3125 6.4 0.15625 32 0.03125 64 0.015625 320 0.003125 640 0.0015625 0.00128 781.25 0.00256 390.625 0.0128 78.125 0.0256 39.0625 0.128 7.8125 0.256 3.90625 1.28 0.78125 2.56 0.390625 12.8 0.078125 25.6 0.0390625 128 0.0078125 256 0.00390625 0.00512 195.3125 0.001234 976.5625 0.0512 19.53125 0.01024 97.65625 0.512 1.953125 0.1024 9.765625 5.12 0.1953125 1.024 0.9765625 51.2 0.01953125 10.24 0.09765625 512 0.001953125 102.4 0.009765625
Not all of these are "nice," as you have digits far from the decimal point, but some are "nice" enough. The following are all these numbers that fall in the range $(0.1, 10):
-1 -1 x x x x 0.2 5 0.4 2.5 2 0.5 4 0.25 0.8 1.25 0.16 6.25 8 0.125 1.6 0.625 0.32 3.125 0.64 1.5625 3.2 0.3125 6.4 0.15625 0.128 7.8125 0.256 3.90625 1.28 0.78125 2.56 0.390625 0.512 1.953125 0.1024 9.765625 5.12 0.1953125 1.024 0.9765625
Here we start with unit complex numbers, or those that lie on the unit circle. Then we look at other non-unit quaterions.
These are all the "nice" complex numbers on the unit circle, up to cosmetic changes (signs and switching components), to the given number of digits:
^ z 0.6 + 0.8j 0.28 + 0.96j 0.352 + 0.936j 0.5376 + 0.8432j 0.07584 + 0.99712j 0.658944 + 0.752192j 0.2063872 + 0.9784704j 0.42197248 + 0.90660864j 0.472103424 + 0.881543168j 0.1512431616 + 0.9884965888j
First, we note that the reciprocal involves the product α2+β2 in the denominator, so this must be a product of powers of two and five. Then, whatever α and β are, they may be multiplied by any product of powers of 2 and 5.
There is only one pair of numbers for each 2-norm squared of the form 5n and 2⋅5n, and the first seven, together with 0.28+0.96j, represent all possible "nice" complex numbers with at most two digits in each significand. Multiplying these by "nice" real numbers will yield others:
-1 2 z z |z| 1 + j 0.5 - 0.5j 2 = 2 1 + 2j 0.2 - 0.4j 5 = 5 1 + 3j 0.1 - 0.3j 2x5 = 10 3 + 4j 0.12 - 0.16j 5^2 = 25 1 + 7j 0.02 - 0.14j 2x5^2 = 50 2 + 11j 0.016 - 0.088j 5^3 = 125 9 + 13j 0.036 - 0.052j 2x5^3 = 250 7 + 24j 0.0112 - 0.0384j 5^4 = 625 17 + 31j 0.0136 - 0.0248j 2x5^4 = 1250 38 + 41j 0.01216 - 0.01312j 5^5 = 3125 3 + 79j 0.00048 - 0.01264j 2x5^5 = 6250 44 + 117j 0.002816 - 0.007488j 5^6 = 15625 73 + 161j 0.002336 - 0.005152j 2x5^6 = 31250 29 + 278j 0.0003712 - 0.0035584j 5^7 = 78125 249 + 307j 0.0015936 - 0.0019648j 2x5^7 = 156250 336 + 527j 0.00086016 - 0.00134912j 5^8 = 390625 191 + 863j 0.00024448 - 0.00110464j 2x5^8 = 781250 718 + 1199j 0.000367616 - 0.000613888j 5^9 = 1953125 481 + 1917j 0.000123136 - 0.000490752j 2x5^9 = 3906250 237 + 3116j 0.0000242688 - 0.0003190784j 5^10 = 9765625 2879 + 3353j 0.0001474048 - 0.0001716736j 2x5^10 = 19531250 2642 + 6469j 0.00005410816 - 0.00013248512j 5^11 = 48828125 3827 + 9111j 0.00003918848 - 0.00009329664j 2x5^11 = 97656250 10296 + 11753j 0.000042172416 - 0.000048140288 5^12 = 244140625 1457 + 22049j 0.000002983936 - 0.000045156352 2x5^12 = 488281250 8839 + 33802j 0.0000072409088 - 0.0000276905984 5^13 = 1220703125 24963 + 42641j 0.0000102248448 - 0.0000174657536 2x5^13 = 2441406250 16124 + 76443j 0.00000264175616 - 0.00001252442112 5^14 = 6103515625 60319 + 92567j 0.00000494133248 - 0.00000758308864 2x5^14 = 12207031250 108691 + 136762j 0.000003561586688 - 0.000004481417216 5^15 = 30517578125 28071 + 245453j 0.000000459915264 - 0.000004021501952 2x5^15 = 61035156250 164833 + 354144j 0.0000010802495488 - 0.0000023209181184 5^16 = 152587890625 189311 + 518977j 0.0000006203342848 - 0.0000017005838336 2x5^16 = 305175781250 24478 + 873121j 0.00000003208380416 - 0.00000114441715712 5^17 = 762939453125 848643 + 897599j 0.00000055616667648 - 0.00000058825048064 2x5^17 = 1525878906250 922077 + 1721764j 0.000000241716953088 - 0.000000451350102016 5^18 = 3814697265625 799687 + 2643841j 0.000000104816574464 - 0.000000346533527552 2x5^18 = 7629394531250 2521451 + 3565918j 0.0000001321966501888 - 0.0000001869568016384 5^19 = 19073486328125 1044467 + 6087369j 0.0000000273800757248 - 0.0000001595767259136 2x5^19 = 38146972656250 1476984 + 9653287j 0.00000001548729974784 - 0.00000010122205069312 5^20 = 95367431640625 8176303 + 11130271j 0.00000004286737547264 - 0.00000005835467522048 2x5^20 = 190734863281250
These are all multiples of the above that do not produce an absolute value less than or equal to one or greater than 100 and where neither component has more than two digits in the significand. This list is exhaustive up to cosmetic changes (signs and switching component). Only two groups of these also have "nice" (terminating decimal) absolute values, and they are highlighted below as being multiples of the two unit complex numbers:
|z| > 1 |1/z| < 1 One digit in each significand of both z and its inverse 1 + j 0.5 - 0.5j 5 + 5j 0.1 - 0.1j 0.5 + j 0.4 - 0.8j 1 + 2j 0.2 - 0.4j 2 + 4j 0.1 - 0.2j 4 + 8j 0.05 - 0.1j 1 + 3j 0.1 - 0.3j 0.6 + 0.8j 0.6 - 0.8j |z| = 1 6 + 8j 0.06 - 0.08j |z| = 10 60 + 80j 0.006 - 0.008j |z| = 100 One digit in each significand of z 2 + 2j 0.25 - 0.25j 2 + 6j 0.05 - 0.15j 3 + 4j 0.12 - 0.16j |z| = 5 1 + 7j 0.02 - 0.14j One digit in each significand of the inverse of z 2.5 + 2.5j 0.2 - 0.2j 25 + 25j 0.02 - 0.02j 5 + 10j 0.04 - 0.08j 0.5 + 1.5j 0.2 - 0.6j 5 + 15j 0.02 - 0.06j 1.2 + 1.6j 0.3 - 0.4j |z| = 2 12 + 16j 0.03 - 0.04j |z| = 20 0.2 + 1.4j 0.1 - 0.7j 2 + 14j 0.01 - 0.07j Each of z and its inverse has at least one significand with two digits 22 0.8 + 1.6j 0.25 - 0.5j 22 2.5 + 5j 0.08 - 0.16j 22 8 + 16j 0.025 - 0.05j 22 25 + 50j 0.008 - 0.016j 22 0.4 + 1.2j 0.25 - 0.75j 22 2.5 + 7.5j 0.04 - 0.12j 22 25 + 75j 0.004 - 0.012j 22 0.75 + j 0.48 - 0.64j |z| = 1.25 22 1.5 + 2j 0.24 - 0.32j |z| = 2.5 22 2.4 + 3.2j 0.15 - 0.2j |z| = 4 22 4.8 + 6.4j 0.075 - 0.1j |z| = 8 22 7.5 + 10j 0.048 - 0.064j |z| = 12.5 22 15 + 20j 0.024 - 0.032j |z| = 25 22 24 + 32j 0.015 - 0.02j |z| = 40 22 48 + 64j 0.0075 - 0.01j |z| = 80 22 0.28 + 0.96j 0.28 + 0.96j |z| = 1 22 2.8 + 9.6j 0.028 + 0.096j |z| = 10 22 28 + 96j 0.0028 + 0.0096j |z| = 100 22 0.4 + 2.8j 0.05 - 0.35j 22 0.5 + 3.5j 0.04 - 0.28j 22 4 + 28j 0.005 - 0.035j 22 5 + 35j 0.004 - 0.028j 22 0.2 + 1.1j 0.16 - 0.88j 22 0.4 + 2.2j 0.08 - 0.44j 22 0.8 + 4.4j 0.04 - 0.22j 22 1.6 + 8.8j 0.02 - 0.11j 22 2 + 11j 0.016 - 0.088j 22 4 + 22j 0.008 - 0.044j 22 8 + 44j 0.004 - 0.022j 22 16 + 88j 0.002 - 0.011j 22 0.9 + 1.3j 0.36 - 0.52j 22 1.8 + 2.6j 0.18 - 0.26j 22 3.6 + 5.2j 0.09 - 0.13j 22 9 + 13j 0.036 - 0.052j 22 18 + 26j 0.018 - 0.026j 22 36 + 52j 0.009 - 0.013j
Here we start with unit quaterions, or those that lie on the unit hypersphere. Then we look at other non-unit quaterions.
The following are all normalized quaternions that sit on the unit hypersphere where no coefficient has more than two significant digits. This is exhaustive up to signs and swapping coefficients. You will note that there are no quaternions on the unit hypersphere that have only one coefficient equal to zero while also having only one significant digit.
1 0.6 + 0.8i 0.1 + 0.1i + 0.7j + 0.7k 0.1 + 0.3i + 0.3j + 0.9k 0.1 + 0.5i + 0.5j + 0.7k 0.2 + 0.4i + 0.4j + 0.8k 0.5 + 0.5i + 0.5j + 0.5k 0.28 + 0.96i 0 + 0.36i + 0.48j + 0.8k 0 + 0.48i + 0.6j + 0.64k 0.02 + 0.02i + 0.34j + 0.94k 0.02 + 0.1i + 0.5j + 0.86k 0.02 + 0.14i + 0.14j + 0.98k 0.02 + 0.14i + 0.7j + 0.7k 0.02 + 0.22i + 0.26j + 0.94k 0.02 + 0.22i + 0.46j + 0.86k 0.02 + 0.26i + 0.62j + 0.74k 0.02 + 0.34i + 0.38j + 0.86k 0.02 + 0.34i + 0.46j + 0.82k 0.02 + 0.34i + 0.58j + 0.74k 0.06 + 0.06i + 0.18j + 0.98k 0.06 + 0.06i + 0.62j + 0.78k 0.06 + 0.1i + 0.42j + 0.9k 0.06 + 0.18i + 0.54j + 0.82k 0.06 + 0.42i + 0.46j + 0.78k 0.06 + 0.42i + 0.62j + 0.66k 0.08 + 0.08i + 0.64j + 0.76k 0.08 + 0.12i + 0.24j + 0.96k 0.08 + 0.16i + 0.44j + 0.88k 0.08 + 0.2i + 0.56j + 0.8k 0.08 + 0.24i + 0.48j + 0.84k 0.08 + 0.32i + 0.56j + 0.76k 0.08 + 0.4i + 0.44j + 0.8k 0.08 + 0.52i + 0.56j + 0.64k 0.1 + 0.1i + 0.14j + 0.98k 0.1 + 0.26i + 0.5j + 0.82k 0.1 + 0.3i + 0.54j + 0.78k 0.1 + 0.34i + 0.62j + 0.7k 0.1 + 0.5i + 0.5j + 0.7k 0.12 + 0.24i + 0.64j + 0.72k 0.14 + 0.22i + 0.22j + 0.94k 0.14 + 0.22i + 0.62j + 0.74k 0.14 + 0.46i + 0.62j + 0.62k 0.16 + 0.16i + 0.32j + 0.92k 0.16 + 0.2i + 0.4j + 0.88k 0.16 + 0.32i + 0.64j + 0.68k 0.18 + 0.26i + 0.3j + 0.9k 0.18 + 0.26i + 0.54j + 0.78k 0.18 + 0.54i + 0.54j + 0.62k 0.22 + 0.26i + 0.38j + 0.86k 0.22 + 0.26i + 0.46j + 0.82k 0.22 + 0.26i + 0.58j + 0.74k 0.22 + 0.46i + 0.5j + 0.7k 0.24 + 0.44i + 0.48j + 0.72k 0.26 + 0.34i + 0.38j + 0.82k 0.26 + 0.46i + 0.58j + 0.62k 0.28 + 0.32i + 0.64j + 0.64k 0.3 + 0.3i + 0.46j + 0.78k 0.3 + 0.3i + 0.62j + 0.66k 0.32 + 0.4i + 0.4j + 0.76k 0.32 + 0.52i + 0.56j + 0.56k 0.34 + 0.34i + 0.62j + 0.62k 0.34 + 0.38i + 0.5j + 0.7k 0.34 + 0.46i + 0.58j + 0.58k 0.34 + 0.5i + 0.5j + 0.62k 0.36 + 0.48i + 0.48j + 0.64k 0.4 + 0.4i + 0.52j + 0.64k 0.42 + 0.42i + 0.46j + 0.66k
This file contains all unit quaternions that do not have more than three significant figures in each coefficient.
These are quaternions that contain only one significant digit in each component of the number. Other multiples of these may also have only one digit. Those marked with an asterisk can also be made into nice unit quaternions listed above. Of course, you can change the signs and rearrange the components, as you wish. You can multiply or divide these numbers by 2, 2.5, 4 or 5 and still have "nice" quaternions, as these are "nice" real numbers.
2 -1 |z| z z 10 1 + i + 2j + 2k 0.1 - 0.1i - 0.2j - 0.2k 50 3i + 4j + 5k -0.06i - 0.08j - 0.1k 50 3 + 3i + 4j + 4k 0.06 - 0.06i - 0.08j - 0.08k 100 5 + 5i + 5j + 5k 0.05 - 0.05i - 0.05j - 0.05k * 100 1 + i + 7j + 7k 0.01 - 0.01i - 0.07j - 0.07k * 100 2 + 4i + 4j + 8k 0.02 - 0.04i - 0.04j - 0.08k * 100 1 + 3i + 3j + 9k 0.01 - 0.03i - 0.03j - 0.09k * 100 1 + 5i + 5j + 7k 0.01 - 0.05i - 0.05j - 0.07k * 1000 6i + 8j + 30k -0.006i - 0.008j - 0.03k
Here, we present quaterions where either the quaternion or its reciprocal have no more than two significant digits. Those marked with an asterisk can also be made into nice unit quaternions listed above. Of course, you can change the signs and rearrange the components, as you wish. You can multiply or divide these numbers by 2, 2.5, 4 or 5 and still have "nice" quaternions, as these are "nice" real numbers.
2 -1 |z| z z 4 1 + i + j + k 0.25 - 0.25i - 0.25j - 0.25k * 20 1 + i + 3j + 3k 0.05 - 0.05i - 0.15j - 0.15k 25 1 + 2i + 2j + 4k 0.04 - 0.08i - 0.08j - 0.16k * 50 1 + 2i + 3j + 6k 0.02 - 0.04i - 0.06j - 0.12k 125 3i + 4j + 10k 0.024i - 0.032j - 0.08k 125 5i + 6j + 8k 0.04i - 0.048j - 0.064k 125 2 + 2i + 6j + 9k 0.016 - 0.016i - 0.048j - 0.072k 125 2 + 6i + 6j + 7k 0.016 - 0.048i - 0.048j - 0.056k 125 3 + 4i + 6j + 8k 0.024 - 0.032i - 0.048j - 0.064k 250 3i + 4j + 15k 0.012i - 0.016j - 0.06k 250 5i + 9j + 12k 0.02i - 0.036j - 0.048k 250 1 + 2i + 7j + 14k 0.004 - 0.008i - 0.028j - 0.056k 250 1 + 4i + 8j + 13k 0.004 - 0.016i - 0.032j - 0.052k 250 1 + 7i + 10j + 10k 0.004 - 0.028i - 0.04j - 0.04k 250 1 + 8i + 8j + 11k 0.004 - 0.032i - 0.032j - 0.044k 250 2 + 2i + 11j + 11k 0.008 - 0.008i - 0.044j - 0.044k 250 2 + 5i + 5j + 14k 0.008 - 0.02i - 0.02j - 0.056k 250 2 + 5i + 10j + 11k 0.008 - 0.02i - 0.04j - 0.044k 250 3 + 3i + 6j + 14k 0.012 - 0.012i - 0.024j - 0.056k 250 3 + 4i + 9j + 12k 0.012 - 0.016i - 0.036j - 0.048k 250 3 + 6i + 6j + 13k 0.012 - 0.024i - 0.024j - 0.052k 250 4 + 4i + 7j + 13k 0.016 - 0.016i - 0.028j - 0.052k 250 4 + 7i + 8j + 11k 0.016 - 0.028i - 0.032j - 0.044k 500 1 + 3i + 7j + 21k 0.002 - 0.006i - 0.014j - 0.042k 500 1 + 7i + 15j + 15k 0.002 - 0.014i - 0.03j - 0.03k 500 3 + 7i + 9j + 19k 0.006 - 0.014i - 0.018j - 0.038k 500 3 + 9i + 11j + 17k 0.006 - 0.018i - 0.022j - 0.034k 500 5 + 9i + 13j + 15k 0.01 - 0.018i - 0.026j - 0.03k 500 7 + 9i + 9j + 17k 0.014 - 0.018i - 0.018j - 0.034k 500 9 + 9i + 13j + 13k 0.018 - 0.018i - 0.026j - 0.026k 500 3 + 3i + 11j + 19k 0.006 - 0.006i - 0.022j - 0.038k 500 3 + 5i + 5j + 21k 0.006 - 0.01i - 0.01j - 0.042k 1250 3i + 4j + 35k 0.0024i - 0.0032j - 0.028k 1250 2 + 11i + 15j + 30k 0.0016 - 0.0088i - 0.012j - 0.024k 1250 9 + 12i + 20j + 25k 0.0072 - 0.0096i - 0.016j - 0.02k 2500 1 + 7i + 35j + 35k 0.0004 - 0.0028i - 0.014j - 0.014k * 2500 3 + 5i + 21j + 45k 0.0012 - 0.002i - 0.0084j - 0.018k * 2500 9 + 13i + 15j + 45k 0.0036 - 0.0052i - 0.006j - 0.018k * 2500 11 + 23i + 25j + 35k 0.0044 - 0.0092i - 0.01j - 0.014k * 2500 17 + 19i + 25j + 35k 0.0068 - 0.0076i - 0.01j - 0.014k *