Centred Divided-Difference Formula

When we calculate and add the Taylor series for f(x+h)  and f(x-h)  and solve for the centred divided-difference formula, we find that the only terms which appear in the resulting Taylor series are h^2 , h^4 , h^6 , etc., and therefore it is appropriate to apply Richardson extrapolation.

>    f( x - h ) = convert( series( f( x - h ), h, 20 ), 'polynom' );

f(x-h) = f(x)-D(f)(x)*h+1/2*`@@`(D,2)(f)(x)*h^2-1/6*`@@`(D,3)(f)(x)*h^3+1/24*`@@`(D,4)(f)(x)*h^4-1/120*`@@`(D,5)(f)(x)*h^5+1/720*`@@`(D,6)(f)(x)*h^6-1/5040*`@@`(D,7)(f)(x)*h^7+1/40320*`@@`(D,8)(f)(x)*h...



>    f( x + h ) = convert( series( f( x + h ), h, 20 ), 'polynom' );

f(x+h) = f(x)+D(f)(x)*h+1/2*`@@`(D,2)(f)(x)*h^2+1/6*`@@`(D,3)(f)(x)*h^3+1/24*`@@`(D,4)(f)(x)*h^4+1/120*`@@`(D,5)(f)(x)*h^5+1/720*`@@`(D,6)(f)(x)*h^6+1/5040*`@@`(D,7)(f)(x)*h^7+1/40320*`@@`(D,8)(f)(x)*h...



>    simplify( (% - %%)/(2*h), size );

1/2*1/h*(f(x+h)-f(x-h)) = D(f)(x)+1/6*`@@`(D,3)(f)(x)*h^2+1/120*`@@`(D,5)(f)(x)*h^4+1/5040*`@@`(D,7)(f)(x)*h^6+1/362880*`@@`(D,9)(f)(x)*h^8+1/39916800*`@@`(D,11)(f)(x)*h^10+1/6227020800*`@@`(D,13)(f)(x...

>   

Backward Divided-Difference Formula

If we add the appropriate multiples of the Taylor series for f(x) , f(x-h)  and f(x-2*h) , we still see that the result is O(h^2) , however, the second term of the error is h^3  and not h^4 .  Therefore, we can use Richardson extrapolation once (to get rid of the h^2  error) but we cannot repeatedly use Richardson extrapolation beyond this.

>    f( x - 2*h ) = convert( series( f( x - 2*h ), h, 20 ), 'polynom' );

f(x-2*h) = f(x)-2*D(f)(x)*h+2*`@@`(D,2)(f)(x)*h^2-4/3*`@@`(D,3)(f)(x)*h^3+2/3*`@@`(D,4)(f)(x)*h^4-4/15*`@@`(D,5)(f)(x)*h^5+4/45*`@@`(D,6)(f)(x)*h^6-8/315*`@@`(D,7)(f)(x)*h^7+2/315*`@@`(D,8)(f)(x)*h^8-4...


>    f( x - h ) = convert( series( f( x - h ), h, 20 ), 'polynom' );

f(x-h) = f(x)-D(f)(x)*h+1/2*`@@`(D,2)(f)(x)*h^2-1/6*`@@`(D,3)(f)(x)*h^3+1/24*`@@`(D,4)(f)(x)*h^4-1/120*`@@`(D,5)(f)(x)*h^5+1/720*`@@`(D,6)(f)(x)*h^6-1/5040*`@@`(D,7)(f)(x)*h^7+1/40320*`@@`(D,8)(f)(x)*h...



>    f(x) = f(x);

f(x) = f(x)

>    simplify( (%%% - 4*%% + 3*%)/(2*h), size );

1/2*1/h*(f(x-2*h)-4*f(x-h)+3*f(x)) = D(f)(x)-1/3*`@@`(D,3)(f)(x)*h^2+1/4*`@@`(D,4)(f)(x)*h^3-7/60*`@@`(D,5)(f)(x)*h^4+1/24*`@@`(D,6)(f)(x)*h^5-31/2520*`@@`(D,7)(f)(x)*h^6+1/320*`@@`(D,8)(f)(x)*h^7-127/...