
ECE 250 Data Structures and Algorithms

 Page 1 of 15

University of Waterloo

Department of Electrical and Computer Engineering
ECE 250 Data Structures and Algorithms

Final Examination

2006-12-21

Instructor: Douglas Wilhelm Harder
Time: 2.5 hours
Aides: none
15 pages

Surname

Given name(s)

Student ID Number

Signature

You may only ask one question: “May I go to the washroom?”
If you are unsure of a question, write down your assumptions and continue.
If you have insufficient space to answer a question, use the back of the previous page.
The examination is out of 108 marks.

ECE 250 Data Structures and Algorithms

 Page 2 of 15

A. Algorithm Analsyis

A.1 [3] Describe, in terms of limits, what it means for:

 a. f(n) = O(g(n))
 b. f(n) = Θ(g(n))
 c. f(n) = ω(g(n))

A.2 [3] Using limits, show that n ln(n) = o(n1.5).

A.3 [5] Determine the run times of the following loops where f(n) runs in O(n) time and
g(n) runs in O(n2) time.

a.
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 f(n);
 }
}

b.
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < 10; ++j) {
 f(n);
 g(n);
 }
}

c.
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 if (j % 2 == 0) {
 for (k = 0; k < n; ++k) {
 g(n*n);
 }
 }
 }
}

ECE 250 Data Structures and Algorithms

 Page 3 of 15

B. Lists, Stacks, Queues, Deques

B.1 [5] Given that a stack has the following member variables (all appropriately defined
and initialized in the constructor):

 Object * array;
 int array_size;
 int count;

implement the push function which doubles the size of the array if the array is filled.

void Stack<Object>::push(const Object & obj) {

}

ECE 250 Data Structures and Algorithms

 Page 4 of 15

C. Trees

C.1 [6] A depth-first traversal of a directory structure can perform operations either:

 1. before the subdirectories of a directory are traversed, or
 2. after the subdirectories of a directory are traversed.

For each of the following operations, indicate whether the result must be computed
before, after or at either point by placing a check-mark in the correct column. Assume
that the only source of information passed down must be through an argument of the
traversing function and the only source of information passed up is a return value from
the traversing function.

 Before After Either
Determine and print the full path name of the directory

Calculate the memory occupied by all files within the
current directory only

Calculate the memory occupied by all files in or below the
current directory

The depth of the current directory

The name of the current directory

Print a list of the files in the current directory

C.2 [4] Fill in the nodes in the tree in Figure C.2 with the numbers 1 through 14 so that a
post-order traversal would visit the nodes in the order 1 through 14.

Figure C.2. A general tree.

ECE 250 Data Structures and Algorithms

 Page 5 of 15

C.3 [3] Justify each of the three statements of the recurrence relation









>+−+−
=

=

=
11)2F()1F(
12

01

)F(
hhh
h

h

h

which describes the number of nodes in the worst-case AVL tree of height h.

C.4 [2] Given an AVL tree of height h, what is the maximum number of nodes which
may become unbalanced as a result of an insertion into the tree?

C.5 [9] For each of the following AVL trees, perform the given insertion together with
any necessary rotations. You need only redraw that section of the tree which changes. If
no rotations are required, simply draw in the new node.

Insert 1

Insert 13:

ECE 250 Data Structures and Algorithms

 Page 6 of 15

Insert 1:

Insert 13:

Insert 13:

ECE 250 Data Structures and Algorithms

 Page 7 of 15

C.6 [3] Insert 19 into the following B-tree by performing the appropriate split. You only
need redraw those blocks which have changed. (Multiple answers are possible.)

C.7 [5] Insert 90 into the following B-tree by performing the appropriate split. You only
need redraw those blocks which have changed. (Multiple answers are possible.)

ECE 250 Data Structures and Algorithms

 Page 8 of 15

D. Hash Tables

D.1 [2] Consider a hash table of size n which uses linear probing. Given a primary
cluster of size m (assume m << n), what is the probability (assuming a good hash
function) that an insertion will cause that cluster to grow to size m + 1?

D.2 [3] Remove 32 from the following hash table which uses linear probing and where
the least significant digit is the hash function.

0

94
1

2

32
3

72
4

54
5

93
6

86
7

47

Place your answer into this empty table:

0 1

2

3

4

5

6

7

D.3 [4] Insert the values 24, 51, 32, 41, 53, 52, 37, 31, 32, 12 into the following hash
table of size 11 using quadratic probing until either all entries are in the hash table or until
one of the entries can no longer be placed into the hash table. Use the least significant
digit as the hash function and indicate why you stopped.

0

1

2

3 4 5

6 7 8 9 10

D.4 [4] (Bonus) Print the (decimal) output from the following four statements.

cout << (1 << 5) << endl;
cout << (5234 | 1) << endl; // 5234 = 10100011100102
cout << (5234 & ((1 << 5) – 1)) << endl;
cout << (5234 >> 10) << endl;

ECE 250 Data Structures and Algorithms

 Page 9 of 15

E. Heaps

E.1 [6] Using the implementation of a min-heap as discussed in class, insert the following
numbers into an initially empty min-heap (draw a picture):

5, 2, 3, 6, 4, 1

Indicate the state of min-heap after each insertion by filling in the appropriate row in this
table.

 0 1 2 3 4 5 6

Insert 5

Insert 2

Insert 3

Insert 6

Insert 4

Insert 1

E.2 [6] Suppose that an implementation of a min-heap (as described in class) which stores
integers has the following member variables:

int * array;
int array_size;
int count;

The member variables are all self-descriptive and you may assume that in the constructor,
the variables are appropriately assigned.

Implement the enqueue function which inserts a new number n into the min heap. Throw
an overflow exception if the array is full.

void enqueue(int n) {

}

ECE 250 Data Structures and Algorithms

 Page 10 of 15

F. Sorting

F.1 [3] The following algorithm attempts to implement insertion sort. Find and correct
the three mistakes.

void insertion_sort(int * array, int n) {
 for (int i = 1; i <= n; ++ i) {
 int tmp = array[i]

 for (int j = i - 1; j >= 0; --j) {
 if (tmp < array[j]) {
 array[j] = array[j + 1];
 } else {
 array[j] = tmp;
 break;
 }
 }
 }
}

F.2 [4] The recurrence relation describing the quick sort and merge sort algorithms both
contain a O(n) term. Describe what the process is which requires this run time and
whether or not it occurs before the recursive step. Each can be answered with one or two
sentences.

F.3 [4] Apply radix sort to the following 3-bit binary numbers:

010 110 111 001 011 101 100 110

Place the intermediate lists (after dequeuing) into the following three tables. The last
(sorted) list is given.

001 010 011 100 101 110 110 111

F.4 [3] (Bonus) In class, it was suggested that we could perform a radix sort by starting to
sort the most significant digit first. Come up with a counter-example which shows that
this is false. This can be done with a reasonably small example.

ECE 250 Data Structures and Algorithms

 Page 11 of 15

G. Graphs

G.1 [3] For each of the following lists (a-c), indicate whether it is or is not a valid
topological sort of the directed acyclic graph shown in Figure G.1. Simply write “yes” or
“no” next to each list.

Figure G.1 A directed acyclic graph.

a. A B D C E F G H I
b. A B C D E G F H I
c. A B D C F G E H I

G.2 [6] Implement Dijkstra’s algorithm to find a minimum path from vertex A to vertex F
in the following graph. Use one graph for each step. Indicate the current shortest
distance for each vertex and whether a vertex has been visited (using the check box), but
it is not necessary to record the actual path.

ECE 250 Data Structures and Algorithms

 Page 12 of 15

G.3 [4] Implement Prim’s algorithm starting at vertex B in the following graph. Use one
graph for each step in the algorithm. Draw the minimum spanning tree at the bottom of
this page.

ECE 250 Data Structures and Algorithms

 Page 13 of 15

H. Algorithms

H.1 [4] Suppose a number of projects are being proposed for the next cycle of a product
release. There are n projects, where each is associated with a projected revenue and an
expected completion time. Justify heuristically why using a greedy algorithm using the
highest cost density (expected revenue over completion time) is better than using a
greedy algorithm which uses the highest expected revenue.

H.2 [4] For a divide-and-conquer algorithm which has a runtime T(n) = aT(n/b) + O(nk)
for n > 1, assume that n = bm and that a = bk. Show how we can simplify

to see that T(n) = O(logb(n) nk).

H.3 [3] Figure H.3 shows a skip list.

Figure H.3. A skip list.

Insert 31 into the skip list shown in Figure H.3 using the random number 0102 to
determine the height of the new node. You only need redraw the skip list from the node
containing 24 to the end.

() ∑
=









=

m k
m

a
b

an
0

T
l

l

ECE 250 Data Structures and Algorithms

 Page 14 of 15

I. Sparse Matrices (Bonus)

I.1 [4] The following sparse matrix

is stored using the following two arrays, the first storing values and the row,

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 10 2 4 6 8 14 13 5 11 9 7 12
1 2 5 1 2 3 4 8 7 2 6 4 3 6

and second storing column information:

1 2 3 4 5 6 7 8 9
1 4 6 9 10 12 12 13 15

Modify the these arrays as necessary to set the matrix entry (3, 4) to the non-zero value of
22. Put your answer in the following two tables:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 2 3 4 5 6 7 8 9

1

































000001400
000013000

1200110000
000000010
09000800
70000600
00050043
00000021

ECE 250 Data Structures and Algorithms

 Page 15 of 15

J. Self Study

J.1 [5] Describe, in your own words, either splay trees or disjoint sets. You should
describe the purpose, appropriate implementations, and properties. Provide references.

