
UNIVERSITY OF WATERLOO

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

E&CE 250 – ALGORITHMS AND DATA STRUCTURES

Final Examination Instructors: R.E.Seviora and L.Tahvildari 3 hrs, Apr. 11, 2001

Name:

Student ID:

1. 2. 3. 4. 5. 6. Total:

Do all problems. The number in brackets denotes the relative weight of the problem (out of 100). If
information appears to be missing from a problem, make a reasonable assumption, state it and proceed. If
the space to answer a question is not sufficient, use the last (overflow) page.
Closed book. No calculators allowed.

PROBLEM 1 [16]

A. Algorithm Analysis
1.Consider the algorithm represented by the following Java program fragment. What value does bar

compute? Derive a tight, big oh expression for the running time of the method bar.

 static int bar (int x, int n)
 {
 int sum = 0;
 for (int i = 1; i <= n; ++i)
 sum = sum + i;
 return {x + sum};
 }

2.Consider the algorithm represented by the following Java program fragment. The method bar1

computes the same function as bar above. However, bar1 is based on a different algorithm and its tight
big oh bound is O(n). What value does foo compute? Give a tight, big oh expression for the worst case
running time of the method foo.

 static int foo (int x, int n)
 {
 int sum = 0;
 for (int i = 1; i <= n; ++i)
 sum = sum + bar1 (i, n);
 return {x + sum};
 }

Final Examination Page 2/10 E&CE 250 W’01

B. Solving Recurrences
Solve the following recurrence. You may assume that n is a power of 2. Show all your work.

0,0,1
1

)
2

(
1

)(
>≥>

=

+=
akn

n
nnaTnT k

PROBLEM 2 [16]

A. Queues
The interface Queue discussed in the lectures contained only the operations enqueue, dequeue and
getHead. In some applications, the method reverse() is required. This method will reverse the order of
items in the queue. For example, if the original queue contained a, b, c, d (in this order), reverse() would
reorder its contents to d, c, b, a.
In this problem, you are asked to devise an algorithm for reverse(), for the case of linked list
implementation of the queue. Note that you may use any of the methods of the LinkedList class in your
answer.

1. Explain the basic approach to reversing you used in reverse() .

2. Given the algorithm for reverse() in Java.

 public class QueueAsLinkedList
 extends AbstractContainer implements Queue
 {
 protected LinkedList list;

 // standard methods of Queue interface
 …
 // reverse () : reverses the order of items on the queue
 public void reverse () {

Final Examination Page 3/10 E&CE 250 W’01

B. Ordered List

1. As discussed in the lectures, the withdraw method removes items from a list one at a time. Suppose we
are required to provide an additional method, withdrawAll which takes one argument and withdraws all
items in a list that match the given argument. Devise an O(n) algorithm for this method and write it down
in Java. Assume the list is represented using an array. The method is not required to throw an exception if
there is no matching item.

 class ExtendedOrderedListAsArray
 extends OrderedListAsArray
 {
 public void withdrawAll (Comparable item)
 {

2. Consider an implementation of the OrderedList interface that uses a doubly-linked list (i.e., each list
element contains a reference to the immediately preceding and immediately following element on the list,
if they exist). Show the running times of the OrderedList operations for this implementation in the table
below.

Ordered List Implementation
Method singly-linked list doubly-linked list

insert O(1)
isMember O(n)
find O(n)
withdraw O(n)
get O(n)
findposition O(n)
Cursor.getDatum O(1)
Cursor.insertAfter O(1)
Cursor.insertBefore O(n)
Cursor.withdraw O(n)

Briefly explain the differences, if any, between the running times for the doubly-linked implementation
and the singly-linked one.

Final Examination Page 4/10 E&CE 250 W’01

PROBLEM 3 [16]
A. Hash/Scatter Table

1.Consider a hash table with separate chaining with ten hash locations. Using the hash function h(x) = x

mod 10, insert the keys {33, 54, 69, 74, 18, 19} (in the order given) into the hash table. Draw the
resulting hash table. (Note: to keep this example simple, we use table size that is not prime.)

0
1
2
3
4
5
6
7
8
9

2. Consider an open addressing scatter table with ten slots. For the hash function h(x) = x mod 10, insert

the keys {33, 54, 69, 74, 18, 19} (in the order given) into the table. Use linear probing for collision
resolution. Show the result in the table (2) below.

3. Consider an open addressing scatter table with ten slots. For the hash function h(x) = x mod 10, insert

the keys {33, 54, 69, 74, 18, 19} (in the order given) into the table. Use quadratic probing for collision
resolution. Show the result in the table (3) below.

4. Consider an open addressing scatter table with ten slots. For the hash function h(x) = x mod 10, insert

the keys {33, 54, 69, 74, 18, 19} (in the order given) into the table. Use the secondary hash function
for collision resolution. Show the result in the table (4) below.)9mod(1)(' xxh +=

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

 (2) (3) (4)

5. Consider your answer to (3) above. What happens when you attempt to insert the key 94 into the final

hash table obtained after inserting the keys given in (3). Explain.

Final Examination Page 5/10 E&CE 250 W’01

B. Primary Clustering

Figure 1 illustrates an open addressing scatter table with linear probing, as it is being filled, at increments
of 10 percent of table capacity. The black bands in this figure represent clusters. A cluster is a set of
adjacent occupied entries in the table. Figure 2 illustrates the table being filled under the same scenario.
However, in this case, double hashing is used.

 Figure 1 – Linear Probing Clusters

 Figure 2 – Double Hashing Clusters

1. State what the ‘primary clustering’ phenomenon is.

2. Various open addressing schemes differ in their susceptibility to primary clustering. How is this

reflected in the two figures above?

Final Examination Page 6/10 E&CE 250 W’01

PROBLEM 4 [16]
A. Trees

1.Consider the binary tree shown below. For each of the traversals listed, give the order in which the
nodes are visited.

F

B H

A E J L

C

D

preorder
inorder
postorder
breadth-first

2. As discussed in the class, preorder, postorder and inorder traversals are special cases of the more
general depthfirst traversal. Rather than implementing individual traversals separately, we made use of a
design pattern, called adapter, which allowed a single depthFirstTraversal method to provide most of the
needed traversal functionality. This point is illustrated in the following for the postorder case:
 Visitor v = new PrintingVisitor ();
 Tree t = new SomeTree ();
 // …
 t.depthFirstTraversal (new PostOrder (v));
Consider an expression tree. Complete the following PostOrder adapter class and the visit method of the
PrintingVisitor. The PrintingVisitor prints the contents of the tree in the postfix notation. It is permissible
that the postfix format such as ab/cd-e*+ be printed with one operator/variable per line.

 public class PostOrder
 extends AbstractPrePostVisitor
 {
 protected Visitor visitor;
 public PostOrder (Visitor visitor)
 {
 .
 .
 .
 }
 public postVisit (Object object)
 {
 .
 .
 .
 }
 public Boolean isDone ()
 {
 .
 .
 .
 }
 }

 public class PrintingVisitor
 implements Visitor
 {
 public void visit (Object object)
 {
 .
 .
 .
 }
 // etc
 }

Final Examination Page 7/10 E&CE 250 W’01

B. Space Requirements of Trees

Derive an expression for the total space needed to represent a tree of n internal nodes using each of the
following classes. Assume four-byte integers and references. The expression should include the space
requirement of the tree only, and not include the space needed to store the objects referred to by the nodes
of the tree.
1. GeneralTree
 public class GeneralTree
 extends AbstractTree
 {
 protected Object key;
 protected int degree;
 protected LinkedList list;

 // …
 }

2.NaryTree
 public class NaryTree
 extends AbstractTree
 {
 protected Object key;
 protected int degree;
 protected NaryTree[] subtree;

 // …
 }

PROBLEM 5 [20]
A. Search Trees

1. For each node shown in the binary tree below, show its depth, height, and AVL balance factor. Write
your answers in the following table.

node depth height balance factor
A
B
C
D
E
F
G

C

A E

B D G

F

2. Draw the sequence of AVL trees obtained when the following keys are inserted one-by-one, in the
order given into an initially empty AVL search tree: {F, E, A, B, D, C, G}. Identified rotations, if there is
any.

Final Examination Page 8/10 E&CE 250 W’01

3. What is the main advantage of an AVL Tree over a Binary Search Tree (BST)?

B. Binary Trees and Heaps

1. The method isHeap determines whether a particular binary tree is a heap. The implementation this
method given below contains a few bugs. Find these bugs and correct them.

 public class BinaryTree
 extends AbstractTree
 {
 public Boolean isHeap ()
 {
 if (isEmpty ())
 return true;
 if (!getLeft ().isEmpty () || getLeft ().getKey ().isLT (getKey ()))
 return false;
 if (!getRight ().isEmpty () || getRight ().getLey ().isLT (getKey ()))
 retuen false;
 return getLeft ().isHeap () && getRight ().isHeap ();
 }
 }

2. What is the big Oh bound on the running time of this algorithm after modification?

3. (a) How many internal nodes are there in a perfect binary tree of height ? 0≥h

(b) What is the height of a perfect binary tree with n internal nodes?

Final Examination Page 9/10 E&CE 250 W’01

PROBLEM 6 [16]
A. Algorithmic Patterns
1. Consider the following problem: There are two computers C , , and a set of n programs,

 to be run. Let T be the time required to run . Assume that each computer can only run
one program at a time. You are to assign the programs to the computers so that the time from the start of
execution of the first program until the completion of the last program is minimized. Give a mathematical
formulation of this problem that includes defining the binary decision variables, specifying the objective
function and the constraints.

1 2C
{ nPPP ,...,, 21 } i iP

2. Consider the 0/1-knapsack problem with the capacity C . Solve the problem using the greedy by
profit, greedy by weight, and greedy by profit density alternatives solution. Give your answers in the table
below.

18=

Greedy by
i

iw

ip

ii wp / profit weight density

optimal solution

1 10 10
2 6 6
3 3 4
4 8 9
5 1 3

 total weight
total profit

B. Sorting Algorithms

1. Illustrate the operation of straight insertion sort by completing the left table below. In successive
rows of the table, show the array contents after each pass of the algorithm.
2. Illustrate the operation of bubble sort by completing the right table below. In successive rows of the
table, show the array contents after each pass of the algorithm.

9 8 6 7 5 0 9 8 6 7 5 0

Final Examination Page 10/10 E&CE 250 W’01

OVERFLOW SHEET [Please identify the question(s) being answered.]

	UNIVERSITY OF WATERLOO
	DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
	E&CE 250 – ALGORITHMS AND DATA STRUCTURES
	PROBLEM 1 [16]
	A. Algorithm Analysis
	B. Solving Recurrences
	PROBLEM 2 [16]
	A. Queues
	B. Ordered List
	PROBLEM 3 [16]
	A. Hash/Scatter Table

	PROBLEM 4 [16]
	PROBLEM 5 [20]
	PROBLEM 6 [16]

