
ECE 250 W04 Page 1 of 17

University of Waterloo
Department of Electrical and Computer Engineering

ECE 250 – Algorithms and Data Structures

Final Examination (17 pages)
Instructor: Douglas Harder
April 14, 2004 9:00-12:00

Name (last, first) Student ID

Do all problems.
If you are writing a supplemental exam, DO NOT attempt the question on Dijkstra’s
algorithm (I4). If you are writing the supplemental exam, circle the following:

 WRITING SUPPLEMENTAL EXAM

The number in brackets denotes the weight of the question. If information appears to be
missing from a problem, make a reasonable assumption, state it, and proceed. If the
space to answer a question is insufficient, use the back of the previous page. You may
use diagrams to supplement (but not replace) sentence answers.

Closed book. No calculators.

Question Mark Question Mark

A
/9

F
/5

B
/7

G
/9

C
/6

H
/4

D
/12

I
And Bonus (2)

/15 or /7*

E
/13

Total
/80 or /72*

* Total weight for students writing the supplemental exam.

ECE 250 W04 Page 2 of 17

A. Hash Tables

Every object in Java has a method with the signature int hashValue(). This
method returns an integer which may be considered to be a hash of the object.

1. [7] Design a chained hash table class ChainedHashTable which implements the
HashTable interface. Use the division method to convert the int returned by the
hashValue method into an appropriate hash value. You may assume that the value
returned by hashValue() is greater than or equal to 0. The argument arraySize
indicates the number of entries in the array of the hash table. You should use the
LinkedLinked class, the signature of which is given below.

Your implementation should assume that elements which are most recently inserted into
the hash table are also the ones most likely to be referenced in the future.

public interface HashTable {
 public HashTable(int arraySize);
 public void insert(Object obj);
 public void extract(Object obj);
}

public class LinkedList {
 public LinkedList();
 public void append(Object obj);
 public void assign(LinkedList list);
 public void extract(Object obj);
 public Object getFirst();
 public LinkedList.Element getHead();
 public Object getLast();
 public LinkedList.Element getTail();
 public boolean isEmpty();
 public void prepend(Object obj);
 public void purge();
}

ECE 250 W04 Page 3 of 17

2. [2] Why is it appropriate that we can use the division method to map the integer
returned by hashValue() onto the appropriate range?

ECE 250 W04 Page 4 of 17

B. Trees

1. [3] Taking into account only the instance variables of the various classes and their
super classes, what is the memory requirement for a general tree with n nodes, as
implemented and discussed in class. Recall that each int and object reference requires 4
bytes.

2. [4] Suppose data is stored in a binary search tree. For each of the four traversals,
breadth-first traversal, and pre-, post- and, in-order depth-first traversals, determine if the
order in which the data are visited depends on the order in which the data are stored.

For example, the data 1, 2, and 3 may be stored in a binary search tree in any one of the
following five orders:

Which ones depend on the order in which the data are stored:

Which ones do not depend on the order in which the data are stored:

ECE 250 W04 Page 5 of 17

C. AVL Trees

[6] The tree shown in Figure 1 is an AVL tree of characters sorted using lexicographical
(i.e., alphabetical) ordering. Starting with Figure 1, insert the letters A, C, E, and K
individually into this tree and perform whatever rotations are necessary to keep the tree
AVL balanced. For each step, indicate whether no rotations are necessary (i.e., the tree
remains AVL balanced) or if a single rotation or a double rotation is necessary to
rebalance the tree.

Warning: Do not add A, and then, into this result, add C, etc., that is, you should end up
with four different trees, each with ten nodes.

 Figure 1.

ECE 250 W04 Page 6 of 17

D. Heaps

1. [4] For each of the following three parts (a, b, and c) the array represents a min-heap
implemented as a complete binary tree. For each heap, either enqueue into or dequeue
from the heap, as specified. The resulting representation should continue to be a
complete binary tree. Each question is provided with a table to enter the resulting heap.

a. Enqueue the element 2 into the the heap represented by:

1 3 5 7 4 6 9

b. Dequeue an element from the heap represented by:

1 3 5 7 4 6 9

c. Dequeue an element from the heap represented by the following tree.

1 2 3 12 9 4 7 19 15 11 13 6

2. [5] Assume you are implementing a priority queue using the data structures listed in
the first column of Table 1. Given that there are n objects in the queue, fill in the
asymptotic run times for the following methods:

 Enqueue Dequeue Get Head
Complete Binary
Tree (Heap)

O()

O()

O()

Ordered Linked list
O()

O(1) O(1)

Ordered Array
O()

O(n) O(1)

AVL Tree
O()

O()

O()

Table 1.

One mark is taken off for each incorrect answer.

ECE 250 W04 Page 7 of 17

3. Suppose you are implementing the class HeapAsArray (again, using a complete
binary tree) where the size of the array is both fixed with 2n – 1 entries. You have three
ways of dealing with the problem of inserting an object into a full heap:

 a. Throw an exception which is not a run-time exception.
 b. Find the lowest value/priority object in the heap and replace it if the new
 object has a higher value/priority.
 c. Discard the object being inserted.

i. [1] Which way has the slowest run time (a, b, or c)?

ii. [1] Which way forces the programmer using this class to write extra code to deal with
a full heap (a, b, or c)?

iii. [1] If this class is to be used for a priority queue, which method (a, b, or c) will most
likely be the cause of problems? If you think this question is ambiguous, you may justify
your answer.

ECE 250 W04 Page 8 of 17

E. Backtracking Algorithms

Consider the following problem. Given a set of weights and a scale, we would like to
find a combination of weights which is both balanced and maximizes the weight on the
scale.

For example, given the weights 1, 3, 5, 5, and 7, placing the weights 7 and 3 on one scale,
and the weights 5 and 5 on the other is both balanced and maximizes the weight (10) on
the scale.

In this case, at any node of the decision tree if we have a balanced partial solution, we
may treat this as a complete solution by assuming that all other weights may optionally
be left off of either arm of the scale. Thus, before we start any problem, we already have
one candidate for a potential solution: leave both arms of the scale empty, in which case,
the scale is balanced. Denote the weight of the current optimal solution (initially 0) by
the value mopt.

1. [4] Write down the two mathematical equations (one for each restriction) which define
the constraints of our problem. You may represent the weights by wi and the set of
weights on the left- and right-hand arms of the scale by L and R, respectively.

2. [1] One condition which allows us to prune a branch of the decision tree may be stated
in English as “if the weight on one arm of the scale together with all unplaced weights are
less than the weight on the other arm, then no solution can be found.” Restate this
mathematically. You may represent the set of all unplaced weights by W.

3. [2] There is another condition which depends on mopt. State this condition
mathematically for full marks, or in works for partial marks.

ECE 250 W04 Page 9 of 17

4. [6] Given five weights with masses 14, 5, 5, 2, and 1, draw the decision tree which
finds the optimal solution to the problem described above. You need not draw any
branches of the decision tree which are pruned by the conditions you give in parts 2 or 3
of this question. If you did not get part 3 of this question, do not despair; most pruning
comes from the condition described in part 2. The first four nodes of the tree are given.

Hints:
a. Place the heaviest weights first, as is shown below.
b. You may use symmetry to eliminate some of the nodes.
c. The full decision tree has 364 nodes. Using the previous two hints and your
conditions, the number of nodes which must be visited may be reduced to less than 30.

When you are pruning, place an X through the node which is being pruned and indicate if
the pruning depends on the condition stated in part 2, part 3, or symmetry.

ECE 250 W04 Page 10 of 17

F. [5] Heap Sorting

Given the following integer (i.e., int) MinHeap and MaxHeap classes, implement the
method heapSort which takes an array of integers and returns a new array of integers
sorted in ascending order. Your answer should not be much more than five additional
lines of code. The constructor argument size indicates the maximum size of the heap.

public class MaxHeap {
 public MaxHeap (int size);
 public void enqueue(int x);
 public int dequeue();
}

public class MinHeap {
 public MinHeap (int size);
 public void enqueue(int x);
 public int dequeue();
}

public int[] heapSort (int[] list) {
 int [] sorted =

 return sorted;
}

ECE 250 W04 Page 11 of 17

G. Divide-and-Conquer Sorting

1. [4] Sort the following data using a binary merge sort. Each step of subdividing and
merging should occupy a separate line and subdivisions should be indicated by bold lines
between the different lists. Continue subdividing until the size of the list is two, at which
point you may simply order the two elements.

7 3 6 1 4 5 0 2

2. [2] What shortcoming of quick sort does merge sort avoid? Use one or two sentences.

3. [3] Is the reasoning given in the following statement correct, yes or no? If yes, explain
why. If no, what is the problem with the author’s reasoning?

The standard binary merge sort takes log2(n) steps to sort a list of n objects. If I
divided the list into four sublists, sort each of these, and then merge these four
sublists back into a single list, then this will take log4(n) steps. Since it is true for
all values of n that log4(n)/log2(n) = ½, only half as many steps will be required,
and therefore this modified merge sort will be twice as fast as the standard binary
merge sort.

ECE 250 W04 Page 12 of 17

H. Bucket Sort and Radix Sort

1. [4] Perform a increasing radix sort on

323, 312, 321, 112, 231, 123, 322

by using the following 3x5 tables, which may act as queues. For each step, enter the
partial solution in the entry in the 1x7 table. The 6th table should be the sorted list.

1
2
3

1
2
3

1
2
3

ECE 250 W04 Page 13 of 17

I. Graph Algorithms (and Bonus)

For parts 1, 2, and 3 of this question, you do not have to know anything about graphs to
answer the questions.

Consider a directed graph (V, E) defined by a set of vertices V and a set of edges E, each
edge being an ordered pair of vertices, e.g., (v1, v2). A path of length n is a nonempty
ordered sequence of vertices (a0, a1, ..., an) such that each ordered pair (ai - 1, ai) where i =
1, ..., n is an edge.

A path is simple if all the vertices are different with the one exception: the first and last
verticies may be equal. Consider the following implementation of the class Path
together with some additional classes.

public class Path {
 LinkedList path;
 int length;

 public Path(Vertex v) {

path = new LinkedList();
path.append(v);
length = 0;

}
public void append(Vertex v) {
 if (isEdge(v, path.getLast().getDatum())) {
 length++;
 path.append(v);
 } else
 throw new RuntimeException(“The new vertex is” +
 “not adjacent to the last element the path”);
};

 public boolean isSimple() {...}
}

public class Vertex {
 Object key;
 public Vertex(Object key) { this.key = key; }
}

public class LinkedList {
 public LinkedList();
 public LinkedList.Element getHead();
 public Object getFirst();

 public class Element {
 public Element(Object key);
 public Element getNext();
 public Object getDatum();
 }
}

ECE 250 W04 Page 14 of 17

1. [5] Implement the method isSimple which returns true if the path is simple and
false otherwise. You may, if you wish, use the class ChainedScatterTable, the
signatures of which are given below. Your method must run in O(n) time where n is the
length of the path. You may assume that two vertices with the same key will be equal
when compared to each other.

public class ChainedScatterTable {
 public ChainedScatterTable(int length);
 Object find(Object obj);
 void insert(Object obj);
 boolean isFull();
 boolean isMember(Object obj);
 void purge();
 void withdraw(Object obj);
}

public class Path {
 ...
 public boolean isSimple() {

 }
}
Hints:
Implement code which ensures that all the edges are different and then add additional
code to check for the special case that the first and last elements may be equal.
If you are significantly exceeding 10 lines of code, you should reconsider your strategy.

ECE 250 W04 Page 15 of 17

2. [2] Suppose instead that one additional instance variable, boolean simple, is
added to the class Path. This instance variable is initially set to true. Each time
another vertex is added to the path, the resulting path is tested and if it is no longer
simple, this variable is set to false. In this case, the method isSimple simplifies to

public boolean isSimple() {
 return simple;
}

What must the asymptotic (big-O) run time of adding n vertices to the path be, assuming
that the method isEdge runs in constant time?

3. (Bonus) [2] If, in addition to adding the variable simple (as described in part 2),
suppose we add a chained hash table which stores all vertices in the path. In this case, it
is very easy to test if the new vertex already occurs in the linked list and therefore the run
time of adding n vertices into the path is O(n). What rule (described in class) describing
the relationship between run-time and memory used does this reflect?

ECE 250 W04 Page 16 of 17

4. Dijkstra’s Algorithm

IF YOU ARE WRITING A SUPPLEMENTAL EXAM, DO NOT DO THIS
QUESTION.

In finding the length of the shortest path from a given a vertex A in a graph to all other
vertices in the directed graph the edges of which have positive weights, Dijkstra’s
algorithm is fast and efficient.

The vertex A is given the weight 0 and all other nodes are given a weight of infinity.
Each node is marked as unvisited.

Select one of the unvisited vertices which have the smallest current weight. Mark this
vertex as visited. For each unvisited vertex adjacent to this selected vertex, if the sum of
the weight of the selected vertex and the edge joining the two vertices is less than the
current weight of the adjacent vertex, update the weight of the adjacent vertex.

Repeat this process until all vertices have been marked as visited.

After all vertices have been visited, the weights on the vertices are the shortest distance to
those vertices from the given vertex A.

a. [6] Evaluate Dijkstra’s algorithm on the directed graph described on the next page.
The first iteration of the algorithm has already been performed. Use one image of the
graph for each iteration.

b. [2] Dijkstra’s algorithm was described as being greedy. Underline the sentence in the
description of Dijkstra’s algorithm which classifies the algorithm as greedy.

ECE 250 W04 Page 17 of 17

