UNIVERSITY OF WATERLOO

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

E&CE 250 -ALGORITHMS AND DATA STRUCTURES

Midterm Examination Douglas Wilhelm Harder 1.5 hrs, 2005/02/17
11 pages
Name (last, first): Student 1D:

1 2. 3. 4. 5. 6. 7. 8. 9. 10. | 11. |12. |13

Do al of the questions. The examisout of 70. Closed book. No aids. The number in
brackets denotes the weight of the problem. If information appears to be missing from a
problem, make a reasonable assumption, state it, and proceed. If the space to answer a
guestion isinsufficient, use the reverse side of the previous page.

The only question which you may ask is“May | go to the washroom?’ No other
guestions will be answered by either the teaching assistants or the instructor.

Y ou may immediately proceed by detaching the last page of this exam. Otherwise, wait
until you are given notice to open this booklet.

Y ou may abbreviate any class name by using the capital letters only. For example, you
may write QALL instead of QueueAsLi nkedLl i st, or Einstead of Enuner at i on.
Similarly, you may abbreviate method names by using theinitial lower case letter and all
other upper case letters.

For example, you may write

Ee=1ist.gE();
instead of
Enuneration e = |ist.getEnuneration();

Y our variable names must still be distinct from the abbreviated classmethod names. Y ou
may not abbreviate any instance variable or parameter names which have been given in
this midterm.

Guidelines for the number of lines of code (lines with at least one alphanumeric character
in them, assuming normal formatting rules) for each solution are given. These are
approximations only, and longer or shorter solutions may exist.

If you need an exception and no guidance is given as to which exception you should use,
useaRunt i meExcept i on with an appropriate string.

Asymptotic Analysis

1. Of the given four data structures, for each of the five properties, rank the four data
structures with respect to. For the hash table, you must assume that the load factor is one,
that is, m=n.

Inserting Finding Finding Finding Checking
L east Greatest Next Member ship

Entry Entry Entry
Sorted List O(n) o1 o(1) o) O(log(n))
Hash Table 0(1) O(n) o(n) O(n) 0o(1)

Binary O(log(n)) | O(log(n)) | O(log(n)) | O(log(n)) | O(log(n))
Search Tree

Priority O(log(n)) 0o O(n) O(n) O(n)
Queue
(minimum)

2. For the given tree, print out the keys asif the tree is traversed using an:
a. Pre-order traversal,
b. Post-order traversal, and
c. Where applicable, an in-order traversal .

ONE GENERAL TREE
ONE BINARY TREE TREE
ONE 3-WAY TREE

Write the following expression for 1(n) in terms of I(n) and I(n—1).

i1 neo

I(n+1):,'l,éil(i) -
tizo

>

Create a min-heap by placing the following seven numbers into the heap in the given
order:
5 16 8 15 2 23 4

Given the following min-heap, indicate the state of the heap after each of three callsto
the method dequeueM n.

nal_J1 |3 [5 [4 |7 | | | | |

When inserting an element into a min heap, it may be necessary to

3. [2] Suppose a program has an initialization routine which reads the header of n files
and stores this header information in an array of sizen. How would you respond to the
comment that thisinitialization routine runsin O(In(n)) time? (One or two sentences.)

Given the general formula

Given divide and conquer T(n) = a T(n/b) + O(n*) and the resulting formula
1 O(n'®?) a>b
T(n) = {O(n*log, n) a=b*
Loomfy a<b

explain how quick sort is O(n log, n).

Recalling that an N-ary treewith n3 O internal nodes contains (N — 1)n + 1 external
nodes. Prove, using induction, that an N-ary tree of height h has a maximum of N" |eaf
nodes.

What is the total internal path length of the following three trees:

What are upper and lower bounds on the total internal path length of abinary tree with
2"*1_1internal nodeswhere h3 1? Expand each answer so that it is a sum of products.
Justify your answer briefly.

3 . . d . n(n+l)
You may need the formulae g i2' =(n-)2 +2and i = -

i=0 i=0

A perfect binary treeisan AVL tree which is perfectly balanced at each node. Draw an
example of an AVL tree with three and seven internal nodes which is the least balanced.
That is, as many nodes as possible are unbalanced. There are sixteen possible solutions
for atree with seven nodes to this question; you only need to find one. Do not prove that
your solution is the least balanced solution.

Consider a scatter table which places an integer into the bin corresponding to the last
digit. Assumethetableispartialy filled asfollowswhere -1 isused asaflag to indicate
the end of achain.

Bin 0 1 2 3 4 5 6 7 8 9
Datum 121 31 42 32 76 36 77
Next -1 2 3 4 -1 -1 7 8 -1 -1

Insert the numbers 33, 55, and 88 into this chained scatter table.

Bin 0 1 2 3 4 5 6 7 8 9

Datum

Next

For chained scatter tables, you could use a specia flag to indicate that a chain terminates.
For example, the next field could be occupied by -1. Why isthis not agood ideaif the
chained scatter table has 2° = 256 entries (i.e., 0 to 255)?

Consider a chained scatter table with 10 slots. For a given integer, let the last digit
determine which dlot the number appearsin. Given the following chained scatter table,
indicate the successive states when 25, 147, 100, and 37 are withdrawn, in that order.

Bin 0 1 2 3 4 5 6 7 8 9

Datum | 100 21 38 27 24 34 25 37 147 28

Next 1 2 3 3 5 6 6 8 9 0

Bin 0 1 2 3 4 5 6 7 8 9

Datum

Next

Bin 0 1 2 3 4 5 6 7 8 9

Datum

Next

Bin 0 1 2 3 4 5 6 7 8 9

Datum

Next

Bin 0 1 2 3 4 5 6 7 8 9

Datum

Next

The homework asks you to implement a hash table which doubles the number of binsin
the hash table if the load factor isA = 1 after inserting and to halve the number of binsin
the hash table if the load factor isA = 0.5. Why is thisimplementation sub-optimal ?

For the given sequence of keys, determine the binary search tree obtained when the keys
are inserted one-by-one in the order given into an initially empty binary search tree:

72461835

Using these same keys, determine the AV L tree obtained when the keys are inserted one-
by-one in the order given into an initially empty AVL tree.

Find upper and lower bounds on the internal path lengths of trees with 1, 3 and 7 nodes.
Generalize thisfor atree with 2" — 1 nodes.

To delete anonleaf node from a binary search tree, we swap it either with the smallest
key itsright subtree or with the largest key in its left subtree and then recursively delete it
from the subtree. In atree of n nodes, what is the minimum and maximum number of
swaps needed to delete a key?

Are either of these optimal cases realizable with an AVL tree with n nodes?

Asymptotically speaking, what is the average number of swaps required for an AVL tree
when deleting the root node?

Using the complete binary tree as shown in class, enter the following numbers into amin
heap.

64172538

0 1 2 3 4 5 6 7 8 9 10 11

It is not necessary that a min-heap be implemented as a binary tree. For example, a
general tree isamin-heap if the keys of each of the subtrees are greater than the given
key and each sub tree isaheap. Implement a method which returnst r ue if the given
general treeisaheap and f al se otherwise.

public class General Tree extends AbstractTree {
protected LinkedList[] list;

public boolean isHeap() {

For each of the following trees (one binary, one general, and one 3-way tree), do a pre-
order traversal, an in-order traversal, and a post-order traversal. Do not do traversals
where specified not to with adash.

Pre-Order -

In-Order -

Post-Order -

Give examples of two different conditions under which you would want to use a sorted
list instead of a binary search tree to store sorted data which needs to be searched. Y our
examples should contain quantitative values (either exact or asymptotic).

1. When you need to quickly find the next element

2. When spaceislimited

What are the memory requirements for a priority queue implemented as follows:

The entries are stored in a complete binary tree,

An array, as described in class, is used to store the entries in the queue,

There are currently 32 entries in the priority queue,

Theinitial length of the array is 2 and each time a new element is added to the
priority queue, the length of the array is doubled.

poODNPRE

For which of these could you use the address of the object as a reasonable hash value, and
for which would you have to use either the multiplicative method to create a better hash
value?

[4] Suppose you wanted to use the mid-sguare method to get one decimal digit (0-9)
hash values of randomly chosentwo decimal digit numbers in the range 40 through 99.
Rank, in order of usefulness, which digit (1%, 2", 3, and 4™) of the square you would
prefer to use for the hash value.

For your reference, the 1%, 2™, 3, and 4™ digits for 40° through 992 are given:

111112222222222333333333444444455555556666667777778888899999
667890123456789012346789023467901346790245780235791246802468
086432100000001234680246925826048272728406285296420864321000
014965694101496569410149656941014965694101496569410149656941

For example, the first column is 1600, or 40°.

Most Useful Least Useful

A set is a data structure which has only one occurrence of each element. Thus, if insert
receives an element which already exists in the set, then the new item should not be
inserted into the set. Use whatever data structure you wish to implement a set so that

i nsert,i sMenber,w t hdrawandfi nd runin O(1) time. You may assume that
the set will contain at most 1000 elements. Y ou should not implement the data structure
which you are using.

All of these methods, when properly implemented, are relatively short; in some cases,
they are as short as oneline.

public class Set
i npl ement s Sear chabl eCont ai ner
ext ends Abstract Cont ai ner

/] i1nstance vari abl es

public Set() {

}
publ i ¢ bool ean i sMenber(Conparable obj) {

}
public insert(Conparable obj) {

}
pubi c void wi thdraw(Conparable obj) {

}
publ i ¢ Conparabl e find(Conparable obj) {

[1] Consider apriority queue implemented as a binary search tree using the Tr ee data
structure. Circle the traversals which you could use to convert the priority queue as a
binary search tree to a priority queue as a complete tree implemented using an array in
O(n) time?

Pre-Order Traversa In-Order Traversa Post-Order Traversal

[2] Why, recalling that each traversal runsin O(n) time?

The benefits of using an array with a complete binary tree to represent a priority queueis
that enqueue and dequeueM n are O(log(n)) while get Head is O(1).

Suppose the data which is being temporarily stored in a priority queue is known to arrive
approximately in order. For example, it may be known that, on average, a new datum
will be two positions out of order relative to other entries which are being enqueued at the
same time. For example, the data may be arriving as follows:

143 658 9 7 10 14 13 12 19 17 20 21

For each of enqueue or dequeueM n, explain if thiswill affect the run time of these
methods.

voi d enqueue(Conparabl e obj)
Run time:

Why:

Conpar abl e dequeueM n()
New run time:

Why:

Taking thisinto account, it is possible to create a priority queue where al three methods
are O(1). It may help to look at the implementation of a QueueAsAr r ay, the
implementation of which is given on the next page. On the page thereafter, fill in the
body for the given methods, making sure that, in the above scenario they runin O(1)
time.

Use the Conpar abl e interface as described on the last page and recall that the method
call

(new Integer(3)).conpareTo(new Integer(7))

returns- 1.

/'l Referece: |Inplenmentation by Dr. Bruno Preiss

public class QueueAsArray inplenents Queue

{

ext ends Abstract Cont ai ner

protected Cbject[] array;
protected int head;
protected int tail;

publ

publ

publ

publ

c QueueAsArray(int size) {
array = new (bj ect[si ze];

head 0;
tail size — 1;

c bject getHead() {
if (count == 0) {

t hrow new Cont ai ner Enpt yExcepti on();
}

return array[head];

c void enqueue(Object object) {
if (count == array.length) {

t hrow new Cont ai ner Ful | Excepti on() ;
}

tail = (tail + 1) %array.|ength;
++count ;

array[tail] = object;

c bj ect dequeue() {
if (count == 0) {

t hr ow new Cont ai ner Enpt yException();
}

(bj ect result = array[head];
array[head] = null;
head = (head + 1) %array. | ength;

--count;
return result;

public class PriorityQueueAsArray inplenents PriorityQueue
ext ends Abstract Cont ai ner
{

/] i1nstance vari abl es

public PriorityQueueAsArray(int size) {

}
publ i ¢ Conpar abl e get Head() {

}

public void enqueue(Conparable object) {

}
publ i ¢ Conpar abl e dequeueM n() {

Interfaces and Classes

public class LinkedList {
protected El ement head;
protected El enent tail;

public LinkedList();

public void purge();

public El ement getHead();

public Elenment getTail ();

public bool ean isEnpty();

public Object getFirst();

public Object getLast();

public void prepend(Object obj);

public void append(Object obj);

public void assign(LinkedList list);
c

public void extract(Object obj);

public class Elenment {
Obj ect datum /1 visible in class LinkedLi st
El ement next; /1 visible in class LinkedLi st

public Object getDatum();

public El ement getNext();

public void insertBefore(Object obj);
public void insertAfter(Object obj);

}

public interface Container {
int getCount();
bool ean i sEmpty();
bool ean isFull ();
voi d purge();
Enuner ati on get Enuneration();

public abstract class AbstractContainer inplenents Container {
int count = 0;
public int getCount() { return count; }
public int isEnpty() { return getCount() == 0; }
public isFull () { return false; }

public interface Enuneration {
bool ean hasMor eEl enent s();
Obj ect next El ement () ;

public interface Conparable {
int conpareTo(Conparable obj);

}
i<0 X<Y
X. conmpareTo(Y) :' =0 X.equals(Y)
1>0 X>Y

public interface Stack extends Container {
void push(Object obj);
Obj ect pop();
Obj ect get Top();

public interface Queue extends Container {
voi d enqueue(Object obj);
Obj ect dequeue();
Obj ect get Head();

public interface Searchabl eContai ner extends Container {
bool ean i sMenber(Conparable obj);
void insert(Conparable obj);
void wi thdraw(Conparable obj);
Conpar abl e find(Conparable obj);

public interface OrderedList {
Conparable get(int i);
Cursor findPosition(Conparable obj);

public interface Cursor {
Conpar abl e get Datum();
voi d insertAfter(Conparable obj);
voi d insertBefore(Conparable obj);
void withdraw);

