
ECE 250 Data Structures and Algorithms

 Page 1 of 14

University of Waterloo

Department of Electrical and Computer Engineering
ECE 250 Data Structures and Algorithms

Final Examination

2006-04-17

Instructor: Douglas Wilhelm Harder
Time: 2.5 hours
Aides: none
14 pages

Surname

Given name(s)

Student ID Number

Signature

You may only ask one question: “May I go to the washroom?”
If you are unsure of a question, write down your assumptions and continue.
If you have insufficient space to answer a question, use the back of the previous page.
The examination is out of 75 marks.

1.

2. 3. 4. 5. 6. 7. 8. 9. 10. 11.

12.

13. 14. 15. 16. 17. 18. 19. 20. 21. 22.

ECE 250 Data Structures and Algorithms

 Page 2 of 14

1. [4] Assume that the function bool f() is a Boolean-valued function which
randomly returns a value of true or false with a probability of 0.5. What are the best-
case (e.g., f() always returns ...) and worst-case asymptotic run times of this code
fragment? What is the average case asymptotic run time? Give a short justification for
the average-case scenario. Otherwise, you need only to give the asymptotic run times
(big-O) with respect to the variable n.

int m = 0;

for (int i = 0; i < n; ++i) {
 if (f()) {
 for (int j = i; j < n; ++j) {
 ++m;
 }
 }
}

2. [2] For each of the following two scenarios, suggest the appropriate data structure.
You do not need to justify your choice.

a. You’d like to store information about all the circuit elements produced by one
particular company. Each circuit element has its own unique six-digit identifier.

b. You require a priority queue, however, for each new element being placed into the
queue, you are aware that it must have either:

 i. higher priority than all elements currently in the queue, or
 ii. lower priority than all elements currently in the queue.

Which data structure could be used to have optimal performance?

ECE 250 Data Structures and Algorithms

 Page 3 of 14

3. [4] The SingleList class which you implemented in Project 1 has three class
members:

 SingleNode * head;
 SingleNode * tail;
 int count;

The second and third class members are not necessary; we could implement a single list
using only the SingleNode * head class member. Unfortunately, the run time of
some of the member functions will change from O(1) to O(n). In the following table,
place a check mark in the appropriate column indicating that the run time will change
from O(1) to O(n) as a result of having removed that class member.

 Remove

tail
Remove
count

int size() const;

bool empty() const;

Object front() const;

Object back() const;

SingleNode<Object> * head() const;

SingleNode<Object> * tail() const;

bool member(const Object & obj) const;

void push_front(const Object & obj);

void push_back(const Object & obj);

Object pop_front();

bool remove(const Object & obj);

4. [2] Perform pre-order and post-order depth-first traversals of this tree:

Place your answers in these tables:

Pre-order depth-first traversal

Post-order depth-first traversal

ECE 250 Data Structures and Algorithms

 Page 4 of 14

5. [4] For each of the following AVL trees, insert 13. Perform whatever rotations are
necessary to maintain AVL balance.

For each of the following AVL trees, delete the node containing 13. Perform whatever
rotations are necessary to maintain AVL balance. If no rotations are necessary, you can
simply cross the node out.

ECE 250 Data Structures and Algorithms

 Page 5 of 14

6. [4] Implement the member function rotate_to_right which rotates around this
which is a pointer to the unbalanced node. Update the heights of any nodes which may
have had their heights changed as a result of the rotations by calling the
void update_height() member function on those nodes (you do not have to
implement void update_height()). You may optionally, though you are not
required to, use the argument parent (this was used in some student’s implementation,
and thus, I will provide it if you wish to use it).

The structure of the AVLNode class is

template <class Comparable>
class AVLNode {
 private:
 Comparable element;
 int height;
 AVLNode<Comparable> * left_tree;
 AVLNode<Comparable> * right_tree;
 public:
 // ...
};

Enter your answer here:

template<class Comparable>
void rotate_to_right(AVLNode<Comparable> * & parent) {

}

ECE 250 Data Structures and Algorithms

 Page 6 of 14

7. [4] Insert 13 into the following two B-trees.

Remove 13 from this B-tree:

ECE 250 Data Structures and Algorithms

 Page 7 of 14

8. [2] In double hashing, it is necessary that the skip (the secondary hash function) must
be relatively prime to size of the hash table. How can we ensure this if the hash table has
2k bins where k is an integer and k > 0. (Short answer, no proof required.)

9. [3] Insert the numbers 3, 13, 23, and 33 into the following hash table which currently
has only a single entry. Use quadratic hashing and use the least-significant digit to
represent the initial bin.

0 1 2 3 4 5 6 7 8 9 10

17

10. [2] What is the printed output of when the following code is run?

int n = 1;

n = (n << 5);

cout << n << endl;

if (!(n & 1)) {
 n = n | 1;
}

cout << n << endl;

ECE 250 Data Structures and Algorithms

 Page 8 of 14

11. [3] Using the implementation of a min-heap as discussed in class, insert the following
numbers into an initially empty min-heap:

7, 3, 2, 5, 8, 4

Indicate the state of min-heap after each insertion by filling in the appropriate row in this
table.

 0 1 2 3 4 5 6

Insert 7

Insert 3

Insert 2

Insert 5

Insert 8

Insert 4

12. [4] Suppose that an implementation of a min-heap (as described in class) which stores
integers has the following class members:

int * array;
int array_size;
int count;

The variables are all self-descriptive and you may assume that in the constructor, the
memory for the array is appropriately allocated.

Implement the dequeue function which returns the minimum element and readjusts the
elements in the array to maintain the complete-tree shape of the array.

int dequeue() {
 if (count == 0) {
 throw underflow();
 }

}

ECE 250 Data Structures and Algorithms

 Page 9 of 14

13. [3] Perform one pass of the bubble sort algorithm on the following list of integers
(visiting each entry once). Place your answer in the second row.

3 0 1 4 2 7 8 6 9 5

14. [4] The following code correctly compares the entries of two sorted arrays, array1
and array2, of sizes n1 and n2, respectively, and merges them together into a single
sorted array merged_array which is of size n1 + n2

int i = 0, j = 0, k = 0;

for (/* empty */; i < n1 && j < n2; ++k) {
 if (array1[i] <= array2[j]) {
 merged_array[k] = array[i];
 ++i;
 } else {
 merged_array[k] = array[j];
 ++j;
 }
}

Note, however, that the merging process is not complete. Write the code required to
complete the merging of the two arrays.

ECE 250 Data Structures and Algorithms

 Page 10 of 14

15. [3] Apply merge sort on the following list of unsorted data by showing each step (to
the extent shown in class) of the process. If a list has an odd number of entries, you
should divide the list so that the larger sub-list is on the left. If a sub-list has three or
fewer entries, you can simply sort them in the next step.

5 3 0 2 4 6 1

16. [3] Choosing the median-of-three to select the pivot (the three being the first, middle,
and last entries) for quick sort has the following benefit:

 For a sorted array, the pivot will divide the array

into two equal or almost-equal sub-arrays.

However, this also allows us to easily construct an sequence of integers for which quick
sort must run in Θ(n2) time. We can avoid this by choosing the median of three randomly
chosen entries. This, however, has the drawback that a sorted list will not be sorted in an
optimal amount of time.

Suggest a hybrid of these two which at least partially solves both problems.

17. [2] Perform a topological sort of the following directed acyclic graph. There is more
than one solution to this problem.

ECE 250 Data Structures and Algorithms

 Page 11 of 14

18. [6] Apply either of Prim’s or Kruskul’s algorithm (your choice) to find a minimum
spanning tree of the following graph. Indicate which algorithm you are using. If you are
using Prim’s algorithm, start with the vertex A. Show each step with the appropriately
numbered graphic. Draw the spanning tree at the bottom.

1. 2.

3. 4.

5. 6.

7. 8.

ECE 250 Data Structures and Algorithms

 Page 12 of 14

19. [4] Explain why Prim’s algorithm may be classified as greedy. You may use a
diagram and a sample graph to justify your answer.

20. [4] For a divide-and-conquer algorithm which has a runtime T(n) = aT(n/b) + O(nk)
for n > 1, assume that n = bm and that a > bk. Show how we can simplify

to see that T(n) = O(nlogba). If you are not aware of the exact value of a particular sum,
you may simply state the properties which you believe it has.

21. [2] Suppose we are adding two matrices which are stored using the sparse Harwell-
Boeing representation. If you were to implement an algorithm for adding two such
matrices, which algorithm which we have seen in class would this be closest to? (Short
answer.)

() ∑
=









=

m k
m

a
ban

0

T
l

l

ECE 250 Data Structures and Algorithms

 Page 13 of 14

22. [6] Using only O(1) additional memory, modify the SingleList class to allow the
implementation of a Object pop_back() function which has the following run
times:

a. If between two successive calls to Object pop_back() there is at least one
 call to void push_back(Object obj), then the second call to
 Object pop_back() must run in O(1) time, otherwise
b. If between two successive calls to Object pop_back() there are no calls
 to void push_back(Object) then the run time of the second call to
 Object pop_back() need only be only O(n).

You must list the additional class members you require and you must implement the two
member functions void push_back(Object obj) and
Object pop_back(). You may use whatever other member functions of either class
you wish to simplify your code. The interfaces to the two classes are given below. You
may not modify the SingleNode class.

template <class Object>
class SingleNode {
 private:
 Object element;
 SingleNode * next_node;

 public:
 SingleNode(const Object & e = Object(), SingleNode * n = 0);
 Object retrieve() const;
 SingleNode *next() const;

 friend class SingleList<Object>;
};

template <class Object>
class SingleList {
 private:
 SingleNode<Object> * head;
 SingleNode<Object> * tail;
 int count;
 // add additional member(s) here ***********************

 public:
 SingleList();
 ~SingleList();

 SingleList(const SingleList &);

 // Accessors

 int size() const;
 bool empty() const;

 Object front() const;
 Object back() const;

 SingleNode<Object> * head() const;
 SingleNode<Object> * tail() const;

 bool member(const Object &) const;

 // Mutators

 void push_front(const Object &);
 void push_back(const Object &);

 Object pop_front();
 Object pop_back(); // * new *

 bool remove(const Object &);
};

ECE 250 Data Structures and Algorithms

 Page 14 of 14

template <class Object>
void push_back(Object obj) {

}

template <class Object>
Object pop_back() {
 if (empty()) {
 throw underflow();
 }

}

