
ECE 250 Data Structures and Algorithms

 Page 1 of 18

University of Waterloo

Department of Electrical and Computer Engineering
ECE 250 Data Structures and Algorithms

Final Examination

2007-04-10

Instructor: Douglas Wilhelm Harder
Time: 2.5 hours
Aides: none
18 pages

Surname

Given name(s)

Student ID Number

Signature

You may only ask one question: “May I go to the washroom?”
If you are unsure of a question, write down your assumptions and continue.
If you have insufficient space to answer a question, use the back of the previous page.
The examination is out of 144 marks. It will be marked out of 134.

ECE 250 Data Structures and Algorithms

 Page 2 of 18

A. Algorithm Analsyis

A.1 [3] Describe, in terms of limits, what it means for:

 a. f(n) = o(g(n))
 b. f(n) = Θ(g(n))
 c. f(n) = Ω (g(n))

A.2 [2] Using limits, find the asymptotic relationship between ln(n) and each of ln(n2)
and ln2(n). Use the correct Landau symbol to show the relationship.

A.3 [5] Determine the run times of the following loops where bool f(int n)
randomly returns true or false and runs in O(n) time. Use the most appropriate Landau
symbol in each case.

a.
for (int i = 0; i < n; ++i) {
 for (int j = i; j < n; ++j) {
 ++sum;
 }
}

b.
for (int i = 0; i < n; ++i) {
 if (f(1)) {
 for (int j = i; j < n; ++j) {
 ++sum;
 }
 }
}

ECE 250 Data Structures and Algorithms

 Page 3 of 18

c.
for (int i = 0; i < n; ++i) {
 for (int j = i; j < n; ++j) {
 if (f(1)) {
 ++sum;
 }
 }
}

d.
for (int i = 1; i < n; i *= 2) {
 ++sum;
}

A.4 [3] Suppose a teaching assistant has the choice of sorting a list of marked quizzes by
last name, recording the marks, and then returning the examinations, or by simply going
through the examinations in the order they were picked up, recording the marks, and then
returning them. Assume that there are approximately n = 100 examinations and that
students are approximately evenly distributed with respect to their last names across the
m = 26 letters A through Z. Discuss the effort required in both cases.

ECE 250 Data Structures and Algorithms

 Page 4 of 18

B. Lists, Stacks, Queues, Deques

B.1 [4] Suppose we have a singly- linked list which has only a single member variable, a
list_head pointer. What are the best possible run times of the following member
functions (the behaviour of which is similar to that described in Project 1):

Member Functions Run Time

void push_front(const Object &);

void push_back(const Object &);

Object front() const;

Object back() const;

Object pop_front();

Object pop_back();

bool empty() const;

int size() const;

B.2 [7] For this question, assume the given change was made to the data structure
described in Question B.1 and indicate which functions could be written to run in O(1)
time instead of O(n) time. Just give the function name, e.g., empty.

a. Assume we add the member variable int count. Which member functions can now
be written to run in O(1) time?

b. Assume we add the member variable SingleNode<Object> * list_tail.
Which member functions can now be written to run in O(1) time?

c. Suppose we change the singly- linked list to a doubly- linked list, that is, each node has
both a previous and next pointer. Which member functions can now be written to run in
O(1) time?

d. Suppose that in addition to changing the singly- linked list to a doubly- linked list, we
also add the member variable DoubleNode<Object> * list_tail. Which
member functions can now be written to run in O(1) time?

ECE 250 Data Structures and Algorithms

 Page 5 of 18

B.3 [6] Suppose we have a singly- linked list as described below which is storing integers
but we would like to add the additional member function bool is_sorted()
const which returns true if the elements in the list are sorted and false otherwise.
It is easy to implement this new function so that it runs in O(n) time (n being the number
of elements in the linked list) however, you can implement this function so that all
member functions in this class runs in O(1) time? You will have to modify the other
mutators.

class SingleNode {
 private:
 int element;
 SingleNode * next_node;
 public:
 SingleNode(int e, SingleNode * n):element(e), next_node(n) {}
 int retrieve() const { return element; }
 SingleNode * next() const { return next_node; }
 friend class SingleList;
};
class SingleList {
 private:
 SingleNode * list head;
 SingleNode * list_tail;
 // insert other member variables here

 public:
 bool empty() const; // do not implement
 bool is_sorted() const;
 int front() const; // do not implement
 int back() const; // do not implement

 void push_front();
 void push_back();
};
void SingleList::push_front(int n) {

}
void SingleList::push_back(int n) {

}
bool SingleList::is_sorted() {

}

ECE 250 Data Structures and Algorithms

 Page 6 of 18

C. Trees

C.1 [3] The following is a memory map of a binary search tree. The first row are the
addresses, the second row are the contents of those addresses. Assume that each pointer
and each value occupies one address. The member variable root which points to a
binary-search-tree node is stored at address 08.

Each binary-search-tree node occupies three contiguous spaces, the first being the value,
the second being the address of the left sub-node, and the third being the address of the
right sub-node. Address 00 is used to represent empty sub-trees.

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
 21 00 00 33 0A 15 04 25 01 18 47 00

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
00 42 00 0E 27 00 1D 29 00 00

a. Draw a graphic representation of the tree.

b. Insert the node 30 and assume that the new operator was allocated the memory
addresses 12, 13, and 14. Update the above memory map to insert this new node.

C.2 [4] List the elements of the tree

in the order in which they are visited for a:

a. breadth-first traversal:

b. pre-order depth-first traversal

ECE 250 Data Structures and Algorithms

 Page 7 of 18

C.3 [6] Implement the member function double_rotate_to_left which performs
a double rotation on the given node to the left, as demonstrated in Figure C.3. The
member function would be called on the node which is not balanced. You are not
required to use the parameter to make this question work. You may implement helper
functions on the back of the previous page.

Figure C.3. The required double rotation.

template <typename T>
void AVLNode<T>::double_rotate_to_left(AVLNode<T>::to_this * & ptr) {

}

ECE 250 Data Structures and Algorithms

 Page 8 of 18

C.4 [6] For each of the given AVL trees, perform the given operation and perform
whatever rotations are necessary to rebalance the tree. If no rotations are necessary, you
can simply draw in or delete the appropriate node. If you are removing a full node, make
the appropriate selection to the right sub-tree.

a. Insert 17.

b. Insert 3.

c. Remove 45.

d. Insert 47.

e. Remove 12.

ECE 250 Data Structures and Algorithms

 Page 9 of 18

C.5 [7] For each of the given B-trees, perform the given operation and perform whatever
changes are necessary maintain the B-tree structure. You may not use redistribution.
You only need redraw those blocks which change.

a. Insert 11.

b. Insert 68.

c. Remove 61.

d. Remove 13.

C.6 [2] Correct the following statement: “If a block on the hard drive can hold a
maximum of M next pointers, all internal blocks in a B-tree must point to at least M/2
nodes.”

ECE 250 Data Structures and Algorithms

 Page 10 of 18

D. Hash Tables

D.1 [2] In the worst case, what is the minimum number of elements which can be stored
in a hash table using open addressing for the following three techniques of probing
(assume the size of the hash table is M).

Probing Technique Worst Case

Linear Probing

Quadratic Probing

Double-hashing

D.2 [3] Insert the following seven elements (in the given order) into a hash table of size 7
which uses quadratic probing. Use the least-significant digit to represent the initial bin.
Stop after the first exception is thrown as a result of an invalid operation.

 22 66 72 44 86 33 90

0

1

2

3

4

5

6

D.3 [2] We had two options for double hashing:

 a. The hash table is of size M = 2m and the skip size must be odd, or
 b. The hash table is of size p where p is prime and the skip size is in 2, ..., p – 1.

Explain two benefits of using the first model. These benefits may relate to any of the
operations which we may wish to perform on a hash table.

D.4 [3] What does the following algorithm do? The operator sizeof returns the
number of bytes occupied by the variable n.

int a = 0;
int b = 1;

for (int i = 0; i < 8*sizeof(n); ++i) {
 if (n | b) {
 ++a;
 }

 b <<= 1;
}

ECE 250 Data Structures and Algorithms

 Page 11 of 18

E. Heaps

E.1 [6] Using the implementation of a min-heap as discussed in class, insert the following
numbers (in the order given) into an initially empty min-heap.

6 4 2 5 3 1

Indicate the final state of the min heap in the following array:

0 1 2 3 4 5 6

E.2 [6] In class, we saw a min-heap with two sub trees. A d-min-heap is a min-heap
where each node has d sub trees, each of which is also a d-min-heap. In this case, it is
easier to start at the array entry 0 and let the children of i be di + 1, di + 2, ..., di + d.
Unfortunately, the code below to dequeue the minimum element has some bugs. Correct
the code.

class DHeap {
 private:
 int * array;
 int count;
 int d;

 public:
 void dequeue_min(int);
 // ...
};

void DHeap::dequeue_min(int n) {
 int value = array[0];

 int i = 0;

 while (i < count) {
 int min = array[i + 1];
 int posn = 1;

 for (int j = 2; j <= d; ++j) {
 if (array[i + j] < min) {
 max = array[i + j];
 posn = j;
 }
 }

 if (array[count - 1] < min) {
 array[i] = array[count – 1];
 return value;
 } else {
 array[i] = array[i + j];
 i = i + j;
 }
 }

 return value;
}

ECE 250 Data Structures and Algorithms

 Page 12 of 18

F. Sorting

F.1 [3] Perform one iteration (one pass through the array) of bubble sort on the following
unsorted array. Write your answer in the next row.

7 5 3 8 2 9 10 1 6 4

F.2 [4] Convert the unsorted array into a max-heap using the heapify algorithm shown in
class.

7 5 3 8 2 9 10 1 6 4

F.3 [3] Perform one iteration of quick sort (after the values are appropriately moved but
before quick sort is recursively called on both halves). Use integer division to find the
mid point. The first row represents the array entries. Write your answer in the next row.

0 1 2 3 4 5 6 7 8 9 10 11
43 21 93 87 23 57 19 35 77 54 96 12

F.4 [4] Apply radix sort to the following 3-bit binary numbers:

010 110 111 001 011 101 100 110

Place the intermediate lists (after dequeuing) into the following three tables. The last
(sorted) list is given.

001 010 011 100 101 110 110 111

ECE 250 Data Structures and Algorithms

 Page 13 of 18

G. Graphs

G.1 [4] Perform a topological sort on the following graph with the following condition:
if there is more than one eligible node which could appear next in the topological sort,
choose that one which has the smallest value.

Figure G.1 A directed acyclic graph.

G.2 [6] The following is an implementation of Prim’s algorithm, as done in Project 5.
Indicate what must be modified to implement Dijkstra’s algorithm to find the minimum
distance between two vertices v and w. You should assume that the arguments do not
require error checking and that a minimum path exists.

double WeightedUndirectedGraph::minimum_spanning_tree(int v) const {
 double value = 0.0;

 double * table = new double[array_size];
 bool * visited = new bool[array_size];

 for (int i = 0; i < array_size; ++i) {
 table[i] = INF;
 visited[i] = false;
 }

 table[v] = 0.0;

 while (true) {
 bool found = false;
 double max = INF;
 int posn;

 for (int i = 0; i < array_size; ++i) {
 if (!visited[i] && table[i] < max) {
 posn = i;
 max = table[i];
 found = true;
 }
 }

 if (!found) {
 delete [] table;
 delete [] visited;

 return value;
 }

 visited[posn] = true;
 value += max;

 for (int i = 0; i < array_size; ++i) {
 if (!visited[i] && adjacent(i, posn) < table[i]) {
 table[i] = adjacent(i, posn);
 }
 }
 }
}

ECE 250 Data Structures and Algorithms

 Page 14 of 18

G.3 [6] Use Dijkstra’s algorithm to find the length of the minimum path from vertex A to
vertex K. You must use a separate graph for each visited node in the graph. Indicate the
order in which you are using the graphs (1, 2, 3, ...) and cross out any unused graphs.
You do not have to record the pointers. Use the check box to indicate which vertices
have been visited.

ECE 250 Data Structures and Algorithms

 Page 15 of 18

 H. Algorithms

H.1 [4] Suppose a number of projects are being proposed for the next cycle of a product
release. There are n projects, where each is associated with a projected revenue and an
expected completion time. Justify heuristically why using a greedy algorithm using the
highest cost density (expected revenue over completion time) is better than using a
greedy algorithm which uses the highest expected revenue.

H.2 [4] For a divide-and-conquer algorithm which has a runtime T(n) = aT(n/b) + O(nk)
for n > 1, assume that n = bm and that a < bk. Show how we can simplify

to see that T(n) = O(nk).

H.3 [3] Implement a version of factorial which stores the values of n! when n < 100, thus,
the second time the function is called with a particular argument, the run time is O(1).
Use the given array.

int array[100];
array[0] = 1;
for (int i = 1; i < 100; ++i) {
 array[i] = 0;
}

int factorial(int n) {

}

H.4 [3] Describe the ideal shape of a skip list with 15 entries.

() ∑
=









=

m k
m

a
b

an
0

T
l

l

ECE 250 Data Structures and Algorithms

 Page 16 of 18

I. Sparse Matrices

I.1 [4] Show how you would store the following matrix using the Harwell-Boeing sparce
matrix format by filling in the appropriate tables below.

Member Variable 1 2 3 4 5 6 7 8

double_*_value;

int * row;

Member Variable 1 2 3 4 5 6 7

int_*_column;

I.2 [4] Suppose that you are writing a function to return the (i, j)th entry of a matrix
stored in the Harwell-Boeing format. Assume the matrix is n × n and that the N entries
are evenly distributed among the rows and columns. Describe (using pseudo-code) how
you could implement the access function so that it runs in O(ln(N/n)) time.

























−
−

−

003000
010000
600000
050012
000400
001003

ECE 250 Data Structures and Algorithms

 Page 17 of 18

J. Unix

J.1 [5] Assume that your home directory contains the four files Tester.h
TestTester.h TestDriver.cpp t01.in and that you have just logged in.
Create a directory called project, copy the files into that directory, change to that
directory, edit a new file Test.h using whichever Unix editor you prefer, compile the
appropriate tester file (assume it compiled), and then run the resulting executable by
redirecting the contents of the t01.in file. Finally, exit the system.

{eceunix:1}

{eceunix:2}

{eceunix:3}

{eceunix:4}

{eceunix:5}

{eceunix:6}

{eceunix:7}

ECE 250 Data Structures and Algorithms

 Page 18 of 18

K. Self Study

K.1 [5] Describe, in your own words, either splay trees or disjoint sets. You should
describe the purpose, appropriate implementations, and properties. Provide references.

