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A. Algorithm Analsyis 
 
A.1 [3] Describe, in terms of limits, what it means for: 
 
 a.  f(n) = o(g(n)) 
 b.  f(n) = Θ(g(n)) 
 c.  f(n) = Ω (g(n)) 
 
 
 
 
 
 
 
 
 
A.2 [2] Using limits, find the asymptotic relationship between ln(n) and each of ln(n2) 
and ln2(n).  Use the correct Landau symbol to show the relationship. 
 
 
 
 
 
 
 
 
 
 
 
 
 
A.3 [5] Determine the run times of the following loops where bool f(int n) 
randomly returns true or false and runs in O(n) time.  Use the most appropriate Landau 
symbol in each case. 
 
a. 
for ( int i = 0; i < n; ++i ) { 
 for ( int j = i; j < n; ++j ) { 
     ++sum; 
 } 
} 
 
 
 
 
 
 
b. 
for ( int i = 0; i < n; ++i ) { 
    if ( f(1) ) { 
        for ( int j = i; j < n; ++j ) { 
        ++sum; 
        } 
    } 
} 
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c. 
for ( int i = 0; i < n; ++i ) { 
    for ( int j = i; j < n; ++j ) { 
        if ( f(1) ) { 
        ++sum; 
        } 
    } 
} 
 
 
 
 
 
 
d. 
for ( int i = 1; i < n; i *= 2 ) { 
    ++sum; 
} 
 
 
 
 
 
 
 
 
A.4 [3] Suppose a teaching assistant has the choice of sorting a list of marked quizzes by 
last name, recording the marks, and then returning the examinations, or by simply going 
through the examinations in the order they were picked up, recording the marks, and then 
returning them.  Assume that there are approximately n = 100 examinations and that 
students are approximately evenly distributed with respect to their last names across the 
m = 26 letters A through Z.  Discuss the effort required in both cases. 
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B. Lists, Stacks, Queues, Deques 
 
B.1 [4] Suppose we have a singly- linked list which has only a single member variable, a 
list_head pointer.  What are the best possible run times of the following member 
functions (the behaviour of which is similar to that described in Project 1): 
 
Member Functions Run Time 

void push_front( const Object & );  
 

void push_back( const Object & );  
 

Object front() const;  
 

Object back() const;  
 

Object pop_front();  
 

Object pop_back();  
 

bool empty() const;  
 

int size() const;  
 

 
B.2 [7] For this question, assume the given change was made to the data structure 
described in Question B.1 and indicate which functions could be written to run in O(1) 
time instead of O(n) time.  Just give the function name, e.g., empty. 
 
a. Assume we add the member variable int count.  Which member functions can now 
be written to run in O(1) time? 
 
 
 
 
b. Assume we add the member variable SingleNode<Object> * list_tail.  
Which member functions can now be written to run in O(1) time? 
 
 
 
 
c. Suppose we change the singly- linked list to a doubly- linked list, that is, each node has 
both a previous and next pointer.  Which member functions can now be written to run in 
O(1) time? 
 
 
 
 
d. Suppose that in addition to changing the singly- linked list to a doubly- linked list, we 
also add the member variable DoubleNode<Object> * list_tail.  Which 
member functions can now be written to run in O(1) time? 
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B.3 [6] Suppose we have a singly- linked list as described below which is storing integers 
but we would like to add the additional member function bool is_sorted() 
const which returns true if the elements in the list are sorted and false otherwise.  
It is easy to implement this new function so that it runs in O(n) time (n being the number 
of elements in the linked list) however, you can implement this function so that all 
member functions in this class runs in O(1) time?  You will have to modify the other 
mutators. 
 
class SingleNode { 
    private: 
        int element; 
        SingleNode * next_node; 
    public: 
        SingleNode( int e, SingleNode * n ):element(e), next_node(n) {} 
        int retrieve() const { return element; } 
        SingleNode * next() const { return next_node; } 
        friend class SingleList; 
}; 
class SingleList { 
    private: 
        SingleNode * list head; 
        SingleNode * list_tail; 
        // insert other member variables here 
 
 
 
    public: 
        bool empty() const;  // do not implement 
        bool is_sorted() const; 
        int front() const;   // do not implement 
        int back() const;    // do not implement 
 
        void push_front(); 
        void push_back(); 
}; 
void SingleList::push_front( int n ) { 
 
 
 
 
 
 
 
 
 
 
} 
void SingleList::push_back( int n ) { 
 
 
 
 
 
 
 
 
 
 
} 
bool SingleList::is_sorted() { 
 
 
 
 
 
 
 
 
 
}
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C. Trees 
 
C.1 [3] The following is a memory map of a binary search tree.  The first row are the 
addresses, the second row are the contents of those addresses.  Assume that each pointer 
and each value occupies one address.  The member variable root which points to a 
binary-search-tree node is stored at address 08. 
 
Each binary-search-tree node occupies three contiguous spaces, the first being the value, 
the second being the address of the left sub-node, and the third being the address of the 
right sub-node.  Address 00 is used to represent empty sub-trees. 
 
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 
 21 00 00 33 0A 15  04  25 01 18  47 00 

 
10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F 
00     42 00 0E 27 00 1D   29 00 00 
 
a. Draw a graphic representation of the tree. 
 
 
 
 
 
 
 
 
b. Insert the node 30 and assume that the new operator was allocated the memory 
addresses 12, 13, and 14.  Update the above memory map to insert this new node. 
 
 
 
 
 
  
 
C.2 [4] List the elements of the tree 

 
in the order in which they are visited for a: 
 
a. breadth-first traversal: 
 
 
 
 
b. pre-order depth-first traversal 
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C.3 [6] Implement the member function double_rotate_to_left which performs 
a double rotation on the given node to the left, as demonstrated in Figure C.3.  The 
member function would be called on the node which is not balanced.  You are not 
required to use the parameter to make this question work.  You may implement helper 
functions on the back of the previous page. 
 

 
Figure C.3.  The required double rotation. 

 
template <typename T> 
void AVLNode<T>::double_rotate_to_left( AVLNode<T>::to_this * & ptr ) { 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 
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C.4 [6] For each of the given AVL trees, perform the given operation and perform 
whatever rotations are necessary to rebalance the tree.  If no rotations are necessary, you 
can simply draw in or delete the appropriate node.  If you are removing a full node, make 
the appropriate selection to the right sub-tree. 
 
a. Insert 17. 

 
 
 
 
b. Insert 3. 

 
 
 
 
c. Remove  45. 

 
 
 
 
d. Insert 47. 

 
 
 
 
e. Remove 12. 
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C.5 [7] For each of the given B-trees, perform the given operation and perform whatever 
changes are necessary maintain the B-tree structure.  You may not use redistribution.  
You only need redraw those blocks which change. 
 
a. Insert 11. 

 
 
 
b. Insert 68. 

 
 
c. Remove 61. 

 
 
 
d. Remove 13. 

 
 
C.6 [2] Correct the following statement:  “If a block on the hard drive can hold a 
maximum of M next pointers, all internal blocks in a B-tree must point to at least M/2 
nodes.” 
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D. Hash Tables 
 
D.1 [2]  In the worst case, what is the minimum number of elements which can be stored 
in a hash table using open addressing for the following three techniques of probing 
(assume the size of the hash table is M). 
 

Probing Technique Worst Case 

Linear Probing  
 

Quadratic Probing  
 

Double-hashing  
 

 
D.2 [3] Insert the following seven elements (in the given order) into a hash table of size 7 
which uses quadratic probing.  Use the least-significant digit to represent the initial bin.  
Stop after the first exception is thrown as a result of an invalid operation. 
 
   22   66   72   44   86   33   90 
 
0 
 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

 
  
D.3 [2] We had two options for double hashing: 
 
 a.  The hash table is of size M = 2m and the skip size must be odd, or 
 b.  The hash table is of size p where p is prime and the skip size is in 2, ..., p – 1. 
 
Explain two benefits of using the first model.  These benefits may relate to any of the 
operations which we may wish to perform on a hash table. 
 
 
 
 
 
 
 
 
D.4 [3] What does the following algorithm do?  The operator sizeof returns the 
number of bytes occupied by the variable n. 
 
int a = 0; 
int b = 1; 
 
for ( int i = 0; i < 8*sizeof( n ); ++i ) { 
    if ( n | b ) { 
        ++a; 
    } 
 
    b <<= 1; 
} 
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E. Heaps  
 
E.1 [6] Using the implementation of a min-heap as discussed in class, insert the following 
numbers (in the order given) into an initially empty min-heap. 
 

6   4   2   5   3   1 
 
Indicate the final state of the min heap in the following array: 
  

0 1 2 3 4 5 6 
 
 

      

 
E.2 [6] In class, we saw a min-heap with two sub trees.  A d-min-heap is a min-heap 
where each node has d sub trees, each of which is also a d-min-heap.  In this case, it is 
easier to start at the array entry 0 and let the children of i be di + 1, di + 2, ..., di + d.  
Unfortunately, the code below to dequeue the minimum element has some bugs.  Correct 
the code. 
 
class DHeap { 
    private: 
        int * array; 
        int count; 
        int d; 
 
    public: 
        void dequeue_min( int ); 
        // ... 
}; 
 
void DHeap::dequeue_min( int n ) { 
    int value = array[0]; 
 
    int i = 0; 
 
    while ( i < count ) { 
        int min = array[i + 1]; 
        int posn = 1; 
 
        for ( int j = 2; j <= d; ++j ) { 
            if ( array[i + j] < min ) { 
                max = array[i + j]; 
                posn = j; 
            } 
        }    
 
        if ( array[count - 1] < min ) { 
            array[i] = array[count – 1]; 
            return value; 
        } else { 
            array[i] = array[i + j]; 
            i = i + j; 
        } 
    } 
 
    return value; 
}
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F. Sorting 
 
F.1 [3] Perform one iteration (one pass through the array) of bubble sort on the following 
unsorted array.  Write your answer in the next row. 
 

7 5 3 8 2 9 10 1 6 4 
 
 

         

 
F.2 [4] Convert the unsorted array into a max-heap using the heapify algorithm shown in 
class. 
 

7 5 3 8 2 9 10 1 6 4 
 
 

         

 
 
 
 
F.3 [3] Perform one iteration of quick sort (after the values are appropriately moved but 
before quick sort is recursively called on both halves).  Use integer division to find the 
mid point.  The first row represents the array entries.  Write your answer in the next row. 
 

0 1 2 3 4 5 6 7 8 9 10 11 
43 21 93 87 23 57 19 35 77 54 96 12 

 
 
 

           

 
 
 
 
 
 
 
F.4 [4] Apply radix sort to the following 3-bit binary numbers: 
 

010   110   111   001   011   101   100   110 
 
Place the intermediate lists (after dequeuing) into the following three tables.  The last 
(sorted) list  is given. 
 
 
 

       

 
 

       

001 010 011 100 101 110 110 111 
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G. Graphs  
 
G.1 [4] Perform a topological sort on the following graph with the following condition:  
if there is more than one eligible node which could appear next in the topological sort, 
choose that one which has the smallest value.  
 

 
Figure G.1  A directed acyclic graph. 

 
 
 
 
 
G.2 [6] The following is an implementation of Prim’s algorithm, as done in Project 5.  
Indicate what must be modified to implement Dijkstra’s algorithm to find the minimum 
distance between two vertices v and w.  You should assume that the arguments do not 
require error checking and that a minimum path exists. 
 
double WeightedUndirectedGraph::minimum_spanning_tree( int v ) const { 
    double value = 0.0; 
 
    double * table = new double[array_size]; 
    bool * visited = new bool[array_size]; 
 
    for ( int i = 0; i < array_size; ++i ) { 
        table[i] = INF; 
        visited[i] = false; 
    } 
 
    table[v] = 0.0; 
 
    while ( true ) { 
        bool found = false; 
        double max = INF; 
        int posn; 
 
        for ( int i = 0; i < array_size; ++i ) { 
            if ( !visited[i] && table[i] < max ) { 
                posn = i; 
                max = table[i]; 
                found = true; 
            } 
        } 
 
        if ( !found ) { 
            delete [] table; 
            delete [] visited; 
 
            return value; 
        } 
 
        visited[posn] = true; 
        value += max; 
 
        for ( int i = 0; i < array_size; ++i ) { 
            if ( !visited[i] && adjacent( i, posn ) < table[i] ) { 
                table[i] = adjacent( i, posn ); 
            } 
        } 
    } 
}
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G.3 [6] Use Dijkstra’s algorithm to find the length of the minimum path from vertex A to 
vertex K.  You must use a separate graph for each visited node in the graph.  Indicate the 
order in which you are using the graphs (1, 2, 3, ...) and cross out any unused graphs.  
You do not have to record the pointers.  Use the check box to indicate which vertices 
have been visited. 
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 H. Algorithms  
 
H.1 [4] Suppose a number of projects are being proposed for the next cycle of a product 
release.  There are n projects, where each is associated with a projected revenue and an 
expected completion time.  Justify heuristically why using a greedy algorithm using the 
highest cost density (expected revenue over completion time) is better than using a 
greedy algorithm which uses the highest expected revenue. 
 
 
 
 
 
 
 
 
H.2 [4] For a divide-and-conquer algorithm which has a runtime T(n) = aT(n/b) + O(nk) 
for n > 1, assume that n = bm and that a < bk.  Show how we can simplify  
 
 
 
to see that T(n) = O(nk).  
 
 
 
 
 
 
 
 
 
 
 
 
H.3 [3] Implement a version of factorial which stores the values of n! when n < 100, thus, 
the second time the function is called with a particular argument, the run time is O(1).  
Use the given array. 
 
int array[100]; 
array[0] = 1; 
for ( int i = 1; i < 100; ++i ) { 
    array[i] = 0; 
} 
 
int factorial( int n ) { 
 
 
 
 
 
 
 
 
 
} 

 
H.4 [3] Describe the ideal shape of a skip list with 15 entries. 
 

( ) ∑
=
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


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


=
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m
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b
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0

T
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l
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I. Sparse Matrices 
  
I.1 [4] Show how you would store the following matrix using the Harwell-Boeing sparce 
matrix format by filling in the appropriate tables below.   
   
 
 
 
 
 
 
 
 
 

Member Variable 1 2 3 4 5 6 7 8 

double_*_value;  
 

       

int * row;  
 

       

 
Member Variable 1 2 3 4 5 6 7 

int_*_column;   
 

     

 
 
 
 
 
I.2 [4] Suppose that you are writing a function to return the (i, j)th entry of a matrix 
stored in the Harwell-Boeing format.  Assume the matrix is n × n and that the N entries 
are evenly distributed among the rows and columns.  Describe (using pseudo-code) how 
you could implement the access function so that it runs in O(ln(N/n)) time. 

























−
−

−

003000
010000
600000
050012
000400
001003
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J. Unix 
 
J.1 [5] Assume that your home directory contains the four files Tester.h 
TestTester.h TestDriver.cpp t01.in and that you have just logged in.  
Create a directory called project, copy the files into that directory, change to that 
directory, edit a new file Test.h using whichever Unix editor you prefer, compile the 
appropriate tester file (assume it compiled), and then run the resulting executable by 
redirecting the contents of the t01.in file.  Finally, exit the system. 
 
{eceunix:1} 
 
 
{eceunix:2} 
 
 
{eceunix:3} 
 
 
{eceunix:4} 
 
 
{eceunix:5} 
 
 
{eceunix:6} 
 
 
{eceunix:7} 
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K. Self Study 
 
K.1 [5] Describe, in your own words, either splay trees or disjoint sets.  You should 
describe the purpose, appropriate implementations, and properties.  Provide references. 
 


