UNIVERSITY OF WATERLOO
DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING
E& CE 250 -ALGORITHM SAND DATA STRUCTURES

Midterm Examination Instructor: R.E.Seviora 1.5 hrs, Oct 27, 2000
SOLUTIONS (INCOMPLETE, UNCHECKED) | Stdentid
1 2. 3. 4. Total:

Do all problems. The number in brackets denotes the rdative weight of the problem (out of 100). If in-
formation appears to be missing from a problem, make a reasonable assumption, state it and proceed. If
the space to answer a question is not sufficient, use the last (overflow) page.

Closed book. Only numeric display calculators are allowed.

PROBLEM 1[20]

A. Running Time Analysis

Determine the running times predicted by the smplified mode of the computer for the following program
fragment

for (int i=0; i<n; ++i)

for (int j=i; j<n; ++))
++K;
taberment e The muonber of iterations of the inoer loop §s J wlhee

m—1

la 2 I = Zl_rl — i

L F(n+ 1) i=0

lc 4n _ HZ_I o Hil ;

2a 27 s R

2b 3(I +n) _ 2 In=1jin]

2c 47 2

3 AJ _ rifrt + 1

9

TOTAL 1120 + }z—ﬁn + 0

B. Solving Recurrences

Solve the following recurrence:
(o] n=1
T(n)=0 @
al(a)+0(n) n>lLa>=2

Y ou may assume that n is a power of a. Show all your work.
drop the 05 and assione that no=a'™:

TI_F[”'.| — r[TI_r[”"_1|-|-r[”"- 0
-a -
— r[I_r[TI_r[”" '|‘|‘r[m 1|_|_r[||.'
- -3 -
eifer fer T fer"™ :I|—|'r[”" St a™ 1|—|'r[”"

— rL‘I"TI.ri'”_'I'.|‘|'.|'.'rE”'I

e e |+ ™. o — =1
ri+ riJog, T

= Inlog,m mZom

Therdore. Tin| = Onlogn].



Midterm Examination Page 2/7 E& CE 250 F' 00

PROBLEM 2[25]

A. Big Oh Analysis
Do a big Oh analysis of the following algorithm:

01 public class Exanple

02 {
03 public static int geoSeriesSum (int X, int n)
04 {
05 int sum= 0;
06 for (int i =0; i <=n; ++i)
07 {
08 int prod = 1;
09 for (int j =0; j <i; ++))
10 prod *= x;
11 sum += prod;
12 }
13 return sum
14 }
15 }
Stmt Time TOTAL =0(nd
5 o
6a o
6b O(n)
6c O(n)
8 O(n)
9a O(n)
9 o(n’)
9c o(n’)
10 o(n’)
11 O(n)
13 O(n)

B. Miscellanea

(a) The courseintroduced three different types for representation of integers: i nt, I nt eger and I nt .
Summarize briefly the differences between these three types.

int is a Java primtive type; the value of int is stored directly
Integer is the Java wapper for int; it waps int inside an object

Int is an E&CE250 wapper for int; it was introduced because of the need to
view Int as an instance of the type Conparable (defined in E&CE 250)whi ch In-
teger does not subtype

(b) What is the difference between ext ends and i npl ement s in Java?

extend:

- relationship between cl asses;

- a class C which extends superclass S inherits fromC all the fields and
nmet hods visible to it;

- also a relationship between interfaces

- only one class (or interface) can be extended

i npl enent s:

- relationship between a Java class and a Java interface

- aclass inplementing an interface nmust inplenent all the nethods in the in-
terface (unless they are declared abstract in the class)

- a class may i nplenment several interfaces



Midterm Examination Page 3/7 E& CE 250 F' 00

C. Vidtors

Consider a container class whose instances will contain objects of the type FI oat . The value encapsu-
lated in each object can be aobtained using the method f | oat f | oat Val ue() of theclassFl oat .

Implement a sum-of-squares Vi si t or whosevi si t method computes the sum of sgquares of the values
in the objects in the container, i.e.

— 2
s= YV
objects
where Vi is the value encapsulated in the k-th object. The computed value of the above sum should be
accessible through the method f | oat get Sunf Squar es( ) of the Vi si t or . Notethat the Vi sit or ‘s

method i sDone() isinherited from the class Abst r act Vi si t or . It will alwaysreturnf al se, whichis
appropriate for the case considered.

public class SuntX SquaresVisitor extends AbstractVisitor {
//fields

protected float sunSq = 0.0

// et hods

public void visit (bject obj) {
float val = ((Float) obj).floatVal ue();
suntq += val *val ;

}

public float getSumOfSquares () {
return suntq,
}

}

PROBLEM 3[25]

A. Singly-linked List
(a) Thesingly linked list class considered in the lectures had the structure shown below. Fill in the dotted
(.. .) entries.
public class LinkedList {
protected El enent head,
protected Elenent tail;
public final class El ement {
Qvj ect datum
El enent next;
El ement (bject datum El enent next) ({
this. datum = datum
this. next = next;

}
//etc

}
}

(b) A more uniform implementation of a singly liked list could have just asingle El enent , called the
header node, plus other nodes if thelist is nonempty. A diagram showing an empty list and a list with two
I nt eger objectsis below. The header node is shown in gray.



Midterm Examination Page 4/7 E& CE 250 F' 00

3
4 5

(i) Show thefidlds of theclass Li nkedLi st HN (linked list based on header node).

protected El enent header Node;

(if) Show the no-arg (i.e. no parameters) constructor for Li nkedLi st HN.
public LinkedListHN () {
header Node = new El enent () ;
header Node. next = header Node;

}
(iii) Show the algorithm for the method voi d pr epend ( Obj ect obj ) of Li nkedLi st HN.

voi d prepend (Object obj) {
El ement tnp = new El enent (obj, header Node. next);
header Node. next = tnp;

}

B. Project 2
The objective of Project 2 was to represent a polynomial in x
anx" +a,_ X"+ +ax+ag

wheren> 0isthe degree of the polynomial, using an array. The implementation was required to be rea-
sonably lean in terms of computing time, and minimal: the array length at all times wasto be n+1.

The Polynomial AsArray class declaration looked as follows:

cl ass Pol ynom al AsArray {

doubl e[] a; /larray of coefficients

Pol ynom al AsArray () { //constructs the pol ynomial 0x°
.

/letc

}

(a) Draw a diagram that shows the objects stored in the memory of the computer after each of the follow-
ing statements. |dentify the objects that are the same (in the = = sense).

Pol ynom al AsArray p, q;

p = new Pol ynom al AsArray();

p. set Coefficient(3,13.0);

p. set Coefficient(0, 10.0);
p. set Coefficient(2, 12.0);



Midterm Examination Page 5/7 E& CE 250 F' 00

p. set Coefficient (3, 0.0);

g = p.plus(p);

(b) Derive an expression for the amount of memory required to represent a polynomial with degree m.
Write your expression in terms of the following parameters: si zeof (doubl e), si zeof (i nt),

PROBLEM 4[30]

A. Enumeration

In the lectures, we showed the get Enuner at i on() method for St ackAsAr r ay. Show an implementa-
tion of get Enurer ati on() for QueueAsArr ay.

public class QueueAsArray extends Abstract Container inplenents Queue {
protected Object[] array;
protected int head;
protected int tail;
1.,
// Enuner ati on met hods: next El ement () and hasMr eEl enent s()
public Enuneration getEnunmeration () {
{
return new Enuneration () {
protected int position = -1, enunCount = O;

public bject nextEl enment () {
i f (enumCount ++ >= get Count ()) throw new NoSuchEl ement Exception ();
while (array[++position]==null) {};
return array[position];

}

publ i c bool ean hashbreEl enents() {
return (enunCount < getCount ());

}



Midterm Examination Page 6/7 E& CE 250 F' 00

B. Stacks

An application you are designing will use the abstract data type St ack (with operations push, pop,
get Top). Furthermore, the application will need to frequently find the largest item on the stack. You are
to develop a new class St ackMax, with an additional method f i ndMax () which returns a reference to
the largest d ement on the stack.

In view of the anticipated frequency of invocations of this method, it is required that f i ndvax() hasthe
worst case running time of O(1). Notethat push, pop and get Top should remain O(1).

Show the fields and the algorithms for push, pop and f i ndMax for St ackMax. You are not required to
show the implementation for remaining methods. It is suggested that you base your implementation on
one of the stack class implementations discussed in the course, specifically St ackAsLi nkedLi st , as
opposed to implementing all methods from scratch.

If you are unable to devise an O(1) solution for f i ndMax( ) , show a slower algorithm for part mark.

public class StackMax extends Abstract Container inplenments Stack {

//fields
protected Stack s1 = new StackAsLi nkedList ();
protected Stack s2 = new StackAsLi nkedList ();
/I met hods

public Cbject getTop ()
{ return sl.getTop (); }

public Cbject findMax ()
{ return s2.getTop (); }

public void push (Object arg)

Conpar abl e obj ect = (Conparable) arg;

sl1. push (object);

if (object.isLT ((Conparable) s2.getTop ()))
s2. push (object);

el se
s2. push (s2.getTop ());

public Object pop ()
{

s2.pop ();
return sl1.pop ();

}
C. Queues- Running Times
TheQueueAsLi nkedLi st class presented in the lectures was implemented using the Li nkedLi st class

of Chapter 4 of thetext. The latter had both the head and the tail pointer in its implementation.

(@) In thetable below, show the big Oh bounds for the running time for the methods given.
(b) Consider the case when the underlying Li nkedLi st class was replaced by another implementation in
whichthet ai | field was dropped. In the table below, show the big Oh bounds for this case.

Base: LinkedList with head,tail fields | Base: LinkedList with head field only

constructor 0o(1) o
purge 0o(1) o
enqueue o) O(n)
dequeue o o

getHead o o




Midterm Examination Page 7/7 E& CE 250 F' 00

OVERFLOW SHEET [Please identify the question(s) being answered.]



