
Midterm Examination Instructor: R.E.Seviora 1.5 hrs, Oct 27, 2000

SOLUTIONS (INCOMPLETE, UNCHECKED) Student id:

1. 2. 3. 4. Total:

Do all problems. The number in brackets denotes the relative weight of the problem (out of 100). If in-
formation appears to be missing from a problem, make a reasonable assumption, state it and proceed. If
the space to answer a question is not sufficient, use the last (overflow) page.
Closed book. Only numeric display calculators are allowed.

PROBLEM 1 [20]

A. Running Time Analysis

Determine the running times predicted by the simplified model of the computer for the following program
fragment

for (int i=0; i<n; ++i)
 for (int j=i; j<n; ++j)
 ++k;

B. Solving Recurrences

Solve the following recurrence:

 2,1

1

)()n/aaT(

)1(
)(

>=>
=

+
〈=

an

n

nO

O
nT

You may assume that n is a power of a. Show all your work.

UNIVERSITY OF WATERLOO

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

E&CE 250 – ALGORITHMS AND DATA STRUCTURES

11/2n2

Midterm Examination Page 2/7 E&CE 250 F’00

PROBLEM 2 [25]

A. Big Oh Analysis

Do a big Oh analysis of the following algorithm:

01 public class Example
02 {
03 public static int geoSeriesSum (int x, int n)
04 {
05 int sum = 0;
06 for (int i = 0; i <= n; ++i)
07 {
08 int prod = 1;
09 for (int j = 0; j < i; ++j)
10 prod *= x;
11 sum += prod;
12 }
13 return sum;
14 }
15 }

Stmt Time TOTAL = O(n2)

5 O(1)

6a O(1)

6b O(n)

6c O(n)

8 O(n)

9a O(n)

9b O(n2)

9c O(n2)

10 O(n2)

11 O(n)

13 O(n)

B. Miscellanea

(a) The course introduced three different types for representation of integers: int, Integer and Int.
Summarize briefly the differences between these three types.

int is a Java primitive type; the value of int is stored directly

Integer is the Java wrapper for int; it wraps int inside an object

Int is an E&CE250 wrapper for int; it was introduced because of the need to
view Int as an instance of the type Comparable (defined in E&CE 250)which In-
teger does not subtype

 (b) What is the difference between extends and implements in Java?

extend:
- relationship between classes;
- a class C which extends superclass S inherits from C all the fields and
methods visible to it;
- also a relationship between interfaces
- only one class (or interface) can be extended

implements:
- relationship between a Java class and a Java interface
- a class implementing an interface must implement all the methods in the in-
terface (unless they are declared abstract in the class)
- a class may implement several interfaces

Midterm Examination Page 3/7 E&CE 250 F’00

C. Visitors

Consider a container class whose instances will contain objects of the type Float. The value encapsu-
lated in each object can be obtained using the method float floatValue() of the class Float.

Implement a sum-of-squares Visitor whose visit method computes the sum of squares of the values
in the objects in the container, i.e.

∑=
objects

kVS 2

where Vk is the value encapsulated in the k-th object. The computed value of the above sum should be
accessible through the method float getSumOfSquares()of the Visitor. Note that the Visitor ‘s
method isDone() is inherited from the class AbstractVisitor. It will always return false, which is
appropriate for the case considered.

public class SumOfSquaresVisitor extends AbstractVisitor {
 //fields

 protected float sumSq = 0.0

 //methods
 public void visit (Object obj) {
 float val = ((Float) obj).floatValue();
 sumSq += val*val;
 }

 public float getSumOfSquares () {
 return sumSq;
 }
}

PROBLEM 3 [25]

A. Singly-linked List

(a) The singly linked list class considered in the lectures had the structure shown below. Fill in the dotted
(. . .) entries.

public class LinkedList {

 protected Element head;

 protected Element tail;

 public final class Element {

 Object datum;

 Element next;

 Element (Object datum, Element next) {

 this.datum = datum;

 this.next = next;

 }

 //etc

 }
}

(b) A more uniform implementation of a singly liked list could have just a single Element, called the
header node, plus other nodes if the list is nonempty. A diagram showing an empty list and a list with two
Integer objects is below. The header node is shown in gray.

Midterm Examination Page 4/7 E&CE 250 F’00

4 5

(i) Show the fields of the class LinkedListHN (linked list based on header node).

 protected Element headerNode;

(ii) Show the no-arg (i.e. no parameters) constructor for LinkedListHN.
 public LinkedListHN () {
 headerNode = new Element();
 headerNode.next = headerNode;
 }

 (iii) Show the algorithm for the method void prepend (Object obj) of LinkedListHN.

 void prepend (Object obj) {
 Element tmp = new Element (obj, headerNode.next);
 headerNode.next = tmp;
 }

B. Project 2

The objective of Project 2 was to represent a polynomial in x

01
1

1 .. axaxaxa n
n

n
n ++++ −

−

where n ≥ 0 is the degree of the polynomial, using an array. The implementation was required to be rea-
sonably lean in terms of computing time, and minimal: the array length at all times was to be n+1.

The PolynomialAsArray class declaration looked as follows:

class PolynomialAsArray {
 double[] a; //array of coefficients
 PolynomialAsArray () { //constructs the polynomial 0x0

 ...}
 //etc
}

(a) Draw a diagram that shows the objects stored in the memory of the computer after each of the follow-
ing statements. Identify the objects that are the same (in the = = sense).

PolynomialAsArray p, q;

p = new PolynomialAsArray();

p.setCoefficient(3,13.0);

p.setCoefficient(0, 10.0);
p.setCoefficient(2, 12.0);

Midterm Examination Page 5/7 E&CE 250 F’00

p.setCoefficient(3, 0.0);

q = p.plus(p);

(b) Derive an expression for the amount of memory required to represent a polynomial with degree m.
Write your expression in terms of the following parameters: sizeof(double), sizeof(int), ...

PROBLEM 4 [30]

A. Enumeration

In the lectures, we showed the getEnumeration() method for StackAsArray. Show an implementa-
tion of getEnumeration() for QueueAsArray.

public class QueueAsArray extends AbstractContainer implements Queue {
 protected Object[] array;
 protected int head;
 protected int tail;
 // ...
 //Enumeration methods: nextElement() and hasMoreElements()
 public Enumeration getEnumeration () {
 {
 return new Enumeration () {
 protected int position = -1, enumCount = 0;

 public Object nextElement () {
 if (enumCount++ >= getCount()) throw new NoSuchElementException ();
 while (array[++position]==null) {};
 return array[position];
 }

 public boolean hasMoreElements() {
 return (enumCount < getCount ());
 }

Midterm Examination Page 6/7 E&CE 250 F’00

B. Stacks

An application you are designing will use the abstract data type Stack (with operations push, pop,
getTop). Furthermore, the application will need to frequently find the largest item on the stack. You are
to develop a new class StackMax, with an additional method findMax() which returns a reference to
the largest element on the stack.

In view of the anticipated frequency of invocations of this method, it is required that findMax() has the
worst case running time of O(1). Note that push, pop and getTop should remain O(1).

Show the fields and the algorithms for push, pop and findMax for StackMax. You are not required to
show the implementation for remaining methods. It is suggested that you base your implementation on
one of the stack class implementations discussed in the course, specifically StackAsLinkedList, as
opposed to implementing all methods from scratch.

If you are unable to devise an O(1) solution for findMax(), show a slower algorithm for part mark.

public class StackMax extends AbstractContainer implements Stack {

 //fields
 protected Stack s1 = new StackAsLinkedList ();
 protected Stack s2 = new StackAsLinkedList ();
 //methods

 public Object getTop ()
 { return s1.getTop (); }

 public Object findMax ()
 { return s2.getTop (); }

 public void push (Object arg)
 {
 Comparable object = (Comparable) arg;
 s1.push (object);
 if (object.isLT ((Comparable) s2.getTop ()))
 s2.push (object);
 else
 s2.push (s2.getTop ());
 }
 public Object pop ()
 {
 s2.pop ();
 return s1.pop ();
 }

C. Queues - Running Times

The QueueAsLinkedList class presented in the lectures was implemented using the LinkedList class
of Chapter 4 of the text. The latter had both the head and the tail pointer in its implementation.

(a) In the table below, show the big Oh bounds for the running time for the methods given.
(b) Consider the case when the underlying LinkedList class was replaced by another implementation in
which the tail field was dropped. In the table below, show the big Oh bounds for this case.

 Base: LinkedList with head,tail fields Base: LinkedList with head field only

constructor O(1) O(1)

purge O(1) O(1)

enqueue O(1) O(n)

dequeue O(1) O(1)

getHead O(1) O(1)

Midterm Examination Page 7/7 E&CE 250 F’00

OVERFLOW SHEET [Please identify the question(s) being answered.]

