
Midterm Examination Instructor: R.E.Seviora 1.5 hrs, Oct 29, 2001

SOLUTIONS (unchecked)
Student ID:

1. A 1. B 2. A 2. B 3. A 3. B 4. A 4. B Total:

Do all problems. The number in brackets denotes the weight of the problem (out of 100). If information
appears to be missing from a problem, make a reasonable assumption, state it and proceed. If the space to
answer a question is insufficient, use the last (overflow) page. Closed book. No calculators allowed.

PROBLEM 1 [25]

A. Detailed and Simplified Model

1 In order to predict the running times of programs, we must know something about the computer on
which the program will execute. Two models of the computer (in the Java VM context) were consid-
ered in this course, the detailed one and the simplified one. In the table below, state the timing parame-
ters of the detailed model. For brevity, give the answers in the manner shown for fetch and store.

1. fetch, store: τfetch, τstore

2. elementary arithmetic operations τ+, τ- ,τx, τ÷,τ<,
 (add, subtract, multiply, divide, comparison)
3. method call and return τcall, τreturn

4. pass an argument τstore

5. address calculation for indexing operation τ[]

6. create an object τnew

2 Determine the running time predicted by the detailed and the simplified computer model for the fol-
lowing program fragment (where n > 1):

1 for (int i=n-1; i!=0; i/=2)
2 ++k;

B. Big Oh and Theta

Order the following functions by the big-Oh relationship. Group together (e.g. by circling) those functions
that are Θ (theta) of one another.

n

n

nn

nn

nnnnnnnn

nnnnnnnn

22log5.001.0100

log201.01005.02

24log4log6532

4log52432log6

2

2

UNIVERSITY OF WATERLOO

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 250 – ALGORITHMS AND DATA STRUCTURES

Midterm Examination Page 2/5 ECE 250 F’01

PROBLEM 2 [25]

A. Asymptotic Analysis (Project 2)

Consider a typical implementation of the PolynomialAsArray class, with two non-static fields, the ar-
ray of coefficients double coef[], and the degree of the polynomial int n. The toString() method
returns a string representation of the polynomial object. The program below shows a simplified version of
the toString() method. (The actual algorithm is somewhat more complex – the body of the loop must
skip zero terms, deal with the signs of coefficients etc.)

 public String toString() {
1 String outString = new String ("");
2 for (int i=0; i <= n; i++)
3 outString = outString + coef[i] + "X^" + i;
4 return outString; }

Carry out the big Oh analysis of the worst case running time for the above toString() method. The
degree of the polynomial, n, represents the input size.

In each iteration of the loop, a new string is created which contains the concatenation of the previous
outString and the printing representation of the i-th term. The length of the latter has an upper bound k,
which is independent of n. The running time of string creation is proportional to the length of the string.

Statement Running Time big Oh

1 O(1) O(1)

2a O(1) O(1)

2b (n+2)×O(1) O(n)

2c (n+1)×O(1) O(n)

3 ∑ +=×n
nnkOk

0
2 2/)())1((O(n2)

4 O(1) O(1)

TOTAL O(n2)

B. Doubly Linked List

Write the prepend method for a DoublyLinkedList class which uses sentinel (see the figure below).
Note that each Element contains two references, next and previous. You may assume that the con-
structor of DoublyLinkedList creates the sentinel, makes the head refer to the sentinel and sets the
next and previous fields of the sentinel appropriately.

head

 P D N P D N P D N

sentinel

 P N

Note: If you have difficulty solving this problem, write an implementation of the prepend() method for
a singly linked list with sentinel only for part mark.

public class DoublyLinkedList {
 protected Element head;
 public final class Element {
 Object datum;
 Element next;
 Element previous;
 //constructor
 Element (Object datum, Element previous, Element next) {
 //...

 public void prepend (Object o) {
 Element temp = new Element (o, head, head.next);
 head.next.previous = temp;
 head.next = temp;

}
Note: if the answer given is for the singly linked case only
 public void prepend (Object o) {
 head.next = new Element (o, head.next);
 }

Midterm Examination Page 3/5 ECE 250 F’01

PROBLEM 3 [25]

A. Visitors

Consider a container class whose instances will contain objects of possibly differing types. Implement a
MaxLengthVisitor whose visit method will find the maximum length of the printing representation
(i.e. of the string returned by toString()) of the objects in the container. To determine the length of a
string, you may use the int length() method of the class java.lang.String. Note that the visitor is
only required to determine the maximum length; it is not required to keep reference to the object with the
longest printing representation.

public class MaxLengthVisitor extends AbstractVisitor {

 //fields

 int maxL = 0; //stores the max length value seen so far

 //methods
 public void visit (Object o)
 {
 int len = o.toString().length();
 if (len > maxL) maxL = len; }

 public boolean isDone()
 {
 return false; }

 public int getMaxLength()
 {
 return maxL; }

B. Enumerations and Visitors

Enumerations and visitors provide two ways to do the same thing – to visit, one-by-one, all the objets in a
container. Give an implementation for the accept method of the AbstractContainer class that uses
an enumeration.

public class SomeContainer extends AbstractContainer {
 public void accept (Visitor v) {
 Enumeration e = getEnumeration();
 while (e.hasMoreElements() && ! v.isDone()) {
 Object o = e.nextElement();
 v.visit (o); }
 }

PROBLEM 4 [25]

A. Stacks

The array-based stack implementation discussed in the class uses a fixed length array. As a result, it is
possible for the stack to become full.

1. Modify the algorithm for the push(Object o) method given below so that it doubles the length of

the array when the array is full.

public class StackAsArray
 extends AbstractContainer

Midterm Examination Page 4/5 ECE 250 F’01

 implements Stack {
 protected Object[] array;
 //other methods ...
 public void push (Object obj) {
 if (count == array.length)

 throw new ContainerFullException();
 array [count++] = obj; }

public void push (Object obj) {

 int len = array.length;
 if (count == len) {
 Object temp = new Object [2*len];
 System.arraycopy(array, 0, tmp, 0, count); //alternative: loop w copy
 array = temp; }
 array[count++] = obj;
 }
2. Obtain a reasonably tight big Oh bound for the average time for such push operation (i.e. the average

over n consecutive pushes). [Hint: Consider the case when, e.g., the initial array size is 2. The time
consumed by successive pushes is shown below (^ denotes exponentiation, c and k are constants).]

n 0 1 2 3 4 5 6 7 8 9 ...
time c c k2^2 c k2^3 c c c k2^4 c ...

For illustration, see the graph on the overflow page. If M=2m, the time for M consecutive pushes is

)1()4(]4)4[(
1

 push time average theHence,

 .4)4()12(4242
1

01

1
1

0

OckcMck
M

t

cMckckMckMckt

push

m
m

i

i
m

i

i
M

i
M

=−+≅−+=

−+=−+=+=+= ∑∑∑
−

==

+
−

=

ε

B. Ordered Lists

1 Consider the OrderedListAsLinkedList class discussed in the course.

public class OrderedListAsLinkedList
 extends AbstractSearchableContainer implements OrderedList {
 protected LinkedList list;
 //constructor
 public OrderedListAsLinkedList () {
 list = new LinkedList(); }
 //...
}
Show graphically the object(s) created, their fields and their relationship after the execution of the
statement: OrderedListAsLinkedList a = new OrderedListAsLinkedList();

count 0
list

head null
tail null

OrderedListALL LinkedList

a

OLALL LL
java.lang.Class java.lang.Class

2 Consider an implementation of the OrderedList interface that uses a doubly-linked list (i.e., each

list element contains a reference to the immediately preceding and immediately following element on
the list, if they exist). In the table below, give the big Oh running times of the OrderedList opera-
tions for such implementation.

method running time method running time

insert O(1) findPosition O(n)

isMember O(n) Cursor.getDatum O(1)

find O(n) Cursor.insertAfter O(1)

withdraw O(n) Cursor.insertBefore O(1)

get O(n) Cursor.withdraw O(1)

Midterm Examination Page 5/5 ECE 250 F’01

OVERFLOW SHEET [Please identify the question(s) being answered.]

Problem 4A2, figure illustrating the cumulative time for n pushes.

tn

n

