

Midterm Examination Instructors: R.E.Seviora and L.Tahvildari 1.5 hrs, Feb. 14, 2001

Name: SOLUTIONS [not checked] Student ID:

1. A 1. B 2. A 2. B 3. A 3. B 4. A 4. B Total:

Do all problems. The number in brackets denotes the relative weight of the problem (out of 100). If in-
formation appears to be missing from a problem, make a reasonable assumption, state it and proceed. If
the space to answer a question is not sufficient, use the last (overflow) page.
Closed book. No calculators allowed.

PROBLEM 1 [25]

A. Algorithm Analysis
Consider the Java program fragments given below. Assume that m, n, and k are non-negative ints and
that the methods P, Q, R, and S have the following characteristics:

 The worst running time for P(n ,m, k) is O(1) and it returns a value between 1 and (n + m + k).
 The worst running time for Q(n, m, k) is O(nm + k).
 The worst running time for R(n, m, k) is O(mk).
 The worst running time for S(n, m, k) is O(n + k).

Determine a tight Big Oh expression for the worst-case running time of each of the following program
fragments:

I. P(n, 10, 1)
 O(1)

II. 1 for (int i = 0; i < n; i++)
III. 2 Q(n, m, k)

IV. 1 for (int i = 0; i < P(n, 10, 1); i++)
 2 R(n, m, k)

 IV. 1 for (int i = 0; i < n; ++i)
 2 for (int j = 1; j < n; ++j)
 3 S(n, m, k)

UNIVERSITY OF WATERLOO

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

E&CE 250 – ALGORITHMS AND DATA STRUCTURES

Statement Time
1a O(1)
1b O(1)*n
1c O(1)*n
2 O(nm+k)*n

Total O()2 knmn +

Statement Time
1a O(1)
1b O(1)*(n+10+k)
1c O(1)*(n+10+k)
2 O(mk)*(n+10+k)

Total O(nmk+10mk+m)2k

Statement Time
1a O(1)
1b O(1)*n
1c O(1)*n
2a O(1)*n
2b O(1)*O()2n
2c O(1)*O()2n
3 O(n+k)* O()2n

Total O()23 knn +

Midterm Examination Page 2/6 E&CE 250 W’01

B. Asymptotic Bounds
Consider the functions e(n)...q(n), and complete the table showing their asymptotic relationship.
 e(n) = n
 f(n) = 3n2 + 2n – 4
 g(n) = n2

 h(n) =
oddisn

evenisnn

�
�

�
�

�

0

2

 k(n) =
oddisn

evenisn

n

n

�
�

�
�

�

2

 m(n) = log n
 p(n) = log (n+1)
 q(n) = ln n

True/False Statement
True f(n) = O(g(n))
False h(n) = O(n)
True h(n) = O(n2)
False h(n) = O(n log n)
False k(n) = Ω (g(n))
True k(n) = Ω (e(n)
True f(n) + h(n) = O(n2)
True m(n) = O(p(n))
True q(n) = O(m(n))
True m(n) = O(q(n))

PROBLEM 2 [25]
A. Running Times
Determine the running time predicted by the detailed and the simplified computer model presented in the
lectures for the following program fragment (where 1≥n):

1 for (int i= 0; i < n; ++i)
2 for (int j = 0; j < i * i; ++j)
3 ++k;

Statement Running Time: Detailed Model Running Time: Simplified

Model
1a storefetch tt + 2
1b (2)1(*) ++ < ntt fetch 3(n+1)
1c (2 nttt storeftech *)++ + 4n
2a (ntt storefetch *)+ 2n
2b (3)(*)* nIttt fetch +++ < 5(I+n)
2c (2 Ittt storefetch *)++ + 4I
3 (2 Ittt storefetch *)++ + 4I

TOTAL
)3()

3
7

6
13

6
7

3
4

6
55(*

)
2
1

2
1

2
7(*)

3
2

3
1

3
1

3
2

3
7(

*
2

*
3

*

storefetchstorefetch

storefetchstorefetch

ttttttttn

tttttnttttt

++++++++

++++−++++

<<+

<+<+

 5
6

97
2

13
3

13 23 ++− nnn

B. Solving Recurrences
Solve the following recurrence. You may assume that n is a power of a. Show all your work.

(� �) 2,1
1

)1(/
O(1)

)(
≥>

=

�
�
�

+
=

an
n

OanaT
nT

Show all your work. Drop O(.) and assume that man =
 T()ma = a T ()1−ma + 1
 = a (a T)(2−ma + 1) + 1
 = a (a (a T (3−ma) + 1) + 1) + 1

 = ka T(kma −) + �
−

=

1

0

k

i

ia

 = ma T(1) + �
−

=

1

0

m

i

ia if m-k =0 � m = k

 = ma +
1
1

−
−

a
a m

 = O(ma) � T(n) = O(n)

Midterm Examination Page 3/6 E&CE 250 W’01

PROBLEM 3 [25]

A. Space Requirement of Data Structures
NOTE: In the following, assume that an object reference occupies 4 bytes.

1. Consider a class Array class with two fields as follows:

public class Array {
protected Object[] data;
protected int base;
public Array (int n, int m) {

data = new Object[n];
base = m; }

// etc
}

Consider a particular instance of Array, new Array (10, 5). How much space does this array
instance occupy?

 sizeof(Array) = sizeof(Object[N]) + sizeof(int)

 = sizeof(int) + N*sizeof(Object ref) + sizeof(int)

 = 2 * sizeof(int) + N * sizeof(Object ref)

 = 2* 4 + 10 * 4

 = 48 bytes

2. Consider the LinkedList class defined below:

public class LinkedList {
protected Element head;
protected Element tail;
public final class Element {

Object datum;
Element next;
//etc
}
//etc

}

Consider a particular instance of LinkedList with 10 instances of Integer. How much space does the
entire structure occupy (including Element’s and Integer’s)?

= sizeof(LinkedList) + n * sizeof(Element) + n * sizeof(Integer)

= 2 * sizeof(Object ref) + n * sizeof(Object ref) + n * sizeof(Object ref) + n * sizefof(Integer)

= 2 * 4 + 10 * 4 + 10 * 4 + 10 * 4

= 128 bytes

B. Singly-Linked List

 A singly-linked list is simply a sequence of dynamically allocated objects, each of which refers to its suc-
cessor in the list. Despite this simplicity, there are many implementation variants. One way is to add an
extra element at the head of the list called the sentinel as shown below.

dataum next

head

sentinel dataum next

1. Explain the main advantage(s) and disadvantage(s) of this implementation in the comparison with
the basic singly-linked list where we have only head field

Midterm Examination Page 4/6 E&CE 250 W’01

head
 dataum next dataum next

 Using the sentinel simplifies the programming of certain operations. However, the extra space is
 required because of sentinel. Also, sentinel need to be created when the list is initialized.

2. Write an implementation of the prepend method of the LinkedList class when the circular
list with a sentinel as shown above is used. Assume that the constructor of LinkedList creates
both the head and the sentinel and makes head refer to the sentinel. Fill in the dotted (…) entries

public class LinkedList
{

protected Element head;
public final class Element
{

Object datum;
Element next;
//etc

}
public void prepend (Object item)
{

head.next = new Element (item, head.next);

}

}

PROBLEM 4 [25]

A. Visitor
Consider a container class whose instances will contain objects of the type Int. Int is a wrapper class
which was introduced in the lecture. The int value encapsulated in each Int object can be obtained using
the method int intValue() of the class Int, as illustrated below.

public class Int extends AbstractObject
{

protected int value;
public Int (int value)
{

this.value = value;
}
public int intValue ()
{

return value;
}

// etc
}

Implement a SummingVisitor whose visit method computes the sum of all of the integer values
stored in the objects in a container, i.e.

where Vk is the value encapsulated in the k-th object. The computed value of the above sum should be
accessible through the method int getSum()of the SummingVisitor.

public class SummingVisitor extends AbstractVisitor {

//fields
protected int sum = 0;

�=
objects

kVS

Midterm Examination Page 5/6 E&CE 250 W’01

//methods
public void visit (Object o)
{

sum += ((Int)o).intValue();
}

public boolean isDone()
{

return false;
}

public int getSum()
{

return sum;
}

}

B. Big Oh Analysis [Project 2]

The objective of Project 2 was to represent a polynomial in x

01
1

1 .. axaxaxa n
n

n
n ++++ −

−
where na ≠ 0, n ≥ 0 is the degree of the polynomial, using Java array. The implementation was required
to be reasonably lean in terms of computing time, and minimal in terns of space: the array length at all
times was to be n+1.

The PolynomialAsArray class definition included:

class PolynomialAsArray {
double[] a; //array of coefficients
PolynomialAsArray () { //constructs the polynomial 0x0

...}
//etc

}

One of the methods you were to provide was double eval (double x). This method takes a single
double argument, x, and computes the value of the polynomial for the given x. Devise an algorithm for
eval() whose tight big-oh expression for the running time is O(n) and write it down in Java.

 public double eval (double x)
 {
 double y = coefficient[degree];
 for (int i = getDegree() –1; i >= 0; i--)
 y = y * x + a[i];
 return y;
 }

Midterm Examination Page 6/6 E&CE 250 W’01

OVERFLOW SHEET [Please identify the question(s) being answered.]

