
Midterm Examination (5 pages) Instructor: R.E.Seviora 1 hour, Oct 25, 2002

SOLUTIONS V1.0

1.

2. 3. Total:

Do all problems. The number in brackets denotes the weight of the problem (out of 100). If information
appears to be missing from a problem, make a reasonable assumption, state it and proceed. If the space to
answer a question is insufficient, use the last (overflow) page. Closed book. Numerical calculators only.

PROBLEM 1 [35]

A. Simplified Model Analysis

1 Determine the running time predicted by the simplified computer model for the method sumSquares:

1 public class Example {
2 public static int sumSquares (int n) {
3 int sum = 0;
4 for (int i=0; i<=n; i++)
5 sum += i*i;
6 return sum;
7 }
8 //…
9 }

Statement Running Time (Simplified Model)
3 2

4a 2

4b 3(n+2)

4c 4(n+1)

5 6(n+1)

6 2

TOTAL 13n+22

B. Estimates of Running Time

A simplified model analysis of a program resulted in the following expression for its running time:

20205)(2 ++= nnnT
You were asked to run the program on a fairly large problem (n=100,000). The fastest computer you can
use has a modern processor running with 1GHz clock. Obtain a rough estimate of the time needed to exe-
cute the program on this computer.

sec50sec10510/]201020)10(5[)(19525 =×≅+×+×=nT

C. Recurrences

Solve the following recurrence and state the resulting tight big Oh bound for T(n). You may assume that n
is a power of three.

 



>+
=

=
1)()3/(3

1)1(
)(

nnOnT

nO
nT

UNIVERSITY OF WATERLOO

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

ECE 250 – ALGORITHMS AND DATA STRUCTURES

Midterm Examination Page 2/5 ECE 250 F’02

PROBLEM 2 [40]

A. Asymptotic Analysis

The implementation of the class StackAsArray shown below removes the constraint of fixed stack size
by expanding the internal array whenever push would result in array overflow. (Note: the method Sys-
tem.arraycopy copies count items from array to tmp.)

Compute the average time for the push operation. To develop your answer, you may use the table shown
below the program.

public class StackAsArray extends AbstractContainer implements Stack {
 protected Object[] array;
 protected int initSize;
 public StackAsArray(int size) {
 array = new Object[size];
 initSize = size;
 }
 public void push(Object obj) {
 if (count==array.length) {
 Object[] tmp = new Object [array.length + initSize];
 System.arraycopy (array, 0, tmp, 0, count);
 array = tmp;
 }
 array [count++] = obj;
 }
 //
}
Let p=push time; i=init stack size; Nb=time to create an array of length N;
Nc=time to copy N items from old to new array (by System.arraycopy)

Example table, initSize=i=3

push number 0 1 2 3 4 5 6 7 8 9 10

push time p p p p p p p p p p

resize time 6b+3c 9b+6c 12b+9c

Let n=mi. Consider the total time needed for n=mi pushes:

)()1()(
)1(

2

)1(
)(

1
)(

)1(
2

)1(
][])1[()(1

1
1

1

nOOmOe
mi

m

i

md
pabove

mi
pushT

em
mm

dmipekdmipkicibkmipmiT

avg

m
k

m
i

=+=−+−+==

−+−+=++=+++= ∑ ∑
−
=

−
=

Here, d=ib+ic and e=ib.

Midterm Examination Page 3/5 ECE 250 F’02

B. Asymptotic Bounds

(i) The limit rules are helpful in determining the asymptotic relationships between functions. In the table
below, state whether the relationship in the column header always holds (Y) or not (N), for the limit given
stated in row header. f(n) and g(n) are nonnegative functions defined on n ≥ 0.

)(/)(lim ngnf
n ∞→

f(n)=
O(g(n))

g(n)=
O(f(n))

f(n)=
Ω(g(n))

g(n)=
Ω(f(n))

f(n)=
o(g(n))

g(n)=
o(f(n))

f(n)=
Θ(g(n))

0 Y N N Y Y † N N
a > 0 Y Y Y Y N N Y

∞ N Y Y N N Y N

(ii) Justify your answer for the table entry labeled with † (i.e. f(n)=o(g(n)), lim f/g = 0).

Definition of small oh: f(n)=o(n) iff f(n)=O(g(n)) but f(n)≠Θ(g(n)).

(To answer question (i), it is useful to add one column to the table. The column shows whether f and g
are in the Θ relationship.)

C. Memory Requirements (Project 2)

A major objective of Project 2 was to represent a polynomial in x

01
1

1 .. axaxaxa n
n

n
n ++++ −

−

where n ≥ 0 is the degree of the polynomial, using Java arrays. The implementation was required to be
reasonably lean in terms of computing time, and minimal: the array length at all times was to be n+1.

The typical PolynomialAsArray class implementation looked as follows:

class PolynomialAsArray {
 int deg;

double[] a; //array of coefficients
 PolynomialAsArray () { //constructs the polynomial 0x0

 a = new double[1];
 a[0]=0.0;
 deg = 0; }
 //etc
}

(i) For the above PolynomialAsArray class, draw a diagram that shows the objects stored in the mem-
ory of the computer after each of the following statements.

PolynomialAsArray p;

p null

p = new PolynomialAsArray(); p.setCoefficient(2,13.0);

deg 0 0 0.0

length 1
p

PAA
array of
doubles

java.lang.Class java.lang.Class

a

deg 2 0 0.0

length 3
p

PAA
array of
doubles

java.lang.Class java.lang.Class

a

0.0
13.0

1

2

(ii) Derive an expression for the amount of memory required to represent a PolynomialAsArray of de-
gree N. Use S(int), S(double) and S(ref) to denote the memory required to store an int, a
double, and an object reference, respectively.

)()1()((int)2

)]1()((int)[)]((int)[

)_()_(

doubleSNrefSS

NdoubleSSrefSS

objectarraysizeofobjectPAAsizeof

×+++=
=+×+++=

=+

Note: the above answer did not include the memory needed to store reference
to the class object (dashed outline in 2(i)) This adds 2S(ref) to the sum.

Midterm Examination Page 4/5 ECE 250 F’02

PROBLEM 3 [25]

A. Visitors

Consider a container class whose instances will contain Java Integer objects. Design an Averaging-
Visitor class which implements the interface Visitor and also includes the method computeAver-
age. This method returns the average of the values of Integer objects presented to the visit method of
the visitor since its creation. Recall that the method intValue()returns the value of the integer wrapped
in an instance of Integer.

For illustration, assume that, after creating an instance myAV of the AveragingVisitor, the method
myAv.visit is invoked four times, with the actual parameter referring to Integers containing 2, 1, 4, 3,
respectively. At this point, the invocation of computeAverage() would return 2.5.

For simplicity, you are not required to consider the case when computeAverage is invoked prematurely
(i.e. before the first invocation of visit).

public class AveragingVisitor extends AbstractVisitor {

 //fields
 int sum = 0; //stores the accumulated sum
 int count = 0; //stores the count of objects presented to the visit method

 //methods
 public void visit (Object o) {
 sum += ((Integer) o).intValue();
 count++;
 }
 public boolean isDone() {
 return false;
 }
 public float computeAverage() {
 return ((float) sum)/((float) count);
 }
}

B. Linked Lists

Implement the prepend(Object o) method for the singly-linked circular list with sentinel. (Observa-
tion: the implementation is very short, perhaps1-2 lines. Its brevity illustrates one advantage of sentinel-
based lists.)

head D Nsentinel D N D N D: datum
N: next

public class LinkedListWithSentinel {
 protected Element head;
 public final class Element {
 Object datum;
 Element next;
 //etc.
 }
 public void prepend (Object o) {

 head.next=new Element(o,head.next);

 }
}

Midterm Examination Page 5/5 ECE 250 F’02

OVERFLOW SHEET [Please identify the question(s) being answered.]

