
 ECE 250 Data Structures and Algorithms

 Page 1 of 11

ECE 250
Data Structures and Algorithms
MIDTERM EXAMINATION

2005-10-27/4:30-6:00

The examination is out of 56 marks.

Instructions:
 No aides.
 Turn off all electronic media and store them under your desk.

If there is insufficient room, use the back of the previous page.
 You may ask only one question during the examination:

 “May I go to the washroom?”

 If you think a question is ambiguous, write down your assumptions and continue.

Do not leave during the first 30 minutes of the examination.
Do not leave during the last 15 minutes of the examination.
Do not stand up until all exams have been picked up.

Attention:

The questions are in the order of the course material, not in order of
difficulty.

I have read and understood all of these instructions:

 Name: ___

 Signature: __

 ECE 250 Data Structures and Algorithms

 Page 2 of 11

Runtime Analysis

1. [3] Indicate which of the functions

 3n + 5 n2 – 10n ln(n) 1 10 n2 n log(n) log2(n) n

are big-O of each other. You can simply circle and connect matching functions.

2. [2] Show, using limits, that n ln(n) = O(n1.585).

3. [3] Assume that the run time of an algorithm is given by

>+
=

=
12)2/T(
11

)T(
nnn
n

n

Assuming that n = 2k, find the asymptotic (big-O) run time of T(n). You may require one
of the following formulae:

2
)1(

0

+
=∑

=

nn
i

n

i

 122 1

0

−= +

=
∑ n

n

i

i

4. [3] A binary search is useful in searching an arbitrary array of ordered entries.
Suppose that you have the additional information that the array is sorted and evenly
distributed, that is, array[i] ˜ ci for some integer constant c. If the size of the array
is N and the range of the objects stored in the sorted array is between 0 and c*N, suggest
a better strategy than bisection to check if an element x is in the array. You only need
sketch the outline of your algorithm. Assume that you know the values of N and c. Will
the asymptotic behaviour of your modified algorithm be any faster than that of a binary
search?

 ECE 250 Data Structures and Algorithms

 Page 3 of 11

5. [5] Determine the asymptotic (big-O) run times in terms of n of the following code
fragments:

int sum = 0;
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 ++sum;
 }
}

Let int f(int n, int m) be a routine which runs in O(n + m) time.

int sum = 0;
for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 sum += f(j, 10);
 }
}

int sum = 0;
for (int i = 1; i < n; i *= 2) {
 ++sum;
}

Formulae:

11
0

+=∑
=

n
n

i

2

)1(

0

+
=∑

=

nn
i

n

i

6

)12)(1(

0

2 ++
=∑

=

nnn
i

n

i

 ECE 250 Data Structures and Algorithms

 Page 4 of 11

Linked Lists

6. [2] Figure 6 graphically shows the values of the elements in a non-empty linked list
assigned to the variable list.

2 5 3head
tail

0

Figure 6. A non-empty singly- linked list.

Using the same style of diagram, indicate the state of the linked list after the following
five operations (performed in the given order):

 list.pop_front();
 list.pop_front();
 list.push_front(4);
 list.push_back(7);
 list.pop_front();

head
tail

7. [4] Given a doubly- linked list class DoubleList with three class members
 DoubleNode * head;
 DoubleNode * tail;
 int count;
which are all initially assigned 0, implement the method push_back which places an
object in a new DoubleNode at the end of the doubly- linked list.

template <class Object>
void DoubleList<Object>::push_back(const Object & obj) {

 ++count;
}

The class DoubleNode is provided for reference:

template <class Object>
class DoubleNode {
 Object element;
 DoubleNode * nextNode;
 DoubleNode * prevNode;

 DoubleNode(
 const Object & obj, DoubleNode * n = 0, DoubleNode * p = 0
):element(obj), nextNode(n), prevNode(p) {
 // does nothing
 }

 friend class DoubleList<Object>;
};

 ECE 250 Data Structures and Algorithms

 Page 5 of 11

8. [4] Given a singly- linked list class SingleList with the three class members
 SingleNode * head;
 SingleNode * tail;
 int count;
which are all initially set to 0, implement the method bool check() which returns
true if the internal state of the linked list is consistent, that is:

1. the count is correct,
2. the tail pointer is pointing to the correct node, and
3. the last nextNode pointer is 0.

As soon as you can determine that one of these conditions is not met, you should return
false. Your routine must run in O(count) time.

2 5 3head

count = 3
tail

Figure 8. A linked- list with an inconsistent internal state.

template <class Object>
bool SingleList<Object>::check() {

}

The class SingleNode is provided for reference.

template <class Object>
class SingleNode {
 Object element;
 SingleNode * nextNode;

 SingleNode(

const Object & obj, SingleNode * n = 0
):element(obj), nextNode(n) {

 // does nothing
 }

 friend class SingleList<Object>;
};

 ECE 250 Data Structures and Algorithms

 Page 6 of 11

Stacks and Queues

9. [8] With the addition of a new method void makeEmpty() which empties the
stack (you don’t have to implement it), the public interface of the drop-off stack-as-array
class which you implemented in Project 2 is given here:

template<class Object>
class DropOffStackAsArray
{
 public:
 int size() const;
 bool empty() const;
 Object top() const;

 void push(const Object &);
 void pop();
 void makeEmpty(); // empty the stack
};

The UndoRedoStack class uses two of these stacks as its private members:

template <class Object>
class UndoRedoStack {
 private:
 DropOffStackAsArray<Object> undo_stack;
 DropOffStackAsArray<Object> redo_stack;
};

Assume that everything is appropriately initialized in the constructor.

You must implement the following five member functions :

bool can_undo()

Returns true if the undo stack is not empty and false otherwise.

bool can_redo()
Returns true if the redo stack is not empty and false otherwise.

void event(const Object & obj)
 Places the object on the undo stack and empties the redo stack.

Object undo()

If the undo stack is empty, throw UnableToUndo(), otherwise pop the top
object off of the undo stack, push it onto the redo stack and return the object.

Object redo()

If the redo stack is empty, throw UnableToRedo(), otherwise pop the top
object off of the redo stack, push it onto the undo stack, and return the object.

Implement these member functions in the space provided on the next page.

DO NOT REIMPLEMENT STACKS. USE THE OBJECTS AND METHODS
PROVIDED!

You may detach this page.

 ECE 250 Data Structures and Algorithms

 Page 7 of 11

template <class Object>
class UndoRedoStack {
 private:
 DropOffStackAsArray<Object> undo_stack;
 DropOffStackAsArray<Object> redo_stack;
 public:
 // ...
};

template <class Object>
bool UndoRedoStack<Object>::can_undo() {

}

template <class Object>
bool UndoRedoStack<Object>::can_redo() {

}

template <class Object>
Object UndoRedoStack<Object>::undo() {

}

template <class Object>
Object UndoRedoStack<Object>::redo() {

}

template <class Object>
Object UndoRedoStack<Object>::event_performed(
 const Object & event) {

}

 ECE 250 Data Structures and Algorithms

 Page 8 of 11

Tree Traversals

10. [5] Perform pre- and post-order depth-first traversals and a breadth-first traversal of
the tree in Figure 10. Print the nodes in the order in which they are visited in the tables
provided.

UO

E

G

T

A O

D

Y

W

H T

Figure 10. An arbitrary tree.

Table 10a. Pre-order depth-first traversal.

Table 10b. Post-order depth-first traversal.

Table 10c. Breadth-first traversal.

...when you multiply...

11. [3] By doing a post-order traversal of the expression tree shown in Figure 11, write
down the post-fix expression corresponding to the expression tree. Evaluate the
expression.

2 4 / 3

224

+

Figure 11. An expression tree.

 ECE 250 Data Structures and Algorithms

 Page 9 of 11

Binary Search Trees

12. [3] Without balancing, simply insert the elements 1, 9, 5, 3, 8, 7, 2, 0, 4 into a binary
search tree with a root node containing 6.

6

13. [2] Show the result of deleting the root node from the binary search tree shown in
Figure 13.

2

1

7 14

18

27

3215

12

9

8

4

6

Figure 13. A binary search tree.

 ECE 250 Data Structures and Algorithms

 Page 10 of 11

AVL Trees

14. [3] Given the AVL tree in Figure 14, indicate the locations where a new node may be
inserted without unbalancing any of the nodes in the tree. (-0.5 for each incorrect placed
or missing node.)

2

7

84

71

63

56

45

39

33

29

24

13

Figure 14. An AVL-balanced tree.

15. [6] For each of the following five AVL trees, perform the required insertion or
deletion, making any rotations necessary to maintain the AVL balance. If the insertion or
deletion does not result in an unbalanced tree, you may simply indicate this by adding or
crossing out the appropriate node in the given figure.

Insert 25 into the AVL tree shown in Figure 15a.

2 12

16

19

23

8

4

Figure 15a.

Insert 25 into the AVL tree shown in Figure 15b.

2 12

16

27

3221

8

4

Figure 15b.

 ECE 250 Data Structures and Algorithms

 Page 11 of 11

Remove 14 from Figure 15c.

2

1

7 14

18

27

3215

12

9

8

4

Figure 15c.

Remove 31 from Figure 15d.

2

398 5424

12 28 354

4715

31

Figure 15d.

16. [2] Suppose after an insertion into an AVL tree, a node becomes unbalanced and a
rotation is required to balance that node. Is it possible for the very next insertion to cause
that same node to become unbalanced? Justify your answer.

