
 ECE 250 Algorithms and Data Structures

 Page 1 of 6

ECE 250 Algorithms and Data Structures

MIDTERM EXAMINATION
Douglas Wilhelm Harder dwharder@uwaterloo.ca EIT 4018 x37023

2013-10-23T09:30:00P1H20M

Rooms: RCH-103 and RCH-302

Instructions:

_____ Read and initial each of these instructions for one bonus mark.

_____ There are 43 marks.

_____ No aides.

_____ Turn off all electronic media and store them under your desk.

_____ If there is insufficient room, use the back of the previous page.

_____ You may ask only one question during the examination:

 “May I go to the washroom?”

_____ Asking any other question will result in a deduction of 5 marks from the exam

grade.

_____ If you think a question is ambiguous, write down your assumptions and continue.

_____ Do not leave during f hour or after there are only 15 minutes left.

_____ Do not stand up until all exams have been picked up.

_____ If a question asks for an answer, you do not have to show your work to get full

marks; however, if your answer is wrong and no rough work is presented to show

your steps, no part marks will be awarded.

Attention:

The questions are in the order of the course material, not in order of

difficulty.

THIS BLOCK MUST BE COMPLETED USING ALL CAPITAL LETTERS IN PEN

Surname/Last Name

Legal Given/First Name(s)

UW Student ID Number 2 0

UW User ID

I have read the above instructions:

Signature: __

Asking any question

other than that

question noted above.

-5

 ECE 250 Algorithms and Data Structures

 Page 2 of 6

A.1 [2] List those relationships where there is a form of imposed order: that is,

relationships are defined in terms of succession; for example, where for two elements, it

may be possible to write x ≺ y or x < y.

A.2 [2] Using l’Hopital’s rule and algebra, show that n ln(n) = o(n
1.1

).

A.3 [1] We can say that f(n) < g(n) if f(n) = o(g(n)). Does this define a linear order or a

weak order? Justify your answer.

A.4 [2] What are the run times of the following code segments:

for (int i = 0; i < n*m; ++i) {
 for (int j = 0; j < i; ++j) {
 sum += i + j;
 }
}

for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n*m; ++j) {
 sum += i + j;
 }
}

B.1 [4] Implement a last(Type const &) function for a singly linked list which

returns a pointer to the last node in a linked list that contains an object equal to the

argument (there may be multiple such nodes). Fill in the appropriate return type and

implement the function. You may require the member functions head() and tail(),

and next() and retrieve(). If there is no node containing the argument, return

nullptr.

template <typename Type>

 Single_list<Type>::last(Type const &) const {

 ECE 250 Algorithms and Data Structures

 Page 3 of 6

B.2 [2] Why is it more complex to double the size of an array containing a queue as

compared to doubling the size of an array containing a stack. You can use images to

support your arguments.

C.1 [2] Define the depth of a node and the height of a tree in terms of path lengths.

C.2 [2] Write a member function depth_print that performs a pre-order depth-first

traversal on a tree by printing out each node as it is visited together with the depth of the

node followed by an underscore. For example, the output of the function run on the tree

in Figure C.2 would be

A0_B1_E2_C1_D1_F2_G2_

Figure C.2. A tree.

For your information, recall that a simple tree is a recursive structure: all children of a

simple tree are themselves simple trees. You will have to pass a specific argument when

you call the function, and this argument will have to be modified as the function

recursively calls its children.

template <typename Type>
class Simple_tree {
 private:
 Type element;

Simple_tree *parent_node;
Single_list<Simple_tree *> children;

 public:
 void depth_print() const;
 }

template <typename Type>
void Simple_tree<Type>::depth_print() const {

 ECE 250 Algorithms and Data Structures

 Page 4 of 6

C.3 [2] A developer has already implemented an efficient implementation of the member

function

template <typename Type>
bool Simple_tree<Type>::is_ancestor_of(Simple_tree<Type> *treeptr) const;

which returns true if this node in the tree is an ancestor of the node pointed to by the

argument treeptr by following the list of parent_node pointers of the argument (see

Question C.2). You have to extend the interface by implementing a member function that

returns true if this node in the tree is a descendant of the node pointed to by the

argument treeptr. Implement this function efficiently, too. There are no restrictions

on what you may do or what member functions you may call to implement this member

function.

template <typename Type>
bool Simple_tree<Type>::is_descendant_of(Simple_tree<Type> *treeptr) const {

D.1 [1] Describe the difference between a binary tree and a general tree where each node

is restricted to having at most two children.

D.2 [2] A full binary tree is one where each node is either a leaf node or a full node.

What is the minimum number of nodes in a full binary tree of height h? You must give a

formula, but you need not give a proof.

D.3 [3] Write a function that returns true if a tree is a full binary tree and false

otherwise. An empty node is considered to be a full binary tree. You may use the bool
empty() and bool is_leaf() member functions. You may be interested in using the

member functions retrieve(), left(), and right().

template <typename Type>
bool Binary_node<Type>::is_full() const {

 ECE 250 Algorithms and Data Structures

 Page 5 of 6

E.1 [3] Give a proof by induction that a perfect binary tree of height h has 2
h
 – 1 internal

nodes. You must justify any statement you make.

E.2 [4] Explain why and how we must use the sum

1 1

0

2 2 2 2
h

k h h

k

k h  



  

to find the average depth of a node in a perfect binary tree of height h, which contains

2
h + 1

 – 1 nodes, is asymptotically (in the limit as h becomes large) h – 1.

E.3 [3] Demonstrate how the complete binary tree in Figure E.3 can be stored in the

provided array and describe how we can efficiently find the children and the parent of the

node stored at index k within the array.

Figure E.3. A complete binary tree.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 ECE 250 Algorithms and Data Structures

 Page 6 of 6

F.1 [2] In the order given, insert the numbers 72, 53, 85, 58, 42, 23, 33, 47, 34 into an

initially empty binary search tree.

F.2 [6] Write a member function next_largest(Type const &) that returns a

pointer to the node that contains the smallest element in the binary search tree that is

greater than the argument. If the argument is greater than or equal to the largest entry,

return nullptr. Figure F.2 may be used to determine how you should implement the

algorithm.

template <typename Type>
Binary_search_node<Type> *Binary_search_tree<Type>::next_largest(Type const &obj) {
 root_node->next_largest(obj);
}

template <typename Type>
Binary_search_node<Type> *Binary_search_node<Type>::next_largest(Type const &obj) {
 if (empty()) {
 return nullptr;
 } else {

 }
}

Figure F.2. A binary search tree.

