
 p 1 of 11

University of Waterloo
Department of Electrical and Computer Engineering

ECE 250 – Algorithms and Data Structures

Midterm Examination (11 pages)
Instructor: Douglas Harder
February 17, 2004 17:30-19:00

Name (last, first) Student ID

Do problems 1-7. The last question is a bonus.

The number in brackets denotes the weight of the question. If information appears to be
missing from a problem, make a reasonable assumption, state it, and proceed. If the
space to answer a question is insufficient, use the back of the previous page. You may
use diagrams to supplement (but not replace) sentence answers.

Closed book. No calculators.

Question Mark

1
/10

2
/12

3
/10

4
/6

5
/12

6
/10

7
/6

Bonus
/3

Total
/66

 p 2 of 11

Algorithm Analysis

1. [10] Use the detailed model, that is, use τ+, τfetch, etc., to determine the run-time of the
body of the following method. Use the given table and do not total the run times.
You may use τF, τS, τC, τR, and τN, in place of τfetch, τstore, τcall, τreturn, and τnew, respectively.

You may wish to recall that the time it takes to fetch the instance variable
array.length is equal to the time it takes to fetch a local variable.

public void average(int[] array) {
1 int sum = 0;

2 if (array.length == 0)
3 return 0;

4 for (int i = 0; i < array.length; i ++)
5 sum += array[i];

6 return sum / array.length;
}

Line Case 1 (describe)

Case 2 (describe)

1

2

3

4a

4b

4c

5

6

 p 3 of 11

Asymptotic Analysis

2a. [3] From the definition of big-O, show that 4n2 + n – 1 = O(2n2).

2b. [2] Show that ln(n) = Θ(log2(n)), that is, ln(n) and log2(n) are big-O of each other.

2c. [2] Suppose ∞=
∞=)(

)(lim
ng
nf

n
. For each of these statements, circle true if is correct, and

false otherwise.
 f(n) = O(g(n)) true false
 g(n) = O(f(n)) true false

2d. [3] Prove that xn = O(ex) where n is a fixed positive integer.

2e. [2] Simplify the expression
 O(1) + O(n) T(f) + O(n ln(n)) + O(n)
where T(f) is the time it takes to make a call to the method f.

 p 4 of 11

Foundational Data Structures

3. [5+5] Write the code for the methods prepend, which inserts an object into the start
of the linked list; and getCount, which counts the number of elements in the linked list
and returns that value.

public class LinkedList {
 protected Element head;
 protected Element tail;

 public final class Element {
 Object datum;
 Element next;

 public Element(Object datum, Element next) {
 this.datum = datum;
 this.next = next;
 }
 // ...
 }
 // ...
 public void prepend(Object obj) {

 }
 public int getCount() {

 }
}

 p 5 of 11

Abstract Data Types

4. [6] A container is known to have zero or more objects of the wrapper class Double.
Write a method average which takes such a container as an argument, finds the
average of all the elements, and returns that average. Your method should call the
getEnumeration method of the container and use the returned enumeration to access
the elements in the container. If the container is empty, your method should throw the
ContainerEmptyException exception. You need not check that the elements in
the container are instances of the class Double.

public interface Enumeration {
 public boolean hasMoreElements();
 public Object nextElement();
}
public class Double {
 double value;
 // ...
 public double doubleValue() {
 return value;
 }
 // ...
}
public SomeClass { // ...
 public double average(Container c) {

 }
}

 p 6 of 11

Stacks and Queues

5a. [3+3] Suppose the class StackAsLinkedList implements a stack using a singly-
linked list which contains a head reference and a tail reference. For example:

public class LinkedList {
 protected Element head, tail;

 public class Element {
 Object datum;
 Element next;

// ...
}

 // ...
}

The class LinkedList has two methods which may be used to insert an element into
the linked list: append, which inserts a new element at the tail of the linked list; and
prepend, which inserts a new element at the head of the linked list. Therefore, there
are two possible implementations of the push method of a stack:

public void pushAppend(Object o) {
 list.append(o);
}
public void pushPrepend(Object o) {
 list.prepend(o);
}

If the method pushAppend is chosen to be used in the implementation of the push
method of the class StackAsLinkedList, what must the run time, using asymptotic
notation, of the pop method for a stack containing n elements? Why (give one
sentence)?

If the method pushPrepend is chosen, what is the run time, using asymptotic notation,
of the pop method for a stack containing n elements? Why (give one sentence)?

 p 7 of 11

5b. [6] For the class AbstractQueue, write the method appendQueue which takes
as its argument any object which implements the Queue interface. This method should
dequeue the elements in the argument queue and enqueue them in the current queue until
either the argument queue is empty or this queue is full. When this method returns, all
elements in the argument queue must either be in this queue (in the same order in
which they appeared in the argument queue) or must be in argument queue (again in the
order in which they were placed into the queue).

public abstract class AbstractQueue
 extends AbstractContainer implements Queue {
 // ...
 public void appendQueue(Queue q) {

 }
}
public interface Queue extends Container {
 Object getHead();
 void enqueue(Object object);
 Object dequeue();
}
public interface Container extends Comparable {
 int getCount();
 boolean isEmpty();
 boolean isFull();
 void purge();
 void accept (Visitor visitor);
 Enumeration getEnumeration();
}

 p 8 of 11

Ordered and Sorted Lists

6a. [3] Circle which elements would be examined in the following implementation of a
sorted list of integers when determining if the value 42 is stored in this array.
1 3 9 12 23 25 32 33 35 39 42 52 59 61 73

6b. [2] Why can you not perform a binary search on a sorted list which is implemented as
a linked list? Use one or two sentences.

6c. [3] A binary search runs in O(ln(n)) time where n is the number of elements in the
sorted list. You may find this by solving the recurrence relation
 T(n) = T((n – 1)/2) + 1, and T(1) = 1.
Suppose instead you have an algorithm which, at each step, checks the midpoint of not
one, but both halves of the sorted array. The recurrence relation for such a problem is
given by
 T(n) = 2 T((n – 1)/2) + 1, and T(1) = 1.
Assuming that n = 2k – 1, what is the run time of such an algorithm? Your answer should
be sufficiently simple to justify your next answer.

6d. [2] Justify conceptually why the solution to the previous recurrence relation makes
sense. Use one or two sentences.

 p 9 of 11

Project 2

Consider the following implementation of method SetCoefficient in the class
PolynomialAsArray. The array of polynomial coefficients is stored in the instance
variable coeffs.

public void SetCoefficient(int i, double c) {
1 if (i < 0) throw new RuntimeException();
2 elif (i < this.getDegree()) coeffs[i] = c;
3a elif (i == this.getDegree()) {
3b coeffs[i] = c;
3c if (c == 0)
3d resize_coeffs(); // shrink the array
4a } else if (c != 0) { // i > this.getDegree()
4b double[] tmp = new double[i + 1];
4c tmp[i] = c;
4d for (int j = 0; j <= this.getDegree(); j++)
4e tmp[j] = this.coeffs[j];
4f coeffs = tmp;
 }
}

What is the runtime of the following two implementations of the assign method which
sets the current polynomial equal to the argument polynomial p? You should refer to the
code above, but you need not do more than a cursory asymptotic analysis.
You may use n to represent the degree of the polynomial p.

public void assign(Polynomial p) {
 coeffs = new double[0];

 for (int i = 0; i <= p.getDegree(); i++)
 this.setCoefficient(i, p.getCoefficient(i));
}
7a. [3]

 p 10 of 11

public void assign(Polynomial p) {
 coeffs = new double[0];

 for (int i = p.getDegree(); i >= 0; i--)
 this.setCoefficient(i, p.getCoefficient(i));
}
7b. [3]

Bonus. [3] If n is the maximum of the degree of this polynomial and the degree of the
polynomial p, then the average runtime for the following method is O(n). Under what
conditions on this and p will the runtime of this algorithm be O(n2)?

public Polynomial add(polynomial p) {
 Polynomial q = new PolynomialAsArray();
 Polynomial min, max;

 if (p.getDegree() > this.getDegree()) {
 max = p;
 min = this;
 } else {
 max = this;
 min = p;
 }

 for (int i = max.getDegree(); i >= 0; i--) {
 q.setCoefficient(i, max.getCoefficient(i));
 }

 for (int i = min.getDegree(); i >= 0; i--) {

q.setCoefficient(i,
min.getCoefficient(i) + q.getCoefficient(i)

);
 }

return q;

}

 p 11 of 11

Additional Information

xx ee
dx
d

=
x

x
dx
d 1)ln(= 1−= nn nxx

dx
d !nx

dx
d n

n

n

= 12
2

1)12(1 −=
−− −n

m

τfetch, τstore, τ+, τ–, τ*, τ/, τ<, τcall, τreturn, τ[], τnew

6
)12)(1(

1

2 ++
=∑

=

nnni
n

i

4
)1(22

1

3 +
=∑

=

nni
n

i

122 1

0

−= +

=
∑ n

n

i

i

2

1

0)1(
)1(

−
+−−

=
+

=
∑ r

rrnrnir
nn

i

i

