
UNIVERSITY OF WATERLOO

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING

E&CE 250 – ALGORITHMS AND DATA STRUCTURES

Midterm Examination Douglas Wilhelm Harder 1.5 hrs, 2005/02/17
11 pages

Name (last, first):

Student ID:

1.

2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13.

Do all of the questions. The exam is out of 70. Closed book. No aids. The number in
brackets denotes the weight of the problem. If information appears to be missing from a
problem, make a reasonable assumption, state it, and proceed. If the space to answer a
question is insufficient, use the reverse side of the previous page.

The only question which you may ask is “May I go to the washroom?” No other
questions will be answered by either the teaching assistants or the instructor.

You may immediately proceed by detaching the last page of this exam. Otherwise, wait
until you are given notice to open this booklet.

You may abbreviate any class name by using the capital letters only. For example, you
may write QALL instead of QueueAsLinkedLlist, or E instead of Enumeration.
Similarly, you may abbreviate method names by using the initial lower case letter and all
other upper case letters.

For example, you may write

E e = list.gE();

instead of

Enumeration e = list.getEnumeration();

Your variable names must still be distinct from the abbreviated class/method names. You
may not abbreviate any instance variable or parameter names which have been given in
this midterm.

Guidelines for the number of lines of code (lines with at least one alphanumeric character
in them, assuming normal formatting rules) for each solution are given. These are
approximations only, and longer or shorter solutions may exist.

If you need an exception and no guidance is given as to which exception you should use,
use a RuntimeException with an appropriate string.

Asymptotic Analysis

1. [9] Perform an analysis of the algorithm given in Figure 1 using the detailed model of a
computer by filling in the empty lines in Table 1. You may represent array.length
by n. Do not add up your totals.

 1: public static int[] partialSums (int[] array) {
 2: int[] sum = new int[array.length];
 3:
 4: if (array.length % 2 == 1)
 5: throw new RuntimeException(); // analysis done for you
 6:
 7: for (int i = 0; i < array.length; i++) {
 8: for (int j = i; j < array.length; j++)
 9: sum[i] += array[j];
10: }
11:
12: return sum;
13: }
 Figure 1. Source code for partial sums

Line n is odd n is even

2 2τfetch + 2τstore + τcall + T<int[]> 2τfetch + 2τstore + τcall + T<int[]>
4

5 τnew + τcall + T<RE> + τfetch + τreturn N/A
7a

7b

7c

8a

8b

8c

9

12

Table 1. Detailed analysis of algorithm in Figure 1.

For your reference: τfetch, τstore, τ+, τ-, τ*, τ/, τ%, τ<, τ[], τreturn, τnew and
2

)1(

1

+
=∑

=

nni
n

i

.

2. [3] Solve the recurrence relation given in Figure 2 for T(n). You should assume that n
= 2k where k is a nonnegative integer (i.e., 0, 1, 2, ...).







>+







=
= 1

2
2

11
)(nnnT

n
nT

Figure 2. The recurrence relation for the quick-sort algorithm.

3. [2] Suppose a program has an initialization routine which reads the header of n files
and stores this header information in an array of size n. How would you respond to the
comment that this initialization routine runs in O(ln(n)) time? (One or two sentences.)

4. [2] Show, using the limit definition of big-O, that ln(n) = O(n).

5. [6] Order the following six expressions in n such that fi(n) = O(fi+1(n)) where fi(n) is
the expression in the ith box.

2n n ln(n) 5n n2 3 ln(n) 2n2 + 3

1.

2. 3. 4. 5. 6.

Arrays and Linked List

6. [1] Suppose a container is being implemented using an array. Why is it necessary to
set all the entries to null when calling the purge method? Answer with two words:

 ______________ __________________

7. [8] Figure 3 shows an implementation of the Element class for a singly-linked list.
In this case, insertBefore is an O(n) operation. Suppose we implement a doubly-
linked list, where each element points to both the next and previous elements. In this
case, both insertBefore and insertAfter will run in O(1) time. Fill in the
implementation on the next page. Hint: Draw a picture in the space below.

public class Element {
 Object datum;
 Element next;

 public Element(datum, next) {
 this.datum = datum;
 this.next = next;
 }

 public Object getDatum() { return datum; }
 public Element getNext() { return next; }

 public void insertAfter(Object obj) {
 next = new Element(obj, next);

 if (tail = this)
 tail = next;
 }

 public void insertBefore(Object obj) {
 if (head = this) {
 head = new Element(obj, this);
 } else {
 Element ptr;
 for (ptr = head; ptr.next != this; ptr++)
 ; // does nothing
 ptr.next = new Element(obj, this);
 }
 }
}

Figure 3. Element class from a singly-linked list class.

public class Element {
 Object datum;
 Element previous, next;

 public Element(datum, previous, next) {
 this.datum = datum;
 this.previous = previous;
 this.next = next;
 }

 public Object getDatum() { return datum; }
 public Element getPrevious() { return previous; }
 public Element getNext() { return next; }

 public void insertAfter(Object obj) {
 Element tmp = new Element(obj, ,);

 }
 public void insertBefore(Object obj) {
 Element tmp = new Element(obj, ,);

 }
} // Approximately 8 additional lines of code & fill in blanks

Abstract Data Types

8. [4] An abstract data type describes an idea. That idea can be implemented in many
different ways. In class, we have seen how various abstract data type may be
implemented using arrays and linked lists. In some cases, though, some of the
weaknesses of arrays and linked lists may not apply.

Normally, withdrawing an object from a linked list is an O(n) operation, where n is the
number of objects in the linked list. Give one condition where withdrawing an object
from a linked list is an O(1) operation.

Normally, given a cursor pointing into an array-based implementation, inserting after the
cursor is an O(n) operation. Give one condition on the position of the cursor for which
inserting after the cursor an O(1) operation.

Containers and Enumerations

9. Recall that inserting an element into an array is an O(n) operation. It is very common
in industry to therefore temporarily store newly inserted data in a separate container
which allows fast insertions. This temporarily stored data is periodically merged into the
array.

The container AList (below) does exactly this: The data is stored in the array, but the
insert method first stores the data in a queue. The new data is merged into the array
after every ten insertions. The queue is empty after merge is called.

Of course, an enumeration must still iterate through all the elements of the container,
regardless of whether they are in the array or in the queue. Fill in the implementation of
the private AnEnumeration class. Remember that the QueueAsLinkedList has
its own getEnumeration and getCount methods.

Part of the class has been implemented for you. Fill in the rest so that all elements in
both the array and the queue are iterated through. You may assume that the container
does not change during the life of the enumeration, so do not include any error checking.

public class AList extends AbstractContainer {
 protected Object[] array;
 protected Queue tmpQ;

 public AList(int n) {
 array = new Object[n];
 count = 0;
 tmpQ = new QueueAsLinkedList();
 }

 public void insert(Object obj) {
 if (count == array.length) throw new ContainerFullException();
 tmpQ.enqueue(obj); // place in queue and increment count
 count++;
 if (tmpQ.getCount() == 10) merge(); // merge the data with array
 }

 public Enumeration getEnumeration() { return new AnEnumeration(); }

 private class AnEnumeration implements Enumeration {
 private int tmpCount; // add other instance variables here

 public AnEnumeation() {
 tmpCount = 0;

 }

 public boolean hasMoreElements() { return tmpCount != count; }

 public Object nextElement() {
 if (tmpCount == count)
 throw new NoMoreElementsException();

 }
 }
} // Approximately 9 - 11 additional lines of code

Stacks and Queues

10. [3] Consider the following rules for a dynamic stack-as-array class called
DynamicStackAsArray.

1. The stack is initialized to contain an array of size one.
2. If the push method is ever called on a stack which is full, the array size is

doubled before the new object is placed into the stack.
3. If during a call to the pop method, if the array is reduced to being only half

full, the size of the array is halved.

What is the problem with this design? For example, you may wish to consider the code
fragment given in Figure 4.

Stack s = new DynamicStack();
for (int i = 0; i < 8; i++)
 s.push(new Rational(1, i));
for (int i = 0; i < 10; i++) {
 s.push(new Rational(1, i));
 System.out.println(s.pop()); // push, pop, push, pop, ...
}

Figure 4. Example of potentially wasteful code.

Suggest a modification to the pop method which would reduce the severity of this
problem. Full marks are awarded to solutions which are in the same spirit of the original
design.

11. [12] In class we discussed the idea of a queue. A priority queue of order N (where N
is a positive integer, i.e., 1, 2, 3, ...) is a queue were each object is associated with a
priority, where 0 is the lowest propriety and N – 1 is the highest priority. If two objects,
A and B, of the same priority are placed into a priority queue in that order, then A will be
dequeued first. If two objects, A and B, are placed into a priority queue such that A has a
higher priority than B, then, regardless of the order A and B were placed into the priority
queue, A will be dequeued first.

The interface for a priority queue is given in Figure 5. Note that because it extends the
Queue interface, it contains all the methods of that interface.

public interface PriorityQueue extends Queue {
 void enqueue(Object obj, int n);
}

Figure 5. Interface for a priority queue.

Using the QueueAsLinkedList class, design a priority queue which implements this
interface by doing the following: Create an array of N QueueAsLinkedLists. An
object of priority i is placed into the ith queue. The Dequeue method finds the first
nonempty queue with highest priority and dequeues an object off of that queue.

The one-argument enqueue method is already implemented for you – it simply calls the
two argument enqueue method with the lowest priority, namely 0. Do not implement
the getHead method.

You may need the ContainterFullException or the ContainerEmptyException. For
other exceptions, use a RuntimeException with an appropriate string.

public class PriorityQueueAsLinkedList
 implements PriorityQueue
 extends AbstractContainer
{
 // put instance variable(s) here

 public PriorityQueueAsLinkedList(int n) {

 }

 // this method simply calls the next method with priority 0
 public void enqueue(Object obj) {
 enqueue(obj, 0);
 }

 public void enqueue(Object obj, int n) {

 }

 public Object dequeue() {

 }
 public Object getHead() { /* DO NOT IMPLEMENT */ }
} // Approximately 15 lines of code total

Ordered Lists and Cursors

12. [8] Suppose you have an ordered list implemented as an array and a cursor into that
list which stores an offset into the array. Implement the withdraw and insertAfter
methods of the cursor. The value of offset should not change after these methods are
called. You may need to use either the ContainerFullException or the
ContainerEmptyException.

public class OrderedListAsArray implements AbstractContainer {
 protected Object [] array;

 public OrderedListAsArray(int n) {
 array = new Comparable[n];
 count = 0;
 }

 public Cursor findPosition(Object obj) {
 for (int i = 0; i < count; i++)
 if (array[i].equals(obj))
 return new OLAACursor(i);

 throw new ObjectNotFoundException();
 }

 private class OLAACursor implements Cursor {
 protected int offset;

 public OLAACursor(int i) {
 offset = i;
 }

 public Object getDatum() {
 if (offset >= count)
 throw new IndexOutOfBoundsException();
 return array[offset];
 }

 public void withdraw() {
 if (offset >= count)
 throw new IndexOutOfBoundsException();

 }

 public void insertAfter() {
 if (offset >= count)
 throw new IndexOutOfBoundsException();

 }
 }
} // Approximately 10 lines of code

Project 1.

13. Implement the Comparable interface for the Rational class such that the

following property holds:
d
c

b
a
< if and only if a d < b c.

For rationals p and q, your method should return:

p.compareTo(q) = -1 if p < q
p.compareTo(q) = 0 if p = q
p.compareTo(q) = 1 if p > q

In this case, you must worry about overflow, but fortunately, if you use casting to long,
this will be sufficient to overcome this situation.

public class Rational implements Comparable {
 protected int numerator;
 protected int denominator;

 // other stuff

 public int compareTo(Object obj) {
 if (obj instanceof Rational) {
 Rational r = (Rational) obj;

 } else {
 throw new ClassCastException();
 }
 }
} // Approximately 6 lines of code.

Interfaces and Classes

public class LinkedList {
 protected Element head;
 protected Element tail;

 public LinkedList();
 public void purge();
 public Element getHead();
 public Element getTail();
 public boolean isEmpty();
 public Object getFirst();
 public Object getLast();
 public void prepend(Object obj);
 public void append(Object obj);
 public void assign(LinkedList list);
 public void extract(Object obj);

 public class Element {
 Object datum; // visible in class LinkedList
 Element next; // visible in class LinkedList

 public Object getDatum();
 public Element getNext();
 public void insertBefore(Object obj);
 public void insertAfter(Object obj);
 }
}

public interface Container {
 int getCount();
 boolean isEmpty();
 boolean isFull();
 void purge();
 Enumeration getEnumeration();
}

public abstract class AbstractContainer implements Container {
 int count = 0;
 public int getCount() { return count; }
 public int isEmpty() { return getCount() == 0; }
 public isFull() { return false; }
}

public interface Enumeration {
 boolean hasMoreElements();
 Object nextElement();
}

public interface Comparable {
 int compareTo(Comparable obj);
}

X.compareTo(Y)

YX
)X.equals(Y

YX

0
0
0

>

<








>
=
<

public interface Stack extends Container {
 void push(Object obj);
 Object pop();
 Object getTop();
}

public interface Queue extends Container {
 void enqueue(Object obj);
 Object dequeue();
 Object getHead();
}

public interface SearchableContainer extends Container {
 boolean isMember(Comparable obj);
 void insert(Comparable obj);
 void withdraw(Comparable obj);
 Comparable find(Comparable obj);
}

public interface OrderedList {
 Comparable get(int i);
 Cursor findPosition(Comparable obj);
}

public interface Cursor {
 Comparable getDatum();
 void insertAfter(Comparable obj);
 void insertBefore(Comparable obj);
 void withdraw();
}

