
 ECE 250 Data Structures and Algorithms

 Page 1 of 9

ECE 250
Data Structures and Algorithms
MIDTERM EXAMINATION

2009-02-27/17:30-18:45
MC 1085 20100000 to 20259999 72 students
MC 2054 20260000 to 20268499 48 students
MC 4064 20268500 to 20272999 18 students
MC 4045 20273000 to 20289999 58 students

Instructions:
 No aides.
 Turn off all electronic media and store them under your desk.

If there is insufficient room, use the back of the previous page.
 You may ask only one question during the examination:

 “May I go to the washroom?”

 If you think a question is ambiguous, write down your assumptions and continue.

Do not leave during the first 30 minutes of the examination.
Do not leave during the last 15 minutes of the examination.
Do not stand up until all exams have been picked up.
Bonus of 1 for obeying all these instructions.
You must stop writing when you are told that the examination is finished. No exceptions,
not even for your name. (-5 mark penalty.)

Attention: The questions are in the order of the course material, not in order of difficulty.
I have read and understood all of these instructions and will accept a grade of 0 if I fail to
follow them:

 Surname: ___

 Given Name(s): ___

 UW Student ID Number: ___

 Signature: ___

 ECE 250 Data Structures and Algorithms

 Page 2 of 9

Relationships

1. [4] Fill in the blanks with the most appropriate word or phrase.

C# classes and directories in Unix are all related to a single object, either the Object
class or a root directory. Therefore, these may be described using a _________________
relationship. Two C++ classes or two Windows directories may not share a common
ancestor (base class or drive) and therefore may only be described using a
_________________ relationship.

Given two functions f(n) and g(n), the relationship f(n) = Θ(g(n)) forms an
_________________ relation which allows us to group related functions. The
relationship where a person A is related to person B if they share the same mother
_________________ (use does or does not) satisfy this same type of relationship.

Runtime Analysis

2. [4] Fill in the Table 1 to include four more functions fk(n) for k = 2, 3, 4, 5 so that the
relationship fk(n) = o(fk + 1(n)) holds.

Table 2. Functions.

f1(n) = n

f2(n) f3(n) f4(n) f5(n)
f6(n) = n2ln(n)

3. [3] Determine, using limits, which Landau symbol, o, O, Θ, ω, or Ω best describes the
relationship between n2 ln(n) and n3. State your answer in the form n2 ln(n) = ?(n3).
You must use l’Hopital’s rule where necessary.

4. [2] While lg(n) = Θ(log10(n)), it is not true that 2n = Θ(10n). Show this. Which
Landau symbol would you use to describe the relationship 2n = ?(10n)?

 ECE 250 Data Structures and Algorithms

 Page 3 of 9

5. [5] Associate each of the five run times

 a. T(n) = Θ(n) __________
 b. T(n) = O(n2) __________
 c. T(n) = Θ(n2) __________
 d. T(n) = T(n/2) + Θ(1) __________
 e. T(n) = T(n – 1) + Θ(n) __________

with the five functions f1, f2, f3, f4, and f5 listed here:

int f1(int n) {
 int sum = 0;
 for (int i = 0; i < n; ++i) {
 for (int j = std::min(i, n - i); j < std::max(i, n - i); j++) {
 ++sum;
 }
 }
 return sum;
}

int f2(int n) {
 int sum = 0;

 for (int i = 0; i < n; ++i) {
 ++sum;
 }

 return sum + f2(n – 1);
}

int f3(int n) {
 int sum = 0;
 for (int i = 0; i < n; ++i) {
 for (int j = 0; j < n; ++j) {
 if ((i + j) * 123456789 % 1035 == 0) {
 break;
 } else {
 ++sum;
 }
 }
 }
 return sum;
}

int f4(int n) {
 return 1 + f4(n/2);
}

int f5(int n) {
 int sum = 0;
 for (int i = 0; i < n; ++i) {
 for (int j = i – 1; j <= i + 1; ++j) {
 ++sum;
 }
 }
 return sum;
}

 ECE 250 Data Structures and Algorithms

 Page 4 of 9

6. [4] Using a proof by induction, show that ()12222
0

+−=∑
=

nn
n

k

k nk .

Arrays and Linked Lists

For your information, these are the declarations of the Single_list and
Single_node classes from Project 1.

template <typename Object>
class Single_list {
 private:
 Single_node<Object> * list_head;
 Single_node<Object> * list_tail;
 int count;

 public:
 Single_list();
 Single_list(const Single_list & list);
 ~Single_list();

 Single_list & operator = (const Single_list & rhs);

 int size() const;
 bool empty() const;
 Object front() const;
 Object back() const;
 Single_node<Object> * head() const;
 Single_node<Object> * tail() const;

 bool member(const Object & obj) const;

 void push_front(const Object & obj);
 void push_back(const Object & obj);
 Object pop_front();
 bool remove(const Object & obj);
};

template <typename Object>
class Single_node {
 private:
 Object element;
 Single_node * next_node;

 public:
 Single_node(const Object & e = Object(), Single_node * n = 0);
 Object retrieve() const;
 Single_node *next() const;

 friend class Single_list<Object>;
};

 ECE 250 Data Structures and Algorithms

 Page 5 of 9

7. [4] Implement a function range_find(Object a, Object b) const which
returns the smallest object x in the linked list which satisfy the mathematical condition
a = x = b. If no such object is found, return b. If a > b then throw an invalid_range
exception. The run time must be Θ(n).

template <typename Object>
Object Single_list<Object>::range_find(Object a, Object b)
const {

}

Stacks and Queues

8. [4] Which of the following reverse-Polish expressions are valid; that is, they may be
evaluated using a stack and the result is a single number.

a. 3 5 + 2 + + ×
b. 4 3 + 7 × 5 + 8 +
c. 5 + 9 2 5 + ×
d. 3 6 2 + 7 5 + ×

Tree Definitions

9. [2] How many paths of length 2 and how many paths of length 3 are in the binary
search tree shown in Figure 9?

Figure 9. A binary search tree.

10. [4] Describe with pictures or words how you would find the next-largest element in a
binary search tree given a specific node with a given value. Under what conditions does
a node not have a next-largest element?

 ECE 250 Data Structures and Algorithms

 Page 6 of 9

Tree Traversals

11. [4] For each of the following, indicate whether the function prints the nodes in a pre-
order depth-first traversal order, post-order depth-first traversal order, or breadth-first
traversal order. The stacks and queues work as expected from class.

template<typename Object> _______________________________
void Binary_tree<Object>::f() {
 stack< Binary_tree_node<Object> * > stk;

 stk.push(root);

 while (!stk.empty()) {
 Binary_tree_node<Object> *ptr = stk.pop();
 if (right() != 0) {
 stk.push(right());
 }
 if (left() != 0) {
 stk.push(left ());
 }
 std::cout << ptr->retrieve() << std::endl;
 }
}

template<typename Object> _______________________________
void Binary_tree_node<Object>::g() {
 if (this == 0) {
 return;
 }

 std::cout << retrieve() << std::endl;
 left()->g();
 right()->g();
}

template<typename Object> _______________________________
void Binary_tree_node<Object>::h() {
 if (left() != 0) {
 left()->h();
 }
 if (right() != 0) {
 right()->h();
 }
 std::cout << retrieve() << std::endl;
}

template<typename Object> _______________________________
void Binary_tree<Object>::k() {
 queue< Binary_tree_node<Object> * > que;

 que.enqueue(root);

 while (!que.empty()) {
 Binary_tree_node<Object> *ptr = que.dequeue();
 if (left() != 0) {
 que.enqueue(left());
 }
 if (right() != 0) {
 que.enqueue(right());
 }
 std::cout << ptr->retrieve() << std::endl;
 }
}

 ECE 250 Data Structures and Algorithms

 Page 7 of 9

Binary Search Trees

12. [4] Without any balancing, insert the values 8, 3, 6, 9, 1, 4, 7, 2, 5 into an initially-
empty binary search tree. The elements must be inserted in the given order.

13. [4] There are three cases that must be considered when removing a node from a
binary search tree: the node being removed may be full, it may have one child, or it may
be a leaf node. Are all these cases applicable when removing either the minimum or
maximum elements in a binary search tree?

14. [4] Implement a function void remove_min(...) which removes the minimum
element from a binary search tree and correctly updates the other nodes in the tree. The
removal cannot change the order; i.e., it must continue to be a binary search tree.

template<typename Object>
void Binary_search_tree<Object>::remove_min() {
 if (empty()) {
 throw underflow();
 }
 root()->remove_min(root_node);
}

template<typename Object>
void Binary_search_tree_node<Object>::remove_min(
 Binary_search_tree_node<Object> *&ptr_to_this
) {

}

 ECE 250 Data Structures and Algorithms

 Page 8 of 9

15a. [3] Figure 15 shows an AVL tree. Give an example of a number which, if inserted,
causes no rotations, an example of a number which causes a single rotation, and an
example of a number which causes a double rotation.

Figure 15. An AVL tree.

 No rotations: ______ A single rotation: ______ A double rotation: ______

15b. [2] Given the AVL tree in Figure 15, give two numbers which, if inserted, cause
Node 25 to become unbalanced and which require single rotation at Node 25 to correct.

16. [2] Given the AVL tree in Figure 16, insert the value 22 and, if necessary, rebalance
the tree. Only redraw the subtree including the node which became imbalanced.

Figure 16. An AVL tree.

17. [3] In class, it was indicated that an insertion could be fixed with one AVL rotation
(either single or double). If we delete 73 from the AVL tree in Figure 18, show that we
require two rotations to correct the AVL imbalance.

Figure 18. An AVL tree.

 ECE 250 Data Structures and Algorithms

 Page 9 of 9

Unix

18. [3] Correct the following Unix commands so that they do what you would expect
them to do:

{eceunix:1} cd..
{eceunix:2} tar –cvf *.cpp *.h
{eceunix:3} g++ *.h Single_list_int_driver.cpp

