
 ECE 250 Data Structures and Algorithms

 Page 1 of 4

ECE 250
Data Structures and Algorithms

QUIZ 3
2006-11-05

The quiz is out of 20 marks.
No questions, no aides.
If you are unsure about a question, write down your assumptions and continue.
This examination has two pages of questions.
If you run out of room, use the reverse of this page.

Surname, Given Name Student ID

1.

2. 3. 4. 5. B.

 Sign here to indicate that you have read the above instructions.

 ECE 250 Data Structures and Algorithms

 Page 2 of 4

1. [3] Insert 11 into the following B-tree with M = 5 and L = 3. You need only redraw
those nodes which have changed.

Insert 33 into the following B-tree with M = 5 and L = 3. You need only draw those
nodes which have changed. Do not transfer leaf nodes to the 1st sub-tree of the root node.

2. [4] What are the maximum and minimum number of records which can be stored in a
B tree of height 5 with M = 512 and L = 32. Write your answer as a product of integers
but do not calculate any of the products.

 ECE 250 Data Structures and Algorithms

 Page 3 of 4

3. [3] Use the following diagram to justify that if the insertion of A (A < K < W) causes
an AVL-imbalance at node W that, once the appropriate rotation is made, no further AVL
imbalances can occur for any of the ancestors of W. Assume that the height of the sub-
tree with root W before the insertion of A was h.

4. [6] Insert 10 into each of the following three AVL trees, performing whatever rotations
are necessary to restore AVL balance.

 ECE 250 Data Structures and Algorithms

 Page 4 of 4

5. [4] As described in class, the tree

represents the expression 3(4 + x) + xy. Assume each leaf node is either a numeric value
or a variable name. Assume each internal node is either an addition or a multiplication
operator.

template <typename Object>
class ExpressionTree {
 private:
 ExpressionTree * left_tree;
 ExpressionTree * right_tree;
 // other member variables

 public:
 bool is_leaf(); // true if number or variable
 bool is_numeric (); // true if number and leaf
 bool is_variable (); // true if variable and leaf
 bool is_product(); // true if an operator is product
 // false if it is a sum
 int get_numeric(); // returns the numeric value of a
 // numeric leaf node
 void traversal(const ExpressionTree * & to_this);
 // other member functions
};

The implementation of the traversal function is:

void traversal(const ExpressionTree * & to_this) {
 if (is_leaf()) {
 return;
 }

 left_tree -> traversal(left_tree);
 right_tree -> traversal(right_tree);

 if (is_product()) {
 if (left_tree -> is_numeric() &&
 left_tree -> get_numeric() == 1) {
 to_this = right_tree;
 return;
 }

 if (right_tree -> is_numeric() &&
 right_tree -> get_numeric() == 1) {
 to_this = left_tree;
 return;
 }
 } else {
 if (left_tree -> is_numeric() &&
 left_tree -> get_numeric() == 0) {
 to_this = right_tree;
 return;
 }

 if (right_tree -> is_numeric() &&
 right_tree -> get_numeric() == 0) {
 to_this = left_tree;
 return;
 }
 }
}

Describe, in words, what this function does. You can give an example, if you wish.

