ECE 250

Data Structures and Algorithms

QUIZ 4
2006-11-20
The quiz is out of 21 marks.
No questions, no aides.
If you are unsure about a question, write down your assumptions and continue.
This examination has two pages of questions.
If you run out of room, use the reverse of this page.

Surname, Given Name	Student ID

Sign here to indicate that you have read the above instructions.

1. [3] Insert $003,513,424,637,246,155$ into the following into the following initiallyempty hash table by using a hash function which maps an integer to its least-significant digit. Use linear probing if a collision occurs.

0	1	2	3	4	5	6	7	8	9

2. [3] Insert $003,513,424,637,246,155$ into the following into the following initiallyempty hash table by using a hash function which maps an integer to its least-significant digit. Use double hashing if a collision occurs where the second hash function is the appropriately-modified (as discussed in class) second-least-significant digit.

0	1	2	3	4	5	6	7

3. [2] In a min heap with n elements, what is the number of nodes which must be searched to find the maximum element of the heap? Write your answer as if you were using C++-style integer division (which truncates any fractional part).
4. [3] Given the min heap

	2	3	5	9	8	12	4

find the state of the min heap after one dequeue of the minimum element using the algorithm shown in class. Enter your answer into the following table:

5. [2] Given the unsorted array

5	3	6	2	8	1	4	7	9	0

perform one pass through the array as defined by the bubble sort algorithm. Enter your answer in this table:

6. [4] Convert the following unsorted list into a max-heap using the $\mathbf{O}(n)$ heapification process shown in class:

7	8	4	2	3	1	5	6	9	0

Enter your answer in this table:

7. [4] In Project 3, you implemented an expression tree for integers. The expression class had a member variable root which is a pointer to an instance of the expression tree class. The constructor creates an instance of the expression tree class storing the integer 0 .
```
class Expression {
    private:
            ExpressionTree * root;
    public:
            Expression( int = 0) );
            ~Expression();
            void add( int ); // this + n
            void subtract( int ); // this - n
};
```

As with Project 3, implement the functions add and subtract but with the following changes:

1. If you are adding a negative number to this, convert it to a subtraction of the absolute value of the number.
2. If you are subtracting a negative number from this, convert it into a sum of this and the absolute value of the number.
3. Leave the expression tree unchanged if you are adding or subtracting 0 .

The relevant elements of the expression tree class are:

```
Class ExpressionTree {
    public:
        ExpressionTree( int = 0, ExpressionTree * = 0, ExpressionTree * = 0
    );
        ~ExpressionTree();
        static const int PLUS = 0; // You must use these
        static const int MINUS = 1;
        static const int TIMES = 2;
        static const int DIVIDE = 3;
};
void Expression::add( int n ) {
```

\}
void ExpressionTree: :subtract (int n) \{

