$1.2 \boldsymbol{a} \infty, \infty, 0, \infty, \infty, 0$.
1.2b No, instead you should consider $\lim _{n \rightarrow \infty} \frac{e^{n}}{2^{n}}=\lim _{n \rightarrow \infty}\left(\frac{e}{2}\right)^{n}$, at which point we note $\frac{e}{2}>1$.
$1.2 c$ ii and iii.
1.2d $16 \mathrm{MB}, 8 \mathrm{GiB}$ and 4 KiB .
1.2e $25 \times 51=1275$ and $50 \times 101-1275=3775$.
1.2f $\frac{30^{3}}{3}=9000$ and $\sum_{k=0}^{100} k^{3} \frac{100^{4}}{4}=25 \times 1000000=25000000$.

1.2 g 1

1.2h When $N=0$, the left side is 0 and $2+(0-1) 2^{1}=0$. Assuming it is true for an arbitrary N,

$$
\begin{aligned}
\sum_{k=0}^{N+1} k 2^{k} & =(N+1) 2^{N+1}+\sum_{k=0}^{N} k 2^{k} \\
& =(N+1) 2^{(N+1)}+2+(N-1) 2^{N+1} \\
& =2+2 N 2^{(N+1)} \\
& =2+((N+1)-1) 2^{(N+1)+1}
\end{aligned}
$$

which is the value of the formula for $N+1$.
1.2i Yes, as it samples the value of the function at four points and the sum of the weights equals 1 . An approximately of the value of the function on an interval times the width of the interval is an approximation of the area of the function, so yes. The approximation is $1.3426 \cdots$ while the actual answer is $1.3414 \cdots$.
1.2j $99 \times 50=4950$.

