1.4*a* Taking out 2(n + 1), you are left with the sum from 2 to 2n.

1.4b This is
$$\sum_{k=1}^{n} 3n - 2$$
, so use the same hint as in 1.4*a*.

1.4*c* Taking out $2 \times 3^{n+1}$ leaves you with the sum to *n*.

1.4*d* Use the property that
$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$
.

1.4e Use the property mentioned in 1.4d and split the result into three sums, at which point you can use the property that $\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$.

1.4*f* This one is essentially identical to the one without the $(-1)^k$ in front.

1.4g Expand the formula for n + 1 to get the formula for *n* plus a component divisible by 2.

1.4*h* The formulas are equal when n = 0, and after that the differences grow.

1.4*i* Take out the $(n + 1)^2$ factor to be left with a similar sum to *n*...

1.4*j* Similar to 1.4*i*.

1.4*k* They are equal for n = 1 and after that, one difference grows slower than the other.

1.4*l* Similar to 1.4*g*.

1.4*m* Use
$$\left|\sum_{k=1}^{n+1} x_k\right| = \left|x_{k+1} + \sum_{k=1}^n x_k\right|.$$

1.4*n* Similar to 1.4*i*.

1.4*o* Similar to 1.4*g*.

The remaining questions are left to the reader.