1.4a Taking out $2(n+1)$, you are left with the sum from 2 to $2 n$.
1.4b This is $\sum_{k=1}^{n} 3 n-2$, so use the same hint as in 1.4a.
1.4c Taking out $2 \times 3^{n+1}$ leaves you with the sum to n.
1.4d Use the property that $\binom{n+1}{k}=\binom{n}{k}+\binom{n}{k-1}$.
1.4e Use the property mentioned in $1.4 d$ and split the result into three sums, at which point you can use the property that $\sum_{k=0}^{n}\binom{n}{k}=2^{n}$.
1.4f This one is essentially identical to the one without the $(-1)^{k}$ in front.
1.4g Expand the formula for $n+1$ to get the formula for n plus a component divisible by 2 .
1.4h The formulas are equal when $n=0$, and after that the differences grow.
1.4i Take out the $(n+1)^{2}$ factor to be left with a similar sum to n..
1.4j Similar to $1.4 i$.
1.4k They are equal for $n=1$ and after that, one difference grows slower than the other.
1.4l Similar to $1.4 g$.
1.4m Use $\left|\sum_{k=1}^{n+1} x_{k}\right|=\left|x_{k+1}+\sum_{k=1}^{n} x_{k}\right|$.
$1.4 n$ Similar to $1.4 i$.
1.4o Similar to $1.4 g$.

The remaining questions are left to the reader.

