1.4*a* Prove by induction that the sum of the first *n* even numbers is $n^2 + n$.

1.4b Prove by induction that the sum of the first *n* numbers of the form 1, 4, 7, 10, ... is $\frac{n}{2}(3n-1)$.

1.4c Prove by induction that $2\sum_{k=0}^{n} 3^{k} = 3^{n+1} - 1$.

1.4*d* Prove by induction that
$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} = 0$$
.

1.4e Prove by induction that
$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}$$
.

1.4*f* Prove by induction that $\sum_{k=0}^{n} (-1)^{k} r^{k} = \frac{1 - (-r)^{n+1}}{1 + r}$.

1.4*g* Prove that $n^2 - n$ is even for all integers *n*.

1.4 *h* Show that
$$\sum_{k=0}^{n} k^2 \ge \frac{n^3}{3}$$
 for all $n \ge 0$.

1.4*i* Show that
$$\sum_{k=0}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
 for all $n \ge 0$.

1.4 Show that
$$\sum_{k=1}^{n} 3k^2 - 3k + 1 = n^3$$
 for all $n \ge 1$.

1.4*k* Show that $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \ge \sqrt{n}$ for all $n \ge 1$.

1.4 Show that 4 divides $3^{2n-1} + 1$ for all $n \ge 1$.

1.4*m* Show that
$$\left|\sum_{k=1}^{n} x_{k}\right| \leq \sum_{k=1}^{n} |x_{k}|$$
 for all $n \geq 1$

1.4*n* Show that $2^{n-1} \le n!$ for all $n \ge 1$.

1.4*o* Show that 133 divides $11^{n+1} + 12^{2n+1}$ for all $n \ge 0$.

1.4*p* If F(n) is the n^{th} Fibonacci number where F(0) = F(1) = 1, show that F(n) and F(n + 1) are relatively prime (that is, they share no common factors) for all $n \ge 0$.

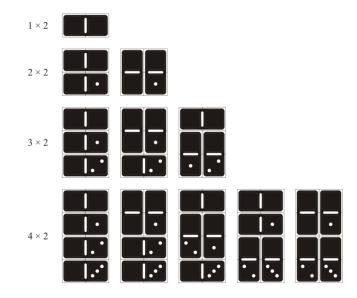
1.4q Show that every third Fibonacci number is even.

1.4*r* Show that $x^n - y^n$ is divisible by x - y for all $n \ge 0$.

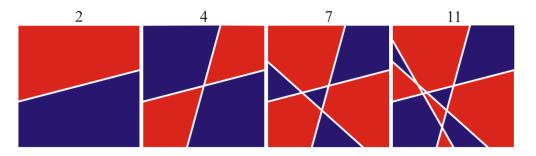
1.4s Can you use a proof by induction to prove that $n^2 \ge 3n - 2$ for all *n*?

1.4*t* Can you use a proof by induction to prove that $n^2 \ge 7n - 11$ for all *n*?

1.4*u* Come up with a formula that gives d_n , the number of unique ways in which dominos can be used to tile an $n \times 2$ grid and then demonstrate that your formula is correct using induction. The image shows that $d_1 = 1$, $d_2 = 2$, $d_3 = 3$ and $d_4 = 5$.



1.4*v* A set of *n* lines can be used to divide a plane into a maximum of $\frac{n^2 + n + 2}{2}$ regions, as is shown in the image. Come up with a recursive formula and show your formula is correct using induction.



1.4*w* Using induction, demonstrate that any $2^n \times 2^n$ grid with one square deleted can be tiled with triominos, as is shown for n = 0, 1 and 2 and suggested for n = 3 in the following image.

