1.4 a Prove by induction that the sum of the first n even numbers is $n^{2}+n$.
1.4b Prove by induction that the sum of the first n numbers of the form $1,4,7,10, \ldots$ is $\frac{n}{2}(3 n-1)$.
1.4c Prove by induction that $2 \sum_{k=0}^{n} 3^{k}=3^{n+1}-1$.
1.4d Prove by induction that $\sum_{k=0}^{n}(-1)^{k}\binom{n}{k}=0$.
1.4e Prove by induction that $\sum_{k=0}^{n} k\binom{n}{k}=n 2^{n-1}$.
1.4f Prove by induction that $\sum_{k=0}^{n}(-1)^{k} r^{k}=\frac{1-(-r)^{n+1}}{1+r}$.
1.4g Prove that $n^{2}-n$ is even for all integers n.
1.4 \boldsymbol{h} Show that $\sum_{k=0}^{n} k^{2} \geq \frac{n^{3}}{3}$ for all $n \geq 0$.
1.4i Show that $\sum_{k=0}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$ for all $n \geq 0$.
1.4j Show that $\sum_{k=1}^{n} 3 k^{2}-3 k+1=n^{3}$ for all $n \geq 1$.
1.4 k Show that $\sum_{k=1}^{n} \frac{1}{\sqrt{k}} \geq \sqrt{n}$ for all $n \geq 1$.
1.4l Show that 4 divides $3^{2 n-1}+1$ for all $n \geq 1$.
1.4m Show that $\left|\sum_{k=1}^{n} x_{k}\right| \leq \sum_{k=1}^{n}\left|x_{k}\right|$ for all $n \geq 1$.
1.4n Show that $2^{n-1} \leq n$! for all $n \geq 1$.
1.4o Show that 133 divides $11^{n+1}+12^{2 n+1}$ for all $n \geq 0$.
1.4 p If $F(n)$ is the $n^{\text {th }}$ Fibonacci number where $F(0)=F(1)=1$, show that $F(n)$ and $F(n+1)$ are relatively prime (that is, they share no common factors) for all $n \geq 0$.
1.4 q Show that every third Fibonacci number is even.
1.4r Show that $x^{n}-y^{n}$ is divisible by $x-y$ for all $n \geq 0$.
1.4s Can you use a proof by induction to prove that $n^{2} \geq 3 n-2$ for all n ?
1.4t Can you use a proof by induction to prove that $n^{2} \geq 7 n-11$ for all n ?
1.4u Come up with a formula that gives d_{n}, the number of unique ways in which dominos can be used to tile an $n \times 2$ grid and then demonstrate that your formula is correct using induction. The image shows that $d_{1}=1, d_{2}=2, d_{3}=3$ and $d_{4}=5$.

1.4v A set of n lines can be used to divide a plane into a maximum of $\frac{n^{2}+n+2}{2}$ regions, as is shown in the image. Come up with a recursive formula and show your formula is correct using induction.

1.4 \boldsymbol{w} Using induction, demonstrate that any $2^{n} \times 2^{n}$ grid with one square deleted can be tiled with triominos, as is shown for $n=0,1$ and 2 and suggested for $n=3$ in the following image.

