2.3a When $n=1000$, the relative error is approximately 0.002000988 or approximately 0.2%.
2.3b The answers for 4 and 5 are

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{2 n+4}{5 n \ln (n)+3 n+2}=\lim _{n \rightarrow \infty} \frac{2}{5 \ln (n)+8}=0 \\
& \lim _{n \rightarrow \infty} \frac{n \ln (n)}{n \ln \left(n^{5}\right)}=\lim _{n \rightarrow \infty} \frac{n \ln (n)}{5 n \ln (n)}=\lim _{n \rightarrow \infty} \frac{1}{5}=\frac{1}{5}
\end{aligned}
$$

2.3d In each case, determine the appropriate relationship between $f(n)+g(n)$ and $h(n)$.

1. $f(n)+g(n)=\boldsymbol{\Theta}(h(n))$
2. $f(n)+g(n)=\boldsymbol{\Omega}(h(n))$
3. $f(n)+g(n)=\boldsymbol{\Theta}(h(n))$
4. $f(n)+g(n)=\mathbf{O}(h(n))$
5. $f(n)+g(n)=\boldsymbol{\omega}(h(n))$
2.3d The third answer is that $f_{1}(n)+f_{2}(n)=\mathbf{o}\left(g_{1}(n)+g_{2}(n)\right)$ because $g_{2}(n)=\mathbf{o}\left(g_{1}(n)\right)$.
2.3f In the first case, $2=\lg (4)<\lg (6)$, so $5 n^{2}+4 n+3 n^{\lg (6)}+4+\ln (n)=\Theta\left(n^{\lg (6)}\right)$. The second and third are $\Theta(n \ln (n))$ and $\Theta\left(n^{6}\right)$, respectively.
$\mathbf{2 . 3} g$ The third answer is that no relationship can be determined.
