2.3*a* When n = 1000, the relative error is approximately 0.002000988 or approximately 0.2 %.

2.3b The answers for 4 and 5 are

$$\lim_{n \to \infty} \frac{2n+4}{5n\ln(n)+3n+2} = \lim_{n \to \infty} \frac{2}{5\ln(n)+8} = 0$$
$$\lim_{n \to \infty} \frac{n\ln(n)}{n\ln(n^5)} = \lim_{n \to \infty} \frac{n\ln(n)}{5n\ln(n)} = \lim_{n \to \infty} \frac{1}{5} = \frac{1}{5}$$

2.3*d* In each case, determine the appropriate relationship between f(n) + g(n) and h(n).

- 1. $f(n) + g(n) = \Theta(h(n))$
- 2. $f(n) + g(n) = \mathbf{\Omega}(h(n))$
- 3. $f(n) + g(n) = \Theta(h(n))$
- 4. $f(n) + g(n) = \mathbf{O}(h(n))$
- 5. $f(n) + g(n) = \omega(h(n))$

2.3d The third answer is that $f_1(n) + f_2(n) = \mathbf{o}(g_1(n) + g_2(n))$ because $g_2(n) = \mathbf{o}(g_1(n))$.

2.3*f* In the first case, $2 = \lg(4) < \lg(6)$, so $5n^2 + 4n + 3n^{\lg(6)} + 4 + \ln(n) = \Theta(n^{\lg(6)})$. The second and third are $\Theta(n \ln(n))$ and $\Theta(n^6)$, respectively.

2.3*g* The third answer is that no relationship can be determined.