2.3a What is the relative error between $n^{2}+2 n+5$ and an approximation n^{2} when $n=1000$ and when $n=$ 1000000 ? The relative error is the difference between the actual value and the approximation over the actual value.
2.3b By finding the limit (using l'Hôpital's rule where necessary), determine the most appropriate Landau symbol to describe the relationship between the following pairs of functions:

1. $n+\ln (n)$ and $n+5$
2. $n^{2}+2$ and e^{n}
3. $2 n^{2}+3 n+1$ and $3 n^{\lg (3)}+n$
4. $2 n+4$ and $5 n \ln (n)+3 n+2$
5. $n \ln (n)$ and $n \ln \left(n^{5}\right)$
6. $\ln (n)$ and $\lg (n)$
7. $n^{2} \lg (n)$ and $n^{2} \log _{10}(n)$
2.3 \boldsymbol{c} Sort the following lists of numbers those that are in the same equivalence class and then order those equivalence classes.
8. $n^{5} \ln (n), n^{0.5}, n \log _{10}(n), n \ln \left(n^{5}\right), n, n^{\ln (4)}, 1, n \ln (n), n^{2} \ln (n), n^{3}, n^{2}, n^{\lg (4)}$
2.3d In each case, determine the appropriate relationship between $f(n)+g(n)$ and $h(n)$.
9. $f(n)=\boldsymbol{\Theta}(h(n))$ and $g(n)=\boldsymbol{\Theta}(h(n))$
10. $f(n)=\boldsymbol{\Theta}(h(n))$ and $g(n)=\boldsymbol{\Omega}(h(n))$
11. $f(n)=\boldsymbol{\Theta}(h(n))$ and $g(n)=\mathbf{o}(h(n))$
12. $f(n)=\mathbf{O}(h(n))$ and $g(n)=\mathbf{o}(h(n))$
13. $f(n)=\omega(h(n))$ and $g(n)=\mathbf{O}(h(n))$

In some cases, you may be able to say nothing.
2.3 \boldsymbol{e} In each case, determine the appropriate relationship between $f_{1}(n)+f_{2}(n)$ and $g_{1}(n)+g_{2}(n)$ if it is known that $g_{1}(n)=\boldsymbol{\omega}\left(g_{2}(n)\right)$.

1. $f_{1}(n)=\boldsymbol{\Theta}\left(g_{1}(n)\right)$ and $f_{2}(n)=\boldsymbol{\Theta}\left(g_{2}(n)\right)$
2. $f_{1}(n)=\boldsymbol{\Theta}\left(g_{1}(n)\right)$ and $f_{2}(n)=\boldsymbol{\Omega}\left(g_{2}(n)\right)$
3. $f_{1}(n)=\mathbf{o}\left(g_{1}(n)\right)$ and $f_{2}(n)=\boldsymbol{\Theta}\left(g_{2}(n)\right)$
4. $f_{1}(n)=\mathbf{O}\left(g_{1}(n)\right)$ and $f_{2}(n)=\mathbf{o}\left(g_{2}(n)\right)$
5. $f_{1}(n)=\omega\left(g_{1}(n)\right)$ and $f_{2}(n)=\mathbf{O}\left(g_{2}(n)\right)$

In some cases you may not be able to say anything.
2.3 Find the most appropriate representative element that describes each of the following rates of growth. For example, the most appropriate representative of $3 n^{2}+4 n \ln (n)+5 n+2$ is n^{2}.

1. $5 n^{2}+4 n+3 n^{\lg (6)}+4+\ln (n)$
2. $6 n+7 \ln (n)+8 n \ln (n)+9$
3. $4 n^{3}+7 n+514 n^{4}+35 n^{2}+2 n^{6}+5624$
2.3g Given the relationships between $f(n)$ and $g(n)$, and between $g(n)$ and $h(n)$, attempt to deduce a relationship between $f(n)$ and $h(n)$ if possible. Write the relationship as $f(n)=\boldsymbol{?}(h(n))$.
4. $f(n)=\mathbf{o}(g(n))$ and $h(n)=\boldsymbol{\omega}(g(n))$
5. $g(n)=\boldsymbol{\Theta}(f(n))$ and $g(n)=\mathbf{o}(h(n))$
6. $f(n)=\mathbf{o}(g(n))$ and $h(n)=\mathbf{O}(g(n))$
7. $g(n)=\boldsymbol{\Omega}(f(n))$ and $h(n)=\boldsymbol{\Theta}(g(n))$
8. $f(n)=\boldsymbol{\Omega}(g(n))$ and $g(n)=\boldsymbol{\omega}(h(n))$
9. $g(n)=\boldsymbol{\Omega}(f(n))$ and $g(n)=\mathbf{O}(h(n))$

Hint, if you're having difficulty, translate the question into, for example, $f<g$ and $h>g$ and ask the same question if f, g, and h were real numbers. In some cases, you may find no reasonable deduction, for example, if $f<g$ and $h<g$, no information is given about the relationship between f and h.

