
© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 3

3.2b For 6 to have been popped, it would have been necessary for 5 to be pushed onto the stack first,

before 6. Consequently, a pop following the case where 6 was popped would result in 5 being popped,

not 4.

3.2c Hint: just update the appropriate pointers and be sure to set the pointers in the argument list

(which is passed by reference) to nullptr and the size to zero.

3.2d If the argument was passed by value, a copy would be made and therefore the run time would be

(n), even if we did not observe that in our code.

3.2f An undo operation follows that of a stack: it tracks a stack of the web pages that we have previously

visited. For the redo operations, we could continue to keep the visited web pages in the stack, but above

the top pointer. Now, to go forward (or redo), we just go up, not down, the stack. The only proviso is

that we cannot “redo” an operation following a visit by the user. For example, suppose the user visits:

 http://uwaterloo.ca

 http://ece.uwaterloo.ca/~dwharder

 http://www.wikipedia.org

 http://www.theskepticsguide.org

So, now the top of the stack points to the Skeptic’s Guide to the Universe (you’re escape to reality). If the

user now goes back in the history three times, the top pointer is now at uwaterloo.ca again. If the user

goes forward, we just move up the stack again to the author’s web site, but now if we visit a new web site,

say skepchick.org, everything above the author’s web site is removed and replaced with skepchick.org,

yielding:

 http://uwaterloo.ca

 http://ece.uwaterloo.ca/~dwharder

 http://skepchick.org

3.2h The result would be:

template <typename Type>
void Stack<Type>::push(Type const &obj) {
 if (size() == capacity()) {
 double_capacity();
 }

 array[stack_size] = obj;
 ++stack_size;
}

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 3

3.2j In the first case, note that 3/3, 4/3 and 5/3 all equal 1, and yet, some programmers may not realize

that 1 >= 5/3 will return true.

In the second case, floating-point division can cause round-off errors. For example, using decimal

arithmetic, 1/3 = 0.3333333333···, but floating-point numbers only record a finite number of digits (say,

10). When we multiply the result again by 3, we get 0.9999999999.

In the third case, we do not have issues with either integer division or floating-point division.

2.2l The number of copies made per insertion will be

13

1

13 1
13 13 13

2

n

k

n n

k

n n

.

This is maximized whenever n is as small as possible for a given fixed numerator, namely, when n is of

the form 13k + 1, in which case we have

13 1 6 1 6

2 13 1 2 13 26 13

k k k n

k

,

Therefore, n/26 is a reasonable estimate as to the number of copies per insertion. The worst-case number

of unused memory locations is 12.

3.2n The state of the stack is:

<xhtml>
<body>
<p>
<i>

3.2p The state of the stack is

 {
 {
 {
 (
 [

(Indenting would make this question too easy…which is probably why you should use proper

indentations in your source code.)

3.2r The number of function calls is nine:

F(4)

 F(3)

 F(2)

 F(1)

 F(0)

 F(1)

 F(2)

 F(1)

 F(0)

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 3

3.2t The results are 31, 31 and 35.

3.2u a.t = 3 + 4*sin(s)

