
© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 4

4.3a Perform depth-first, pre-order depth-first and post-order depth-first traversals on the tree shown in

Figure 1.

 Figure 1. A general tree.

4.3b What is the maximum size of the queue if a queue is used for performing a breadth-first traversal on

the tree in Figure 1?

4.3c You are given that a tree has pre- and post-order depth first traversals of

 A B D E G C F

 D G E B F C A

respectively. Can you determine the original tree from this information?

Hint: if x is a descendant of y, then where will y sit relative to x in both of these orders?

4.3c You are given that a tree has pre-order depth-first and breadth-first traversals of

 A B C D E G F

 A B C D E F G

respectively. Can you determine the original tree from this information?

4.3e Write a traversal that prints out the leaf nodes in the order in which they appear in an ordered general

tree from left-to-right.

template <typename Type>
void Simple_tree<Type>::print_leaves() const {

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 4

4.3f Right a depth-first traversal that:

1. Prints out the elements stored in the nodes at depth n where n is a parameter passed by the user,

and

2. Does not visit any nodes beyond depth n.

Hint: What information do you have to pass to the children?

template <typename Type>
void Simple_tree<Type>::print_at_depth(int n) const {

4.3g For each of the following, indicate whether the function prints the nodes in a pre-order depth-first

traversal order, post-order depth-first traversal order, or a breadth-first traversal order. The stacks and

queues work as expected from class. Assume that the Simple_tree data structure uses a doubly linked list

where each node has both next and previous pointers.

template<typename Type>
void Simple_tree<Type>::first_traversal() {
 Single_list< Simple_tree * > list;
 list.push_front(this);

 while (!list.empty()) {
 Simple_tree *ptr = list.pop_front();
 std::cout << ptr->retrieve() << std::endl;

 for (Double_node< Simple_tree * > *node = ptr->children.tail();
 node != nullptr;
 node = node->previous()) {
 list.push_front(node->retrieve());
 }
 }
}

template<typename Type>
void Simple_tree<Type>::second_traversal() {
 std::cout << ptr->retrieve() << std::endl;

 for (Double_node< Simple_tree * > *node = children.head();
 node != nullptr;
 node = node->next()
) {
 node->retrieve()->second_traversal();
 }
}

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 4

template<typename Type>
void Simple_tree<Type>::third_traversal() {
 Single_list< Simple_tree * > list;
 list.push_back(this);

 while (!list.empty()) {
 Simple_tree *ptr = list.pop_front();
 std::cout << ptr->retrieve() << list::endl;

 for (Double_node< Simple_tree * > *node = ptr->children.head();
 node != nullptr;
 node = node->next()
) {
 list.push_back(node->retrieve());
 }
 }
}

template<typename Type>
void Simple_tree<Type>::fourth_traversal() {
 Single_list< Simple_tree * > list;
 list.push_front(this);

 while (!list.empty()) {
 Simple_tree *ptr = list.pop_front();

 for (Double_node< Simple_tree * > *node = ptr->children.tail();
 node != nullptr;
 node = node->previous()) {
 list.push_front(node->retrieve());
 }

 std::cout << ptr->retrieve() << std::endl;
 }
}

template<typename Type>
void Simple_tree<Type>::fifth_traversal() {
 for (Double_node< Simple_tree * > *node = children.head();
 node != nullptr;
 node = node->next()
) {
 node->retrieve()->fifth_traversal();
 }

 std::cout << ptr->retrieve() << std::endl;
}

4.3h Under what conditions would a pre-order and a breadth-first traversal be the same?

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 4 of 4

4.3i Suppose a directory structure has N files stored in n directories. Answer the following questions:

a. What is the run time of a traversal that prints out the directory names?

b. What is the run time of a traversal that prints out the file names?

c. How does your answer to Part b of this question change if you know that N = (n)?

