
© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 3

5.1a What differentiates a binary tree from a general tree where each node has at most two sub-trees?

5.1b One benefit of having every member function of a binary tree check if the current node is empty

(that is, this == nullptr) is that a function can be written as:

template <typename Type>
int Binary_node<Type>::height() const {
 return empty() ? -1 :
 1 + std::max(left()->height(), right()->height());
}

as opposed to explicitly having to check:

template <typename Type>
int Binary_node<Type>::height() const {
 return 1 + ((left() == nullptr) ? 0 : left()->height())
 + ((right() == nullptr) ? 0 : right()->height());
}

What are the negative effects of always having each member function check whether it is being called on

an empty node or not?

5.1c What are the least and greatest number of leaf nodes in a binary tree with n nodes?

5.1d Is there any restriction as to the number of nodes in a full binary tree (where each node has either

zero or two children)?

5.1e What is the relationship between the number of nodes in a full binary tree and the number of leaf

nodes?

5.1f What is the maximum depth of a full binary tree?

5.1g Write a member function that returns the number of leaf nodes that are descendant from the node the

member function is called on.

template <typename Type>
int Binary_node<Type>::leaf_count() const {

5.1h A Huffman encoding of a document is a means of compression by allocating fewer bits to encode

letters that appear often and, thus, requiring more bits for letters that occur only seldom. A Huffman tree

is a full binary tree where each internal node is a decision point and each leaf node is a letter. In order to

decode a string of bits, begin at the root:

1. If the node is a letter, output that letter, otherwise

2. If the next bit is a 0, move to the left sub-tree and if the bit is a 1, move to the right sub-tree and

go back to Step 1.

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 3

The following seen in Figure 1 is taken from the chapter Huffman Coding in the text CS 573 Algorithms

by Sariel Har-Peled and is a Huffman tree for the frequency of letters in Charles Dickens book “A Tale of

Two Cities”.

Figure 1. A Huffman tree for the encoding of “A Tale of Two Cities”—letters only.

Thus, “It was the best of times” would be coded as

I T W A S T H E B E S T O F T I M E S
1011 000 00101 1110 1000 000 1001 011 101000 011 1000 000 1101 111111 000 1011 01000 011 1000

These would be strung together as:

101100000101111010000001001011101000011100000011011111110001011010000111000

Note that this uses 75 bits to encode these 19 letters. What is the average number of bits per character,

and what is the savings if we were to use 8-bit ASCII encoding for each character?

To decode this, start at the root. The first four bits indicates we should go right-left-right-right, as shown

in Figure 2.

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 3

Figure 2. Decoding 1011.

Arriving at “I”, we write that letter down, and continue. The next three bits, 000, take us left-left-left

from the root to the letter “T”. Use this technique (and perhaps a good guess) to decode the text:

1011000101110001110111111111001011111111110010110100001100000001101010001001101111001

1111000010011110000101100111101

What is the best-case scenario if one bit is changed in a Huffman encoding of a document? What is the

worst case?

5.1i Without using a calculator, is an approximation of lg(n) for n = 4000, n = 256 000 and

n = 8 000 000?

