5.2b The base case: a perfect binary tree with height $h=0$ has one leaf node, and $2^{0}=1$.

Assume that a perfect binary tree of height h has 2^{h} leaf nodes.
For $h>0$, a perfect binary tree of height $h+1$ has two sub-trees of height h. As the root is not a leaf node, the total number of leaf nodes is the sum of the number of leaf nodes in each of the children:

$$
2^{h}+2^{h}=2 \cdot 2^{h}=2^{h+1}
$$

which is the formula we expect.
5.2d Just sum the nodes at each of the depths and see that this is a geometric sum:

$$
\sum_{k=0}^{h} 2^{k}=\frac{2^{h+1}-1}{2-1}=2^{h+1}-1 .
$$

5.2f As h becomes large, the average path length is $h-1$ based the definition of depth and on the calculations given in class.

5.2h

$\lceil\lg (1001)]-1=10-1=9$
$\lceil\lg (6000001)]-1=23-1=22$ because $4<6<8$.
$\lceil\lg (20000000001)]-1=35-1=34$ because $16<20<32$.

