5.2*a* Prove that a perfect binary tree of height *h* has $2^{h+1} - 1$ nodes by using induction together with the recursive definition that a perfect tree of height *h* has two sub-trees that are themselves perfect binary trees of height h - 1.

5.2b Prove that a perfect binary tree of height *h* has 2^h leaf nodes by using induction together with the recursive definition that a perfect tree of height *h* has two sub-trees that are themselves perfect binary trees of height h - 1.

5.2*c* Prove that a perfect binary tree of height *h* has $2^{h} - 1$ internal nodes by using induction together with the recursive definition that a perfect tree of height *h* has two sub-trees that are themselves perfect binary trees of height h - 1.

5.2*d* A perfect binary tree has 2^k nodes at depth *k* for k = 0, ..., h. Use this to prove that a perfect binary tree of height *h* has $2^{h+1} - 1$ nodes.

5.2e Explain why we use the formula

$$\sum_{k=0}^{h} k 2^{k} = 2 + (h-1)2^{h+1}$$

when finding the average depth of a node in a perfect binary tree?

5.2f With a perfect binary tree of height h, if you randomly select a node within the tree, what is the average length of the path from the root node to that node?

5.2*g* The height of a perfect binary tree is lg(n + 1) - 1. Show that this is $\Theta(ln(n))$ by using l'Hôpital's rule.

5.2*h* The height of a perfect binary tree is lg(n + 1) - 1. Given binary trees with n = 1000, $n = 6\,000\,000$, and $n = 20\,000\,000\,000$ nodes, what is the minimum possible height of binary trees that stores these number of nodes? Do not use your calculator.