5.2a Prove that a perfect binary tree of height h has $2^{h+1}-1$ nodes by using induction together with the recursive definition that a perfect tree of height h has two sub-trees that are themselves perfect binary trees of height $h-1$.
5.2b Prove that a perfect binary tree of height h has 2^{h} leaf nodes by using induction together with the recursive definition that a perfect tree of height h has two sub-trees that are themselves perfect binary trees of height $h-1$.
5.2c Prove that a perfect binary tree of height h has $2^{h}-1$ internal nodes by using induction together with the recursive definition that a perfect tree of height h has two sub-trees that are themselves perfect binary trees of height $h-1$.
5.2d A perfect binary tree has 2^{k} nodes at depth k for $k=0, \ldots, h$. Use this to prove that a perfect binary tree of height h has $2^{h+1}-1$ nodes.
5.2e Explain why we use the formula

$$
\sum_{k=0}^{h} k 2^{k}=2+(h-1) 2^{h+1}
$$

when finding the average depth of a node in a perfect binary tree?
5.2 With a perfect binary tree of height h, if you randomly select a node within the tree, what is the average length of the path from the root node to that node?
5.2g The height of a perfect binary tree is $\lg (n+1)-1$. Show that this is $\Theta(\ln (n))$ by using l'Hôpital's rule.
5.2h The height of a perfect binary tree is $\lg (n+1)-1$. Given binary trees with $n=1000, n=6000000$, and $n=20000000000$ nodes, what is the minimum possible height of binary trees that stores these number of nodes? Do not use your calculator.

