
© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 2

5.3b When h is 0, there is only a single node, and 2
0
 = 2

1
 – 1 = 1.

Assume that in general, a complete binary tree of height h has between 2
h
 and 2

h + 1
 – 1 nodes.

There are two cases for complete binary trees of height h + 1:

1. The left sub-tree has between 2
h
 and 2

h + 1
 – 1 nodes and the right sub-tree has 2

h
 – 1 nodes, or

2. The left sub-tree has 2
h + 1

 – 1 nodes and the right sub-tree has between 2
h
 and 2

h + 1
 – 1 nodes.

Taking into account the root node,

the first case has between 1 + 2
h
 + 2

h
 – 1 = 2

h + 1
 and 1 + 2

h + 1
 – 1 + 2

h
 – 1 = 3·2

h
 – 1 nodes, and

the second case has between 1 + 2
h + 1

 – 1 + 2
h
 = 3·2

h
 nodes and 1 + 2

h + 1
 – 1 + 2

h + 1
 – 1 = 2

h + 2
 – 1 nodes.

Thus, the number of nodes runs between 2
h + 1

 and 2
h + 2

 – 1, which is the expected result.

5.3d
2

n

5.3f The actual tree is

42 is at index 4, so its parent is at index 4/2 = 2 and its children are at 2·4 = 8 and 2·4 + 1 = 9

54 is at index 5, so its parent is at index 5/2 = 2 and its children are at indices 2·5 = 10 and 2·5 + 1 = 11,

but the size of the tree is 10, so it has only one child.

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 2

5.3g Some implementations are:

template <typename Type, int N>
Type Complete_binary_tree::parent(Type const &obj) {
 int n = find(obj);

 if (n == 0) {
 throw illegal_argument();
 }

 if (n == 1) {
 throw underflow();
 }

 return array[n/2];
}

template <typename Type, int N>
Type Complete_binary_tree::parent(Type const &obj) {
 int n = find(obj);

 if (n == 0) {
 throw illegal_argument();
 }

 if (2*n + 1 > complete_size) {
 throw underflow();
 }

 return array[2*n + 1];
}

