
© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 3

4.6a Consider a perfect binary tree with n nodes and of height h and then add one more leaf node onto the

left-most sub-tree. What are the values of lg n and lg 1n .

4.6b A complete binary tree of height h has either:

1. A complete binary tree of height h – 1 as a left sub-tree, and a perfect binary tree of height h – 2

as a right sub-tree, or

2. A perfect binary tree of height h – 1 as a left sub-tree, and a complete binary tree of height h – 1

as a right sub-tree.

Use this to prove by induction that a complete tree of height h has between 2
h
 and 2

h + 1
 – 1 nodes.

4.6c What is the relationship between the number of nodes in a complete binary tree and the number of

internal nodes that are not full nodes?

4.6d What is the number of leaf nodes in a complete binary tree with n nodes?

4.6e Use our array representation to store the complete binary tree in Figure 1 using an array as discussed

in class.

Figure 1. A complete binary tree.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Which entry k is 42 located in?

Using k, what is the entry of the parent of 42? What are the entries of the children of 42?

4.6f The following is an array representation of a complete binary tree. What is the actual tree?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

 84 57 81 42 54 73 60 31 25 14

Without referring to the binary tree, what are the parent and children of the entry containing 42? How

would find the parent and children of the node containing 54?

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 3

4.6g Consider the following class:

template <typename Type, int N>
class Complete_binary_tree {
 private:
 Type array[N + 1];
 int complete_size;
 int find(Type const &) const;

 public:
 Complete_binary_tree();

 Type parent(Type const &);
 Type left(Type const &);
 Type right(Type const &);

 void push_back(Type const &);
 Type pop_back();
};

Complete_binary_tree():complete_size(0) {
 // nothing else to initialize
}

where

1. find(…) searches through the array and returns the index of the entry containing it and returns

0 if the argument is not found in the array.

2. parent(…) returns the element that is stored in the parent node of the node containing the

argument; it throws underflow() if this member function is called on the root of the tree and

illegal_argument() if the argument is not in the tree.

3. left(…) returns the element that is stored in the left child of the node containing the argument;

it throws overflow() if this member function is called on a node with no left child and

illegal_argument() if the argument is not in the tree.

4. right(…) returns the element that is stored in the left child of the node containing the argument;

it throws overflow() if this member function is called on a node with no left child and

illegal_argument() if the argument is not in the tree.

5. push_back(…) does nothing if the argument is already in the tree and inserts a new unique

argument into the next available location in the complete tree structure. It throws overflow() if

the complete binary tree is full (it contains N entries) when attempting to add a new unique

element.

6. pop_back(…) removes the last object in the complete tree structure. It throws underflow() if

the complete binary tree is empty (it contains no entries).

Note that N is declared in the template: consequently, all memory is immediately allocated. For example,

I could declare

 Complete_binary_array<int, 16> cba;

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 3

and the compiler would immediately memory for the complete_size member variable and an array of

size 17 on the call stack (it is a local variable). This memory would be immediately cleaned up whenever

the variable cba goes out of scope.

If one would call

 Complete_binary_array<int, 16> *pcba = new Complete_binary_array<int, 16>();

this would request memory for 4 + 17 × 4 = 72 bytes from the operating system. When delete is called on

the returned memory location, all the memory will be immediately freed.

The member function find(…) is given here:

template <typename Type, int N>
int Complete_binary_tree::find(Type const &obj) {
 for (int i = 1; i <= complete_size; ++i) {
 if (array[i] == obj) {
 return i;
 }
 }

 return 0;
}

Implement the other member functions. Note that you can use N like any other member variable, only

you cannot assign to it.

