8.1 a What are the five sorting strategies discussed in class? Apart from distribution sort, identify the others as having a run-time of $\Theta(1), \mathrm{O}(n)$, or $\Theta(n)$?
8.1b Selection sort goes through a lists, finds the largest element, and then swaps it with the last location. It then proceeds to find the second largest element, and swaps it with the second-last location. This is continued until the entire list is sorted. What is the most appropriate Landau symbol with
8.1c Why is an in-place sorting algorithm more preferable to one that is not?
8.1c A perfect binary tree of height h has 2^{h} leaf nodes. Assuming that $\ln (n!)=\Theta(n \ln (n))$, what is the minimum height of a tree with n ! leaf nodes?
8.1d What are the number of inversions in the following unsorted list?

$$
6,7,3,9,2,9,3,4,2,8,8
$$

8.1 e What is the number of inversions that are removed if the middle two elements are swapped? What are the number of inversions that are removed

$$
95,29,91,66,48,76,5,75,61,35,85,4,17,28,56,7,81,26,86,34
$$

8.1 f Is it preferable to have a sorting algorithm that compares and possibly swaps adjacent entries, or one that compares and possibly swaps entries that are at a greater distance apart in the unsorted list? Does it make a difference? Give some arguments as to why one might be better.
8.1 g If $f(n)=\mathrm{o}(g(n))$ what is the asymptotic growth of $g(n)+1.96 f(n)$ and what is the asymptotic growth of $g(n)-1.96 f(n)$? If you are not using big- Θ, give a concrete example with explicit functions.
8.1h If $f(n)=\Theta(g(n))$ what is the asymptotic growth of $g(n)+1.96 f(n)$ and what is the asymptotic growth of $g(n)-1.96 f(n)$? If you are not using big- Θ, give a concrete example with explicit functions.

