8.2a Why is it that we can say that the number of comparisons that must be made in insertion sort is exactly equal to $n+d$ where n is the number of elements in the unsorted list and d is the number of inversions.
8.2b Demonstrate that the number of comparisons is $\Theta(n+d)$ by applying insertion sort to the following example:

$$
6,7,3,9,2,9,3,4,2,8,8
$$

8.2c Compare the number of assignments made with the following two implementations of insertion sort on the above list:

```
template <typename Type>
void insertion_sort( Type *const array, int const n ) {
    for ( int k = 1; k < n; ++k ) {
        for ( int j = k; j > 0; --j ) {
            if ( array[j - 1] > array[j] ) {
                Type tmp = array[j];
                array[j] = array[j - 1];
                array[j - 1] = tmp;
            } else {
                break;
                }
            }
    }
}
template <typename Type>
void insertion( Type *const array, int const n ) {
    for ( int k = 1; k < n; ++k ) {
        Type tmp = array[k];
        for ( int j = k; k > 0; --j ) {
            if ( array[j - 1] > tmp ) {
                array[j] = array[j - 1];
            } else {
                    array[j] = tmp;
            goto finished;
            }
        }
        array[0] = tmp;
        finished: ;
    }
}
```

8.2d Under which conditions is the statement array [0$]=$ tmp; executed?

