Recall that a comparison in any sort is any comparison of magnitude of any two entries in a list and which may or may not result in a swap of two values in a list.
8.3a In class, it was discussed how bubble sort requires approximately $n+3 d$ comparisons. Determine the unnecessary comparisons by considering the following sequence of sorting using bubble sort.

$$
\begin{array}{llllllll}
4 & 2 & 1 & 7 & 3 & 0 & 5 & 6 \\
2 & 1 & 4 & 3 & 0 & 5 & 6 & 7 \\
1 & 2 & 3 & 0 & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\
1 & 2 & 0 & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\
1 & 0 & \mathbf{2} & \mathbf{3} & \mathbf{5} & \mathbf{5} & \mathbf{6} & 7 \\
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7}
\end{array}
$$

8.3b In class, it was discussed how bubble sort requires approximately $n+1.5 d$ comparisons if the order of sortings reverse direction.

$$
\begin{array}{llllllll}
4 & 2 & 1 & 7 & 3 & 0 & 5 & 6 \\
2 & 1 & 4 & 3 & 0 & 5 & 6 & 7 \\
0 & 2 & 1 & 4 & 3 & 5 & 6 & 7 \\
\mathbf{0} & 1 & 2 & 3 & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7} \\
\mathbf{0} & \mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & \mathbf{7}
\end{array}
$$

8.3c Contrast your answer with the number of comparisons required by insertion sort:

$$
\begin{array}{llllllll}
\mathbf{4} & 2 & 1 & 7 & 3 & 0 & 5 & 6 \\
\mathbf{2} & \mathbf{4} & 1 & 7 & 3 & 0 & 5 & 6 \\
\mathbf{1} & \mathbf{2} & \mathbf{4} & 7 & 3 & 0 & 5 & 6 \\
\mathbf{1} & \mathbf{2} & \mathbf{4} & 7 & 3 & 0 & 5 & 6 \\
\mathbf{1} & \mathbf{2} & \mathbf{3} & \mathbf{4} & 7 & 0 & 5 & 6 \\
\mathbf{0} & \mathbf{1} & 2 & 3 & \mathbf{4} & 7 & 5 & 6 \\
\mathbf{0} & \mathbf{1} & \mathbf{2} & 3 & \mathbf{4} & \mathbf{5} & 7 & 6 \\
\mathbf{0} & \mathbf{1} & \mathbf{3} & \mathbf{4} & \mathbf{5} & \mathbf{6} & 7
\end{array}
$$

8.3d What was Senator Obama's answer when asked
"What is the most efficient way to sort a million 32-bit integers?"
8.3e What would Prime Minister Harper's answer be to this same question?

