9.3 \boldsymbol{a} Using modulus to map a 32 -bit hash value down to a value between $0, \ldots, M-1$ may result in problems whereby the original hash values are equally distributed in the range 0 to $2^{32}-1$, but where the values on that range are multiples of M (in the most benign case, all the hash values may be either even or odd; however, in other cases (such as memory addresses), all the hash values could be multiples of 4,8 , 16, or other factors). Demonstrate how this will result in a sub-optimal distribution in the range $0, \ldots, M-1$.
9.3b What does the bitwise operation $v=(v \gg k) \ll k$ do?
9.3c What does the bitwise operation val $=1 \ll n$; calculate?
9.3d What does the bitwise operation val $=$ val \& (1 | $4|8| 16 \mid 64)$; generate?

