9.7a Linear probing allows the size of the hash table to be arbitrarily large: the number of bins need not be powers of two. What feature of instruction sets on processors makes it never-the-less desirable for hash tables to be powers of two?
9.7b In the order given, insert the following values into the hash table of size 10 using linear probing using the least-significant digit as the hash value:

$$
532,574,831,899,990,379,583,779,710
$$

9.7c Given the following hash table, remove the following values from the hash table of size 10 using linear probing using the least-significant digit as the hash value:

$$
821,636,594,399
$$

9.7d Using the prime number $p=2654435769^{1}$, the following list of hash values are given using the multiplicative method to generate digits on the range 0 to 15 :

Integer	Hash Value
1	13
2	11
3	9
4	7
5	5
6	3
7	1
8	15
9	13
10	11
11	8
12	6
13	4
14	2
15	0
16	14

Insert these values into a hash table of size $n=16$.

| 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | | | | | | | | |

[^0]9.7e Using the prime number $p=2654435769$, the following list of hash values are given using the multiplicative method to generate digits on the range 0 to 15 :

Integer	Hash Value
17	12
18	10
19	8
20	6
21	3
22	1
23	15
24	13
25	11
26	9
27	7
28	5
29	3
30	1
31	14
32	12

Insert these values into a hash table of size $n=16$.

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
32	22	30	21	29	28	20	27	19	26	18	25	17	24	32	23

From this table, remove the values 17,23 , and 22 , in that order.
9.7f Implement a member function void fill_hole(Type *array, int k, int n) that searches forward attempting to find the next item that should fit into a hole at location k. The array is of size n. You may assume that you can access the hash value of the objects by calling hash(array[j]).
9.7 g Which of the following are valid hash tables using linear probing where the hash value is the leastsignificant digit?

0	1	2							
549		352	553	492	395	590	487	938	909

1		2	3	,	5	6			
590	171	498	593	924	135	326	447	499	488

[^0]: ${ }^{1}$ See Bruno Pruno Preiss, Data Structures and Algorithms with Object-Oriented Design Patterns in C++, 1997.

