
© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 14

2.3 Asymptotic Analysis

It has already been described qualitatively that if we intend to store nothing but objects, that this can be

done quickly using a hash table; however, if we wish to store relationships and perform queries and data

manipulations based on that relationship, it will require more time and memory. The words “quickly” and

“more” are qualitative.

In order to make rational engineering decisions about implementations of data structures and algorithms,

it is necessary to describe such properties quantitatively: “How much faster?” and “How much more

memory?”

The best case to be made is that a new algorithm may be known to be faster than another algorithm, but

that one word will not be able to allow any professional engineer to determine whether or not the newer

algorithm is worth the time required to implement, integrate, document, and test the new algorithm. In

some cases, it may be simply easier to buy a faster computer. Therefore, we will want to, instead,

determine the run time of the algorithms using mathematics.

2.3.1 Variables of Analysis

In general, we need to describe how much time or memory will be required with respect to one or more

variables. The most common variables include:

1. The number of objects n that are currently stored in a container,

2. The number of objects m that the container could possibly hold, or

3. The dimensions of a square n × n matrix.

In some cases, we may deal with multiple variables:

1. When dealing with n objects stored in a container with m memory locations,

2. Dealing with non-square m × n matrices, and

3. Dealing with sparse square n × n matrices where only m entries are non-zero.

We will use the following code as an example throughout the next two topics:

int find_max(int *array, int n) {

 int max = array[0];

 for (int i = 1; i < n; ++i) {

 if (array[i] > max) {

 max = array[i];

 }

 }

 return max;

}

Finding the maximum entry in an array requires that every entry of array to be inspected. We would

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 14

expect that if we double the size of the array, we would expect it to take twice as long to find the

maximum entry.

Aside: In C++, a primitive array is simply a pointer storing the address of the first entry of the array.

Thus, the actual size of the array must be stored in a separate variable. In this case, the array pointer is

passes as the first parameter, while the size is passed as a second. This breaks the object-oriented

programming goal of encapsulation, where all information concerning a data structure is maintained

together. The Standard Template Library (STL) has a class vector that more closely mimics the object-

oriented characteristics of the Java and C# Array classes.

The previous algorithm implemented using the vector class would be:

 #include <vector>

 int find_max(std::vector<int> array) {
 if (array.size() == 0) {
 throw underflow();
 }

 int max = array[0];

 for (int i = 1; i < array.size(); ++i) {
 if (array[i] > max) {
 max = array[i];
 }
 }

 return max;
 }

If we multiply an n × n matrix by an n-dimensional vector. Each entry of the matrix is multiplied by one

entry in the vector. Therefore, if we multiply a 2n × 2n matrix by a 2n-dimensional vector, we would

expect four times as many multiplications and therefore it should take about four times as long.

The question is, how can we express this mathematically?

2.3.2 Binary search versus linear search

As another example, consider searching an array for a value. If the array is sorted, we can do a binary

search but if the array is not sorted, we must perform a linear search checking each entry of the array.

Here are two implementations of these functions.

int linear_search(int value, int *array, int n) {

 for (int i = 0; i < n; ++i) {

 if (array[i] == value) {

 return i;

 }

 }

 return -1;

}

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 14

int binary_search(int value, int *array, int n) {

 int a = 0;

 int c = n - 1;

 while (a <= c) {

 int b = (a + c)/2;

 if (array[b] == value) {

 return b;

 } else if (array[b] < value) {

 a = b + 1;

 } else {

 c = b - 1;

 }

 }

 return -1;

}

In each case, there is a worst case as to how many entries of the array will be checked; however, there is

also an average number of entries that will be checked. Figure 1 shows the worst-case and average

number of comparisons required by both the linear and binary searches in searching an array of size n

from 1 to 32.

Figure 1. The average and worst-case number of comparisons required for using

a linear search (blue) and a binary search (red) on an array if size n = 1, ..., 32.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 4 of 14

It seems that even the worst-case for a binary search is significantly better than the average case for a

linear search. Also, the number of comparisons required for a linear search appears to grow, well,

linearly, whereas the number of searches required for a binary search appears to be growing at the same

rate as either n or ln(n). Which one is it and why?

Another issue is what do we really care about? If Algorithm A runs twice as fast as Algorithm B, it is

always possible to simply purchase a faster computer in which case Algorithm B will perform just as

well, if not better than Algorithm A. An important question about the linear search versus the binary

search is: can we purchase a computer fast enough so that linear search will always outperform a binary

search implemented on the 1980s-era 68000 processor?

2.3.3 Rate of Growth of Polynomials

Consider any two polynomials of the same degree. If the coefficients of the leading term are the same,

while the functions may be very different around zero, as you plot them on larger and larger intervals,

they will appear to be essentially the same. Figure 2 shows two quadratic polynomials, n
2
 and n

2
 – 3n +

2, and while they appear different on the interval [0, 3], on [0, 1000], they are essentially identical.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 5 of 14

Figure 2. Two quadratic polynomials plotted over [0, 3] and [0, 1000].

Figure 3 shows two sextic policnomials: n
6
 and n

6
 – 23n

5
 + 193n

4
 – 729n

3
 + 12062

2
 – 648n and while they

appear to be very different on the interval [–2, 5], but again, on the interval [0, 1000], they appear to be

essentially identical.

Figure3. Two sextic polynomials plotted on [0, 5] and again on [0, 1000].

If two polynomials have the same degree but the coefficients of the leading terms are different, again,

while they may appear to be significantly different around the origin, on a larger scale, one will simply be

a scalar multiple of the other.

2.3.4 Examples of algorithm analysis

We will look at two hypothetical examples: a comparison of selection sort and bubble sort and then quick

sort and insertion sort, both with respect to run time.

2.3.4.1 Selection and bubble sorts

Consider selection sort which has a fixed run time and bubble sort which has best-case and worst-case run

times:

Selection Sort 4n
2
 + 8.0n + 6

Bubble Sort
best case 4.7n

2
 + 0.5n + 5

worst case 3.8n
2
 – 0.5n + 5

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 6 of 14

These describe the number of instructions required to implement selection sort and bubble sort to sort a

list of size n, respectively. You can look at appendix A to see the C++ source code and disassembled

object code produced by g++. Initially, selection sort requires significantly even more instructions than

the worst-case for bubble sort; however, for problems of size n ≥ 22, selection sort performs better than

the worst-case bubble sort. As the problem size becomes very large, selection sort falls approximately

half way between the best and worst cases of bubble sort. This is shown in Figure 4.

Figure 4. The instructions required to sort an array of size n for selection

sort (blue) and the best and worst case scenarios for bubble sort (red).

As the problem size gets larger and larger, the rate of growth of all three functions is similar: the best

case for bubble sort will require approximately 0.95 the number of instructions for selection sort and the

worst case will require 1.175 times the number of instructions. Because the number of instructions can be

calculated directly, we can also approximate the time it will take to execute this code on, for example, a

computer running at 1 GHz: divide the number of instructions by 10
9
. However, we can also, for

example, run selection sort on a computer that runs at 2 GHz. Figure 5 shows the best and worst cases for

bubble sort run on a 1 GHz computer; however, the left image shows the time required by selection sort

run on a 1 GHz computer while the right shows it run on a 2 GHz computer.

Figure 5. Time required to sort a problem of size up to one million for bubble sort run

on a 1 GHz computer and selection sort run on 1 and 2 GHz computers, respectively.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 7 of 14

The critical point here is that selection sort is not significantly better or worse than bubble sort. Any

different in speed can be compensated by using better hardware.

The justification for the behavior of these to algorithms is that the run times are quadratic functions and

thus we can always speed one up by a scalar multiple as compared to the other when running it on a faster

computer.

2.3.4.2 Insertion sort and quicksort

Next, we will compare insertion sort and quicksort. Both functions expressing the run times are concave

up, and for small problems, it seems that quicksort is slower.

Figure 6. A comparison of runtimes for insertion sort (red) and quicksort (blue).

For larger lists, however, quicksort is always faster, as is shown in Figure 7.

Figure 7. A comparison of runtimes for insertion sort (red) and quicksort (blue).

You may ask yourself whether or not purchasing a faster computer may make insertion sort faster than

quick sort? The answer is: yes, up to a specific value of n, but ultimately, quicksort will always be

significantly faster than insertion sort. This also suggests, however, that if the problem size is known to

be small, perhaps it is better to use insertion sort.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 8 of 14

2.3.5 Big-Oh and Big-Theta

What we need is a way of saying that two functions are growing at the same rate—that is, they are

essentially growing at the same rate. To do this, we must recall a concept from first year: big-Oh

notation. This is one of five Landau symbols that we will use in this class.

You will recall that in first year, you described f(n) = O(g(n)) if

0M  and 0N  such that    f n M g n whenever n N .

If we are dealing with functions such as linear combinations of terms like n
r
or n

r
ln(n) where r is a

positive real number where the final result is monotonically increasing and positive for n > 0 (behaviours

we would expect from functions describing algorithms), then f(n) = O(g(n)) is equivalent to saying that

 

 
lim
n

f n

g n
  .

However, to say that two functions are growing at the same rate, we need a stronger restriction: two

functions will be said to be growing at the same rate if

 

 
0 lim

n

f n

g n
  

and we will write that f(n) = (g(n)).

For example, two polynomials of the same degree are big-theta of each other because the above limit will

be the ratio of the coefficients of the leading terms, for example,

2

2

3 5 10 3
lim

8 7 98 8n

n n

n n

 


 
.

For real values p ≥ 0 and q ≥ 0, it is true that

1. n
p
 = (n

q
) if and only if p = q, and

2. n
p
 = O(n

q
) if and only if p ≤ q.

2.3.5.1 Consequence

If f(n) and g(n) describes either the time required or the number of instructions required for two different

algorithms to solve a problem of size n and f(n) = (g(n)), we can always make one function run faster

than the other by having sufficiently better hardware.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 9 of 14

2.3.6 Little-oh

Consider the two functions f(n) = ln(n) and g(n) = n. It is already true that for all n > 0, n > ln(n).

However, is there a sufficiently small value of c > 0 such that ln(n) > cn for all n > N for some N?

A little thought will probably convince you that no such positive number exists, for no matter what

number we choose,

  1ln 1 1
lim lim lim 0
n n n

n n

cn c c n  
   .

Therefore, the logarithm grows significantly slower than the function n. We would also like to describe

when one function f(n) grows significantly slower than another function g(n), and therefore we will say

that f(n) = o(g(n)) (little-oh) if

 

 
lim 0
n

f n

g n
 .

Thus, we could write that ln(n) = o(n). A nice way of remembering this is that the little “o” looks like a

zero and the limit is zero.

We may continue the analogy: for real values p ≥ 0 and q ≥ 0, it is true that

1. n
p
 = (n

q
) if and only if p = q,

2. n
p
 = O(n

q
) if and only if p ≤ q, and

3. n
p
 = o(n

q
) if and only if p < q.

2.3.7 Little-omega and Big-Omega

Current, we have the following table:

Landau

Symbol
Limit Description

Analogous

Relational

Operator

f(n) = (g(n)) 0 < c < ∞ f grows at the same rate as g =

f(n) = O(g(n)) c < ∞ f grows at the same rate as or slower than g ≤

f(n) = o(g(n)) 0 f grows significantly slower than g <

What we are missing are means of describing if one functions grows faster than another function. We

will add two more Landau symbols:  and . We will say that f(n) grows significantly faster than g(n) if

 

 
lim
n

f n

g n
 

and we will write this as f(n) = (g(n)). Note that little-omega looks like the infinity symbol.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 10 of 14

We will also say that f(n) grows either at the same rate or faster than g(n) if

 

 
lim 0
n

f n

g n


and we will write this as f(n) = (g(n)).

We may continue the analogy: for real values p ≥ 0 and q ≥ 0, it is true that

1. n
p
 = (n

q
) if and only if p > q, and

2. n
p
 = (n

q
) if and only if p ≥ q.

Thus, we have the full table:

Landau

Symbol
Limit Description

Analogous

Relational

Operator

f(n) = (g(n)) ∞ f grows significantly faster than g >

f(n) = (g(n)) 0 < c f grows at the same rate as or faster than g ≥

f(n) = (g(n)) 0 < c < ∞ f grows at the same rate as g =

f(n) = O(g(n)) c < ∞ f grows at the same rate as or slower than g ≤

f(n) = o(g(n)) 0 f grows significantly slower than g <

2.3.8 Big-Theta as an Equivalence Relation

There are some interesting characteristics of Landau symbols with respect to the functions that we are

interested in:

1. f(n) = (f(n)),

2. f(n) = (g(n)) if and only if g(n) = (f(n)), and

3. If f(n) = (g(n)) and g(n) = (h(n)), it follows that f(n) = (h(n)).

Therefore, big-Theta defines an equivalence relation on functions. One of the properties of equivalence

relations is that you can create equivalence classes of all functions that are big-Theta of each other.

For example, all of the functions

n
2

32n
2
 + 54n + 7 n

2
 + n + ln(n) + 1

739n
2

n
2
 + n ln(n) n

2
 + n

1.5
 + n + n

0.5
 + 1

5.2n
2
 + 4.7n 0.00523n

2
 n

2
 + 2n + 3

grow at the same rate as each other. Therefore, to describe this entire equivalence class of functions that

grow at the same rate as a quadratic monomial, we will select on member to represent the entire class and

while we could chose n
2
 + n

1.5
 + n + n

0.5
 + 1, it would make more sense to choose n

2
 and call this class of

functions quadraticly growing functions.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 11 of 14

There are specific equivalence classes that appear so often in the discussion of algorithm analysis that we

given them special names. These are listed in Table 1.

Table 1. Equivalence classes of equivalent rates of growth.

Equivalence Class Representative

Constant 1

Logarithmic ln(n)

Linear N

n-log-n n ln(n)

Quadratic n
2

Cubic n
3

Exponentials 2
n
, e

n
, 3

n
, etc.

Note that with the exponential functions, there is not one single representative, for if a < b then a
n
 grows

slower than b
n
:

lim lim 0

nn

nn n

a a

b b 

 
  

 
 because 1

a

b
 .

2.3.9 Little-oh as a Weak Ordering

We have already noted that for any real 0 ≤ p < q, it follows that n
p
 = o(n

q
) and therefore, we can order the

equivalence classes. In addition to these classes, we also note that

  1 o ln n ,

however, ln(n) = o(n
p
) for any p > 0. This can be seen by seeing that

 
1

1ln 1 1
lim lim lim 0

p p pn n n

n n

n pn p n  
   as p > 0.

Similarly, n
p
 = o(n

q
 ln(n)) for any 0 ≤ p ≤ q and n

q
 ln(n) = o(n

r
) for any 0 ≤ q < r.

Graphically, we can show this weak ordering as shown in Figure 8.

Figure 8. The ordering of the equivalence classes of functions growing at the same rate.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 12 of 14

Notes (beyond the scope of this class)

We could also consider functions that grow according to n
p
ln

q
(n) where p, q ≥ 0 as well as functions such

as ln(ln(n)). There are searching algorithms that can run as fast as (ln(ln(n))) meaning that a problem of

size n = 10
24

 requires only four times longer to solve than a problem of size n = 15.

We are restricting our definitions to using limits. To be more correct, we should use the limit supremum

and limit infimum. Technically, we should say that f(n) = (g(n)) if

 

 

 

 
0 liminf limsup

n n

f n f n

g n g n 

  

and f(n) = O(g(n)) if

 

 
limsup

n

f n

g n

  .

2.3.10 What’s Next?

We will use Landau symbols to describe the run-times and memory usage of various data structures and

algorithms.

An algorithm will be said to have polynomial time complexity if its run time may be described by O(n
p
)

for some p ≥ 0. In a general sense, problems that can be solved with known polynomial time algorithms

are said to be efficiently solvable or tractable.

Problems for which there are no algorithms that can solve the problem in polynomial time are said to be

intractable. For example, the travelling salesman problem (find the shortest path that visits each of n

cities exactly once) can only be solved by an algorithm that is requires (n
2
 2

n
) time: add one more city

and the algorithm takes more than twice as long to run. Add 10 cities and the algorithm takes more than

2
10

 = 1024 times to run.

Algorithms that require an exponential amount of time are, for the most part, undesirable. Be sure to

never describe a function with quadratic growth as exponential.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 13 of 14

Appendix A

Source Code
void bubble_sort(int *array, int n) {
 for (int i = (n - 1); i >= 1; --i) {
 for (int j = 0; j < i; ++j) {
 if (array[j] > array[j + 1]) {
 int tmp = array[j];
 array[j] = array[j + 1];
 array[j + 1] = tmp;
 }
 }
 }
}

Output of

% g++ -O -c bubble_sort.cpp
% objdump –d bubble_sort.o

 0: 83 ee 01 sub $0x1,%esi
 3: 85 f6 test %esi,%esi
 5: 7f 21 jg 28
 7: f3 c3 repz retq
 9: 8b 0c 87 mov (%rdi,%rax,4),%ecx
 c: 8b 54 87 04 mov 0x4(%rdi,%rax,4),%edx
 10: 39 d1 cmp %edx,%ecx
 12: 7e 07 jle 1b
 14: 89 14 87 mov %edx,(%rdi,%rax,4)
 17: 89 4c 87 04 mov %ecx,0x4(%rdi,%rax,4)
 1b: 48 83 c0 01 add $0x1,%rax
 1f: 39 c6 cmp %eax,%esi
 21: 7f e6 jg 9
 23: 83 ee 01 sub $0x1,%esi
 26: 74 07 je 2f
 28: b8 00 00 00 00 mov $0x0,%eax
 2d: eb da jmp 9
 2f: f3 c3 repz retq

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 2.3.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 14 of 14

Soucre Code
void selection_sort(int *array, int const n) {
 for (int i = (n - 1); i >= 1; --i) {
 int posn = 0;

 for (int j = 1; j <= i; ++j) {
 if (array[j] > array[posn]) {
 posn = j;
 }
 }

 int tmp = array[i];
 array[i] = array[posn];
 array[posn] = tmp;
 }
}

Output of

% g++ -O -c selection_sort.cpp
% objdump –d selection_sort.o

 0: 83 ee 01 sub $0x1,%esi
 3: 48 63 c6 movslq %esi,%rax
 6: 85 f6 test %esi,%esi
 8: 4c 8d 14 87 lea (%rdi,%rax,4),%r10
 c: 7e 45 jle 53
 e: 49 89 f9 mov %rdi,%r9
 11: b9 01 00 00 00 mov $0x1,%ecx
 16: 45 31 c0 xor %r8d,%r8d
 19: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)
 20: 41 8b 41 04 mov 0x4(%r9),%eax
 24: 42 3b 04 87 cmp (%rdi,%r8,4),%eax
 28: 48 63 d1 movslq %ecx,%rdx
 2b: 4c 0f 4f c2 cmovg %rdx,%r8
 2f: 83 c1 01 add $0x1,%ecx
 32: 49 83 c1 04 add $0x4,%r9
 36: 39 f1 cmp %esi,%ecx
 38: 7e e6 jle 20
 3a: 4a 8d 14 87 lea (%rdi,%r8,4),%rdx
 3e: 41 8b 0a mov (%r10),%ecx
 41: 8b 02 mov (%rdx),%eax
 43: 41 89 02 mov %eax,(%r10)
 46: 49 83 ea 04 sub $0x4,%r10
 4a: 83 ee 01 sub $0x1,%esi
 4d: 89 0a mov %ecx,(%rdx)
 4f: 75 bd jne e
 51: f3 c3 repz retq
 53: f3 c3 repz retq

