
© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 3

3.4.1a What is the state of the stack after the following sequence of pushes and pops:

Deque<int> d;
d.push_front(3);
d.push_back(5);
d.push_front (2);
d.push_front (15);
d.push_back (42);
d.pop_front ();
d.pop_front ();
d.push_back (14);
d.push_front (7);
d.pop_back ();
d.push_front (9);
d.pop_back ();
d.pop_front ();
d.push_front (51);
d.pop_front ();
d.pop_back ();

3.4.1b A deque could be implemented using a doubly linked list. Can swapping the member variables for

the head and tail achieve an (1) algorithm that will reverse the order of the elements in the deque?

3.4.1c An implementation could potentially use any of the following data structures to implement the

Queue ADT. Indicate the best-case run times if we use the listed data structures in as optimal a sense as

possible. Choose the implementation that minimizes the run time of as many operations as possible. In

the case of arrays, you may have to move entries if the array is not full—an (n) operation.

Singly linked

list a head

pointer

Singly linked

list with head

and tail

pointers

Doubly

linked list

with head

and tail

pointers

One-ended

array

Two-ended

array

Circular

array

void
push_front(…)

Type
pop_front()

Type
front() const

void
push_back(…)

Type
pop_back()

Type
back() const

 3.4.4a The implementation of a deque in the standard template library is a linked list of arrays of a fixed

size. If a push_front operation is performed and the front array is full, a new array is allocated which

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 3

links to the current array at the front. A similar modification is made if a push_back operation occurs

when the back array is full. Suppose that the capacity of each array is n. Suppose that a new element

placed in a new array at the front of the deque is in location n – 1 while a new element placed in a new

array at the back of the deque is in location 0. Describe an algorithm of how you would access the k
th

entry from the front of the deque, and describe an algorithm of how you would access the k
th
 entry from

the back of the deque. We will assume that the first and last elements would be the 0
th
 element from their

end of the deque.

3.4.5a The following is an implementation of an iterator for your Single_list class. The constructor is

private, it uses a default copy constructor, and it exports the operations ++ (both pre-autoincrement and

post-autoincrement) *, ==, and !=. It must declare Single_list to be a friend, as begin() and end()

must call the private constructor.

template <typename Type>
class Single_list {
 private:
 Single_node<Type> *list_head;
 Single_node<Type> *list_tail;
 int node_count;

 public:
 class iterator {
 private:
 Single_node<Type> *current;

 iterator(Single_node<Type> *ptr):current(ptr) {
 // empty constructor
 }
 public:
 iterator operator++();
 iterator operator++(int);
 Type &operator*();
 bool operator==(iterator const &);
 bool operator!=(iterator const &);

 friend class Single_list;
 };

 // ...

 iterator begin();
 iterator end();
};

iterator begin() {
 return iterator(head());
}

iterator end() {
 return iterator(nullptr);
}

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 3

The functionality of the iterator is as follows:

int main() {
 Single_list<int> s;

 s.push_front(3);
 s.push_front(7);
 s.push_front(4);
 s.push_front(5);

 for (Single_list<int>::iterator itr = s.begin(); itr != s.end(); ++itr) {
 std::cout << *itr << std::endl;
 }

 return 0;
}

To achieve this functionality:

1. Pre-autoincrement must update the value of current to point to the next node so long, unless

current is already assigned nullptr, in which case it stays unchanged. The operator returns

*this; that is, a copy of itself.

2. Post-autoincrement must first make a copy of *this, then update the value of current as in

pre-autoincrement, and then it returns the copy.

3. Dereference returns a reference to the element stored in the node pointed to by current.

4. Two iterators are equal if both store the member variables current store the same address.

5. Two iterators are unequal if both the member variables current store different addresses.

Implement these member functions.

// pre-autoincrement
template <typename Type>
typename Single_list<Type>::iterator Single_list<Type>::iterator::operator++() {
 // your implementation
}

// post-autoincrement
template <typename Type>
typename Single_list<Type>::iterator Single_list<Type>::iterator::operator++(int) {
 // your implementation
}

template <typename Type>
Type &Single_list<Type>::iterator::operator*() {
 // your implementation
}

template <typename Type>
bool Single_list<Type>::iterator::operator==(Single_list<Type>::iterator const &itr) {
 // your implementation
}

template <typename Type>
bool Single_list<Type>::iterator::operator!=(Single_list<Type>::iterator const &itr) {
 // your implementation
}

