
© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 2

4.2a For each of the operations, determine whether it is describing a local or global property of the tree

relative to the location of the node on which the query is made.

1. The degree of the node.

2. The number of descendants of this node.

3. The root of the tree.

4. The parent of the node.

5. The depth of the node.

6. The height of the sub-tree rooted at this node.

4.2b It is relatively easy to define an implicit linear order: a < b if b – a is positive,

f(n) = o(g(n)) if
 

 
lim 0
n

f n

g n
 . Hierarchical orders, however, are almost always defined explicitly: b is

the parent of a and c, d, and e are children of a. Suggest why it is so difficult to define an implicit

hierarchical order.

4.2c Write a recursive member function that finds the depth of a node.

template <typename Type>
int Simple_tree<Type>::depth() const{

}

Write an iterative member function that finds the depth of a node. Such a function would not call itself,

but would instead use, for example, a for, while, or do-while loop.

template <typename Type>
int Simple_tree<Type>::depth() const{

}

4.2d Write a recursive member function that returns a pointer to the root of the tree containing this node.

The name of the function should be root. Your implementation should have the correct signature for

such a member function.

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 2

4.2e Write a one-line member function that returns the number of siblings of a node. The root node has

zero siblings.

template <typename Type>
int Simple_tree<Type>::sibling_count() const {

 return

}

4.2f Write a function that deletes the current node. If the current node is the root node, all children will

have their parent set to nullptr (this will generate a forest). If the current node is not a root node, each

of the children is made a child of the current node’s parent. Hint: remember erase.

template <typename Type>
Simple_tree<Type> *Simple_tree<Type>::lca(Simple_tree<Type> const &node) const {

4.2g The lowest common ancestor was defined in Question Set 4.1. Write a member function that returns

a pointer to the lowest common ancestor of a node and nullptr if the nodes are from two different trees.

Hint: you are welcome to call the member functions depth and root defined above.

template <typename Type>
Simple_tree<Type> *Simple_tree<Type>::lca(Simple_tree<Type> const &node) const {

4.2h Write a non-recursive member function that does a breadth-first traversal of the tree rooted at this

node by printing out the element stored in the node followed by a comma and a space. The last node

should not be followed by a comma and a space.

Note: the last node not being followed by a comma and a space is equivalent to saying the first node

should not be preceded by a comma and a space—that might make the programming easier. Use your

Single_list class for the queue.

template <typename Type>
Simple_tree<Type> *Simple_tree<Type>::dft() const {
 Single_list< Simple_tree<Type> * > list;

