© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

4.2 Abstract Trees

Having introduced the tree data structure, we will step back and consider an Abstract Tree that stores a
hierarchical ordering.

4.2.1 Description

An abstract tree stores data that is hierarchically ordered. Operations that may be performed on an
abstract tree include:

1. Accessing the root, and
2. Given a reference to any node within the tree:
a. Get a reference to its predecessor (the node’s parent),
Query the number of successors (what is the degree of the node),
Get a reference to a child,
Attach a new sub-tree as a child of the current node, and
Detach the tree rooted at this node from the parent.

® 00T

In a hierarchical ordering, abstract trees will usually not restrict the degree of a node.
4.2.2 Linked List Implementation

In this elementary implementation of a Tree ADT, we store the children as a linked list of pointers to
those sub-trees. A full implementation of this class is found on the ECE 250 web site under
Algorithms/Trees/Simple_trees/.

#include <algorithm>
#include "Single_list.h"

template <typename Type>
class Simple_tree {
private:
Type element;
Simple_tree *parent_node;
ece250::Single_list<Simple_tree *> children;

public:
Simple_tree(Type const &, Simple_tree * = 0);

Type retrieve() const;
Simple_tree *parent() const;

bool is_root() const;
bool is_leaf() const;
int degree() const;

Simple_tree *child(int n) const;
int size() const;
int height() const;

void attach(Type const &);
void attach(Simple_tree *);
void detach();

1

Page 1 of 6

© 2011 by Douglas Wilhelm Harder. All rights reserved.
ECE 250 Algorithms and Data Structure

Department of Electrical and Computer Engineering

University of Waterloo

Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
with the subject ECE 250 Notes 4.02.
Assistances and comments will be acknowledged.

While looking at these member functions, you can consider calling these member functions on the various
nodes shown in the simple tree shown in Figure 1.

%)

4
parent e

element.

list_head e

list tail e
node_count

parent ‘e

elementm

list_head
list_tail

node_count[i]

list_head e
list_tail

node_count .

parent

elementﬁ

list head
list_tail
node_count[:]

v
*Q

parent

elementm

list_head
list_tail
node_count

v
*Q

@“ ®

parent™ e

element.

list_head
list_tail

node_count[:j

v
*Q

Figure 1. A tree of six nodes stored in the Simple tree data structure.

Page 2 of 6

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

4.2.2.1 Basic Functionality

The simple accessing and query member functions have implementations that are similar to what you
would expect from the Single_list and Single_node class.

template <typename Type>
Simple_tree<Type>::Simple_tree(Type const &obj, Simple_tree *p):
element(obj),
parent_node(p) {
// Empty constructor

}

template <typename Type>
Type Simple_tree<Type>::retrieve() const {
return element;

}

template <typename Type>
Simple_tree<Type> *Simple_tree<Type>::parent() const {
return parent_node;

}

template <typename Type>

bool Simple_tree<Type>::is_root() const {
return (parent() == 0);

}

template <typename Type>
int Simple_tree<Type>::degree() const {
return children.size();

}

template <typename Type>

bool Simple_tree<Type>::is_leaf() const {
return (degree() == 0);

}

4.2.2.2 Accesing the n™ Child

The user would ask for the n"™ child. If this is outside the range, we return the zero pointer, otherwise, we
step through the linked list until we reach the n" entry.
template <typename Type>
Simple_tree<Type> *Simple_tree<Type>::child(int n) const {
if (n <0 || n>=degree()) {

return 0;

}

ece250::Single_node<Simple_tree *> *ptr = children.head();
for (int i =1; i <n; ++i) {

ptr = ptr->next();
}

return ptr->retrieve();

Page 3 0f 6

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

4.2.2.3 Attaching and detaching children

If we are attaching a new object into the current node to form a child (suppose we hire a new employee or
create a new derived class), we push a new tree onto the back of the linked list:

template <typename Type>
void Simple_tree<Type>::attach(Type const &obj) {
children.push_back(new Simple_tree(obj, this));

}

To detach a tree, we first check if it is already the root of a tree—in which case we do nothing.
Otherwise, we erase this tree from the children of the parent and set this nodes parent to the zero pointer.

template <typename Type>
void Simple_tree<Type>::detach() {
if (is_root()) {
return;

}

parent()->children.erase(this);
parent_node = 0;

}

If, however, we are attaching an already constructed tree, we must be a little more careful. First, if the
tree we are attaching is attached to a different tree, we must detach it from its parent.

template <typename Type>
void Simple_tree<Type>::attach(Simple_tree<Type> *tree) {
if (!tree->is_root()) {
tree->detach();
}

tree->parent_node = this;
children.push_back(tree);

Page 4 of 6

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

4.2.2.4 A Recursive Size and Height Member Functions

As our first two recursive functions, we will see how we can recursively compute the size (number of
nodes in) and height of a tree.

The size of a tree is one plus the sizes of all the children.

template <typename Type>
int Simple_tree<Type>::size() const {
int h = 1;

for (
ece250::Single_node<Simple_tree *> *ptr = children.head();
ptr != 0;
ptr = ptr->next()

) A

s += ptr->retrieve()->size();

return s;

The height of tree with a single node is zero; however, if there are any children, the height is one more
than the maximum height of the children.

template <typename Type>
int Simple_tree<Type>::height() const {

int h = @;
for (
ece250::Single_node<Simple_tree *> *ptr = children.head();
ptr 1= 0;
ptr = ptr->next()
) A
h = std::max(h, 1 + ptr->retrieve()->height());
}
return h;

Page 5 of 6

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.02

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

4.2.3 Array Implementation

An implementation using arrays would be similar to that using a linked list—the implementation,
however, would be more complex.

template <typename Type>
class Simple_tree {
private:
Type element;
Simple_tree *parent_node;
int child_count;
int child_capacity;
Simple_tree *children;

// Everything else is similar to above

}

template <typename Type>
Simple_tree<Type>::Simple_tree(Type const &obj, Simple_tree *p):
element(obj),
parent_node(p),
child _count(@),
child_capacity(4),
children(new Simple_tree *[child_capacity]) {
// Empty constructor
}

4.2.4 Locally Defined Orders
The ordering of general trees is usually local:

A root node is explicitly defined.

A new node is defined as a being a child of a given parent node

There is no general definition as to what happens to children when a node is “removed”
Given two nodes in a tree, an algorithm must be used to determine any relationship between
them based on the ordering within the tree

el NS

Page 6 of 6

