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4.3a Perform depth-first, pre-order depth-first and post-order depth-first traversals on the tree shown in
Figure 1.

Figure 1. A general tree.

4.3b What is the maximum size of the queue if a queue is used for performing a breadth-first traversal on
the tree in Figure 1?

4.3c You are given that a tree has pre- and post-order depth first traversals of
ABDEGCF
DGEBFCA
respectively. Can you determine the original tree from this information?
Hint: if x is a descendant of y, then where will y sit relative to x in both of these orders?
4.3c You are given that a tree has pre-order depth-first and breadth-first traversals of
ABCDEGF
ABCDEFG
respectively. Can you determine the original tree from this information?

4.3e Write a traversal that prints out the leaf nodes in the order in which they appear in an ordered general
tree from left-to-right.

template <typename Type>
void Simple_ tree<Type>::print_leaves() const {
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4.3f Right a depth-first traversal that:

1. Prints out the elements stored in the nodes at depth n where n is a parameter passed by the user,
and
2. Does not visit any nodes beyond depth n.

Hint: What information do you have to pass to the children?

template <typename Type>
void Simple_tree<Type>::print_at_depth( int n ) const {

4.3g For each of the following, indicate whether the function prints the nodes in a pre-order depth-first
traversal order, post-order depth-first traversal order, or a breadth-first traversal order. The stacks and
gueues work as expected from class. Assume that the Simple_tree data structure uses a doubly linked list
where each node has both next and previous pointers.

template<typename Type>

void Simple_tree<Type>::first_traversal() {
Single_list< Simple_tree * > list;
list.push_front( this );

while ( !list.empty() ) {
Simple_tree *ptr = list.pop_front();
std::cout << ptr->retrieve() << std::endl;

for ( Double node< Simple_tree * > *node = ptr->children.tail();
node != nullptr;
node = node->previous() ) {
list.push_front( node->retrieve() );

}

template<typename Type>
void Simple_tree<Type>::second_traversal() {
std::cout << ptr->retrieve() << std::endl;

for ( Double_node< Simple_tree * > *node = children.head();
node != nullptr;
node = node->next()

) A

node->retrieve()->second_traversal();
}
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template<typename Type>

void Simple_tree<Type>::third_traversal() {
Single_list< Simple_tree * > list;
list.push_back( this );

while ( !list.empty() ) {
Simple_tree *ptr = list.pop_front();
std::cout << ptr->retrieve() << list::endl;

for ( Double_node< Simple_tree * > *node = ptr->children.head();
node != nullptr;
node = node->next()

)

list.push_back( node->retrieve() );
}

}

template<typename Type>

void Simple_tree<Type>::fourth_traversal() {
Single_list< Simple_tree * > list;
list.push_front( this );

while ( !list.empty() ) {
Simple_tree *ptr = list.pop_front();

for ( Double node< Simple_tree * > *node = ptr->children.tail();
node != nullptr;
node = node->previous() ) {
list.push_front( node->retrieve() );

}

std::cout << ptr->retrieve() << std::endl;

}

template<typename Type>
void Simple_tree<Type>::fifth_traversal() {
for ( Double_node< Simple_tree * > *node = children.head();

node != nullptr;
node = node->next()

) A

node->retrieve()->fifth_traversal();
}
std::cout << ptr->retrieve() << std::endl;

}

4.3h Under what conditions would a pre-order and a breadth-first traversal be the same?
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4.3i Suppose a directory structure has N files stored in n directories. Answer the following questions:

a. What is the run time of a traversal that prints out the directory names?
b. What is the run time of a traversal that prints out the file names?
c. How does your answer to Part b of this question change if you know that N = Q(n)?
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