© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

4.3a Perform depth-first, pre-order depth-first and post-order depth-first traversals on the tree shown in
Figure 1.

Figure 1. A general tree.

4.3b What is the maximum size of the queue if a queue is used for performing a breadth-first traversal on
the tree in Figure 1?

4.3c You are given that a tree has pre- and post-order depth first traversals of
ABDEGCF
DGEBFCA
respectively. Can you determine the original tree from this information?
Hint: if x is a descendant of y, then where will y sit relative to x in both of these orders?
4.3c You are given that a tree has pre-order depth-first and breadth-first traversals of
ABCDEGF
ABCDEFG
respectively. Can you determine the original tree from this information?

4.3e Write a traversal that prints out the leaf nodes in the order in which they appear in an ordered general
tree from left-to-right.

template <typename Type>
void Simple_ tree<Type>::print_leaves() const {

Page 1 of 4

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

4.3f Right a depth-first traversal that:

1. Prints out the elements stored in the nodes at depth n where n is a parameter passed by the user,
and
2. Does not visit any nodes beyond depth n.

Hint: What information do you have to pass to the children?

template <typename Type>
void Simple_tree<Type>::print_at_depth(int n) const {

4.3g For each of the following, indicate whether the function prints the nodes in a pre-order depth-first
traversal order, post-order depth-first traversal order, or a breadth-first traversal order. The stacks and
gueues work as expected from class. Assume that the Simple_tree data structure uses a doubly linked list
where each node has both next and previous pointers.

template<typename Type>

void Simple_tree<Type>::first_traversal() {
Single_list< Simple_tree * > list;
list.push_front(this);

while (!list.empty()) {
Simple_tree *ptr = list.pop_front();
std::cout << ptr->retrieve() << std::endl;

for (Double node< Simple_tree * > *node = ptr->children.tail();
node != nullptr;
node = node->previous()) {
list.push_front(node->retrieve());

}

template<typename Type>
void Simple_tree<Type>::second_traversal() {
std::cout << ptr->retrieve() << std::endl;

for (Double_node< Simple_tree * > *node = children.head();
node != nullptr;
node = node->next()

) A

node->retrieve()->second_traversal();
}

Page 2 of 4

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.
Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

template<typename Type>

void Simple_tree<Type>::third_traversal() {
Single_list< Simple_tree * > list;
list.push_back(this);

while (!list.empty()) {
Simple_tree *ptr = list.pop_front();
std::cout << ptr->retrieve() << list::endl;

for (Double_node< Simple_tree * > *node = ptr->children.head();
node != nullptr;
node = node->next()

)

list.push_back(node->retrieve());
}

}

template<typename Type>

void Simple_tree<Type>::fourth_traversal() {
Single_list< Simple_tree * > list;
list.push_front(this);

while (!list.empty()) {
Simple_tree *ptr = list.pop_front();

for (Double node< Simple_tree * > *node = ptr->children.tail();
node != nullptr;
node = node->previous()) {
list.push_front(node->retrieve());

}

std::cout << ptr->retrieve() << std::endl;

}

template<typename Type>
void Simple_tree<Type>::fifth_traversal() {
for (Double_node< Simple_tree * > *node = children.head();

node != nullptr;
node = node->next()

) A

node->retrieve()->fifth_traversal();
}
std::cout << ptr->retrieve() << std::endl;

}

4.3h Under what conditions would a pre-order and a breadth-first traversal be the same?

Page 3 of 4

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca
ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 2.4.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

4.3i Suppose a directory structure has N files stored in n directories. Answer the following questions:

a. What is the run time of a traversal that prints out the directory names?
b. What is the run time of a traversal that prints out the file names?
c. How does your answer to Part b of this question change if you know that N = Q(n)?

Page 4 of 4

