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5.4 N-ary Trees 

A binary tree restricts the number of children of each node to two.  A more general N-ary tree restricts the 

number of children to N. 

5.4.1 Description 

An N-ary tree is a tree where each node has at most N children where each of the children are non-

overlapping N-ary trees.  For example, a 3-ary tree or ternary tree restricts each node to having at most 

three children.  A quaternary tree limits its children to four.  Figure 1 shows two examples of a ternary 

tree and a perfect quaternary tree of height 2. 

 
Figure 1.  Ternary and a quaternary tree. 

As an aside, the following terminology may be used to represent the different bases: 

2 3 4 5 6 7 8 9 10 12 

binary ternary quaternary quinary senary septenary octal nonary decimal duodecimal 

  

5.4.2 Theorems 

We will now proceed to prove a number of theorems about perfect binary trees. 

5.4.2.1 Nodes in a Perfect N-ary Tree 

Theorem 

A perfect binary tree of height h has 
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When N = 2, this simplifies to our formula for perfect binary trees:  2
h + 1

 – 1. 
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5.4.2.2 Logarithmic Height 

Solving this for h gives the formula   log 1 1 1Nh n N    ; however,  
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and therefore logN(n) is a reasonable approximation of the height of a perfect N-ary tree with n nodes. 

5.4.2.3 N-ary Trees versus Binary Trees 

The ratio of the heights of a binary tree containing n nodes and an N-ary tree containing n nodes is 
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and therefore, the height of a corresponding binary tree will always be approximately a constant multiple 

times that of an N-ary tree.  For example, a perfect binary tree will be approximately 3 times deeper than 

the corresponding octal tree. 

5.4.2.4 Complete N-ary trees 

The height of a complete N-ary tree containing n nodes is 

  log 1Nh N n     

Like complete binary trees, complete N-ary tree can be stored efficiently using an array: 

1. Unlike a complete binary tree, we will assume the root is at index k = 0, 

2. The parent of a node with index k is located at 
1k

N

 
 
 

, and 

3. The children of a node with index k are located at kN + j for j = 1, 2, …, N. 

Unlike binary trees, there is no computational advantage by placing the root at index k = 1. 
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5.4.3 Implementation 

From previous projects, one might consider implementating an N-ary tree as follows: 

#include <algorithm> 
 
template <typename Type> 

class Nary_tree { 

    private: 

        Type element; 

        int N; 

        Nary_tree **children; 

 
    public: 

        Nary_tree( Type const & = Type(), int = 2 ); 

        // ... 

}; 

 
template <typename Type> 

Nary_tree<Type>::Nary_tree( Type const &e, int n ): 

element( e ), 

N( std::max( 2, n ) ), 

children( new *Nary_tree[N] ) { 

    for ( int i = 0; i < N; ++i ) { 

        children[i] = 0; 

    } 

}  

 

However, this requires the allocation of dynamic memory in all cases.  An alternate design is to use 

templates: 

#include <algorithm> 
 
template <typename Type, int N> 

class Nary_tree { 

    private: 

        Type element; 

        Nary_tree *children[std::max(N, 2)];   // an array of N children 

 
    public: 

        Nary_tree( Type const & = Type() ) 

        // ... 

}; 
 

template <typename Type, int N> 

Nary_tree<Type, N>::Nary_tree( Type const &e ): 
element( e ) { 

    for ( int i = 0; i < N; ++i ) { 

        children[i] = 0; 

    } 

} 
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In this case, we could create an N-ary tree as follows 

 Nary_tree<int, 4> i4tree( 1975 ); 

 std::cout << i4tree.retrieve() << std::endl; 

The value of N, however, must be known at compile time.  It would not be possible create N-ary trees 

without aprior knowledge of the expected arity. 

5.4.4 Application 

One application of an N-ary tree is to create a dictionary of valid strings.  For example, if we consider 

only words containing the 26 letters of the English alphabet, we could let the root node represent the 

starting point of each word.  Each of 26 children would represent those words starting with the 

corresponding letter.  Similarly, each other node could have up to 26 children representing the next letter 

in a given word.  In this way, the letters in any path from the root form a word.  A node may be flagged as 

being a terminal character in a word.  Such a data structure is called a trie from the contents of retrieve.  

The author claims the name should be a homophone of “tree”; however, most people pronounce it as 

“try”. 

For example, consider all the words in the sentence “The fable then faded from my thoughts and 

memory.”  The words in this sentence would generate the trie in Figure 2. 

 
Figure 2.  A trie with the words from “The fable then faded from my thoughts and memory.” 

You will note that “the” is a prefix to the word “then”. 

The terminal points in a trie could be associated with a linked list of locations within a document.  For 

example, each word in a document could be indexed in a trie allowing for very fast searches.  For 

example, the word “and” would be indexed with position 38, as “and” forms the substring in locations 38 

through 40. 

 


