
© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.07.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 4

5.4 N-ary Trees

A binary tree restricts the number of children of each node to two. A more general N-ary tree restricts the

number of children to N.

5.4.1 Description

An N-ary tree is a tree where each node has at most N children where each of the children are non-

overlapping N-ary trees. For example, a 3-ary tree or ternary tree restricts each node to having at most

three children. A quaternary tree limits its children to four. Figure 1 shows two examples of a ternary

tree and a perfect quaternary tree of height 2.

Figure 1. Ternary and a quaternary tree.

As an aside, the following terminology may be used to represent the different bases:

2 3 4 5 6 7 8 9 10 12

binary ternary quaternary quinary senary septenary octal nonary decimal duodecimal

5.4.2 Theorems

We will now proceed to prove a number of theorems about perfect binary trees.

5.4.2.1 Nodes in a Perfect N-ary Tree

Theorem

A perfect binary tree of height h has
1 1

1

hN

N

 


 nodes.

Proof: We could use recursion; however, another approach is to observe that the maximum number of

children at depth k is N
k
. Thus, the total number of children is 1 + N + N

2
 + ··· + N

h
. This is a geometric

sum and thus we have

1

0

1

1

hh
k

k

N
n N

N






 




When N = 2, this simplifies to our formula for perfect binary trees: 2
h + 1

 – 1.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.07.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 4

5.4.2.2 Logarithmic Height

Solving this for h gives the formula   log 1 1 1Nh n N    ; however,

  
 

    

 

 

1

1 1 llog 1 1 1 1
lim lim lim lim 1

1log 1 1

l

n 1

n

N

n n n n
N

N

n N Nn N N

n nN n N

n N

n N

   



    
   

  



and therefore logN(n) is a reasonable approximation of the height of a perfect N-ary tree with n nodes.

5.4.2.3 N-ary Trees versus Binary Trees

The ratio of the heights of a binary tree containing n nodes and an N-ary tree containing n nodes is

 

 

 
 
 

 2 2

2

2

2

log log
log

loglog

log

N

n n
N

nn

N

 

and therefore, the height of a corresponding binary tree will always be approximately a constant multiple

times that of an N-ary tree. For example, a perfect binary tree will be approximately 3 times deeper than

the corresponding octal tree.

5.4.2.4 Complete N-ary trees

The height of a complete N-ary tree containing n nodes is

  log 1Nh N n   

Like complete binary trees, complete N-ary tree can be stored efficiently using an array:

1. Unlike a complete binary tree, we will assume the root is at index k = 0,

2. The parent of a node with index k is located at
1k

N

 
 
 

, and

3. The children of a node with index k are located at kN + j for j = 1, 2, …, N.

Unlike binary trees, there is no computational advantage by placing the root at index k = 1.

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.07.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 4

5.4.3 Implementation

From previous projects, one might consider implementating an N-ary tree as follows:

#include <algorithm>

template <typename Type>

class Nary_tree {

 private:

 Type element;

 int N;

 Nary_tree **children;

 public:

 Nary_tree(Type const & = Type(), int = 2);

 // ...

};

template <typename Type>

Nary_tree<Type>::Nary_tree(Type const &e, int n):

element(e),

N(std::max(2, n)),

children(new *Nary_tree[N]) {

 for (int i = 0; i < N; ++i) {

 children[i] = 0;

 }

}

However, this requires the allocation of dynamic memory in all cases. An alternate design is to use

templates:

#include <algorithm>

template <typename Type, int N>

class Nary_tree {

 private:

 Type element;

 Nary_tree *children[std::max(N, 2)]; // an array of N children

 public:

 Nary_tree(Type const & = Type())

 // ...

};

template <typename Type, int N>

Nary_tree<Type, N>::Nary_tree(Type const &e):
element(e) {

 for (int i = 0; i < N; ++i) {

 children[i] = 0;

 }

}

© 2011 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Notes 4.07.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 4 of 4

In this case, we could create an N-ary tree as follows

 Nary_tree<int, 4> i4tree(1975);

 std::cout << i4tree.retrieve() << std::endl;

The value of N, however, must be known at compile time. It would not be possible create N-ary trees

without aprior knowledge of the expected arity.

5.4.4 Application

One application of an N-ary tree is to create a dictionary of valid strings. For example, if we consider

only words containing the 26 letters of the English alphabet, we could let the root node represent the

starting point of each word. Each of 26 children would represent those words starting with the

corresponding letter. Similarly, each other node could have up to 26 children representing the next letter

in a given word. In this way, the letters in any path from the root form a word. A node may be flagged as

being a terminal character in a word. Such a data structure is called a trie from the contents of retrieve.

The author claims the name should be a homophone of “tree”; however, most people pronounce it as

“try”.

For example, consider all the words in the sentence “The fable then faded from my thoughts and

memory.” The words in this sentence would generate the trie in Figure 2.

Figure 2. A trie with the words from “The fable then faded from my thoughts and memory.”

You will note that “the” is a prefix to the word “then”.

The terminal points in a trie could be associated with a linked list of locations within a document. For

example, each word in a document could be indexed in a trie allowing for very fast searches. For

example, the word “and” would be indexed with position 38, as “and” forms the substring in locations 38

through 40.

