
© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 8.5.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 1 of 3

Recall that a comparison in any sort is any comparison of magnitude of any two entries in a list and which

may or may not result in a swap of two values in a list.

8.5a The following is an implementation of merge sort.

template <typename Type>
void merge_sort(Type *array, int n) {
 merge_sort(array, 0, n - 1);
}

template <typename Type>
void merge_sort(Type *array, int a, int b) {
 if (a >= b) {
 return;
 }

 int mid = (a + b)/2;

 merge_sort(array, a, mid);
 merge_sort(array, mid + 1, b);
 merge(array, a, mid, b);
}

Overloading in C++ is where two functions have the same name but different signatures. What is the

purpose of overloading the function merge_sort?

8.5b Implement the function merge used in the above implementation of merge sort:

template <typename Type>
void merge(Type *array, int a, int mid, int b) {

}

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 8.5.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 2 of 3

8.5c Rewrite the above function so that if the size of the interval being sorted is less than or equal to the

static constant USE_INSERTION_SORT, which is set to a positive integer greater than or equal to 1.

8.5d Show the steps in applying merge sort where USE_INSERTION_SORT is set to 5.

72 92 79 38 84 76 83 72 15 35 57 29 91 42 48 67

Show the entries prior to each of the successive merges. The last entry has been created for you.

15 29 35 38 42 48 57 67 72 72 76 79 83 84 91 92

© 2013 by Douglas Wilhelm Harder. All rights reserved. Please send any comments or criticisms to dwharder@alumni.uwaterloo.ca

ECE 250 Algorithms and Data Structure with the subject ECE 250 Questions 8.5.

Department of Electrical and Computer Engineering Assistances and comments will be acknowledged.

University of Waterloo

Page 3 of 3

8.5e Merge sort requires a temporary array of size (n). If each time merge is called, a new array is

allocated, this could be very expensive. Instead, consider the following implementation:

template <typename Type>
void merge_sort(Type *array, int n) {
 merge_sort(array, 0, n - 1);
}

template <typename Type>
void merge_sort(Type *array, int a, int b) {
 if (a >= b) {
 return;
 }

 Type *tmp_array = new Type[b - a + 1];

 int mid = (a + b)/2;

 merge_sort_internal(array, tmp_array, a, mid);
 merge_sort_internal(array, tmp_array, mid + 1, b);
 merge(array, tmp_array, a, mid, b);

 delete [] tmp_array;
}

template <typename Type>
void merge_sort_internal(Type *array, Type *tmp_array, int a, int b) {
 if (a >= b) {
 return;
 }

 int mid = (a + b)/2;

 merge_sort_internal(array, tmp_array, a, mid);
 merge_sort_internal(array, tmp_array, mid + 1, b);
 merge(array, tmp_array, a, mid, b);
}

Re-implement the merge function so that it uses the entries from 0 to b - 1 + 1 in this temporary array

to perform the merge and then copy the values back into array.

