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8.6 Quicksort 

Merge sort divided an unsorted list into two approximately equal sub-lists based on location.  We will 

look at an alternate strategy for dividing a list into two sub-lists:  select one entry in the list (call it a pivot) 

and separate all other entries as to whether they are smaller than or larger than this pivot. 

Using this idea, quicksort is, on average, faster than merge sort and has the following properties, but there 

are some issues, as are shown in Table 1. 

 

Table 1.  The run times of quicksort. 

 Run Time Memory 

Average Case (n ln(n)) (ln(n)) 

Worst Case (n
2
) (n) 

 

We will look at this algorithm but we will also look at strategies for avoiding the worst-case scenario. 

8.6.1 Strategy and Run-time Analysis 

Suppose, we split a list into two sub-lists by picking one entry (the pivot) and dividing all other entries 

into those less than the pivot and those greater than the pivot.  For example, if we select 44 from this list 

 

80 21 95 84 66 10 79 44 26 87 96 12 43 71 3 

 

This would produce the list 

 

21 10 26 12 43 3 44 80 95 84 66 79 87 96 71 

 

Each of these two lists contains approximately n/2 entries.  Notice that 44 is now in the correct location if 

the array is entirely sorted.  We could continue by using a similar algorithm on the first six entries and the 

last eight entries. 

 

Thus, if we were to reapply this algorithm and always get two sub-lists of approximately half the size at 

each step, the run time would be similar to that of merge sort:  (n ln(n)).  We can also apply our 

simplification of using insertion sort if the size of the list ever drops below some fixed N. 
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7.4.2 Worst-case Scenario 

Unfortunately, we might get unlucky:  

 

80 21 95 84 66 10 79 2 26 87 96 12 43 71 3 

 

Using 2 as a pivot results in the partition 

 

2 80 21 95 84 66 10 79 26 87 96 12 43 71 3 

 

At this point, we must sort the remaining list of size n – 1.  Thus, the run time may be described by 
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This is no different from the run-time of selection sort:  (n
2
). 

8.6.3 Median-of-Three Strategy 

The median of n entries is that entry such that half of all values are less than the median (and, therefore, 

the other half are greater than that entry). 

The politician was astonished to learn that half of all 

Canadians were below the median intelligence. 

The ideal case is to choose the median; however, we cannot find the median entry quickly.  Instead, an 

alternate strategy is to choose three entries, say, the first, middle, and last entries and choose the median 

of these three entries.  Going back to our initial example, the median of the entries {80, 44, 3} is 44. 

80 21 95 84 66 10 79 44 26 87 96 12 43 71 3 

 

We can now partition the entries based on the pivot 44: 

21 10 26 12 43 3 44 80 95 84 66 79 87 96 71 

 

Applying the median-of-three on the first six, 

 

21 10 26 12 43 3 44 80 95 84 66 79 87 96 71 

 

would be the median of {21, 26, 3} which is 21 while the median of the last eight,  

21 10 26 12 43 3 44 80 95 84 66 79 87 96 71 

 

would be the median of {80, 66, 71} or 71. 
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Using statistics and distributions, it is possible to show that using a random pivot will, on average, 

partition the list into two sub-lists of sizes 1
4

n  and 3
4

n .  Also, 90 % of the time, the sub-lists will have 

sizes 1
20

n  and 19
20

n  or better (1:19 or better): 
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To do the same for the median-of-three, it is necessary to understand order statistics:  what is the 

distribution of the middle of three random numbers chosen from an interval [0, 1].  It happens that the 

distribution of the smallest, middle, and largest of three random selections is shown in Figure 1. 

 
Figure 1.  The distribution of the smallest, median, and largest of three random numbers from [0, 1]. 

Without delving into the details, we have that the median-of-three will, on average, partition a list into 

two sub-lists of sizes 5
16

n  and 11
16

n .  Now, 90 % of the time, the ratio of the 0.135n and 0.865n or better 

(1:6.388 or better): 
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Recall that merge sort always partitions its lists into halves.  Thus, the depth of recursion for choosing the 

median-of-three will require 
 

 

ln 1/ 2
1.8499

ln 11/16
  or a 85 % increase in the depth of recursion.  Choosing 

just a single random pivot will result in 
 

 

ln 1/ 2
2.4094

ln 3 / 4
  or 141 % increase in the depth of recursion. 

Question:  should we go to, for example, the median-of-five?  Unfortunately, we choosing more points 

has diminishing returns.  From order statistics, the average partition from 

  
1
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22
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11
2 180 1

32
x x x dx    

is  11
32

n  and 21
32

n  and still requires 65 % more recursive steps. 

8.6.4 Basic Implementation 

The easiest implementation of quicksort would be to create a new array and copy the entries smaller than 

the pivot to the start while copying the larger entries to the end of the array.  For example, given the pivot 

44 in the array 

80 21 95 84 66 10 79 44 26 87 96 12 43 71 3 

 

we would copy the first six entries into a new array as follows: 

21 10          66 84 95 80 

 

After all 14 entries other than 44, we have 

21 10 26 12 43 3  71 96 87 79 66 84 95 80 

 

and we can now place 44 into the one remaining vacant location and we can recursively call quicksort on 

the entries 0 through 5 and 7 through 14. 

The problem with this implementation is that it requires a new array, or (n) additional memory.  Our 

goal, however, is to perform sorts in-place. 

8.6.5 In-place Implementation 

Our goal is to simply partition the entries into those greater than and those less than the pivot.  Consider 

the following algorithm: 

Given the first, middle, and last entries in the list, assign the median to a local variable pivot, replace the 

first entry with the smallest of the three, and copy the largest of the three into the middle. 
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For example, given 

80 21 95 84 66 10 79 44 26 87 96 12 43 71 3 

 

we would end up with pivot = 44 and 

3 21 95 84 66 10 79 80 26 87 96 12 43 71  

 

Next, perform the following algorithm: 

1. Search forward from the front in the list until you find an entry greater than the pivot, and 

2. Search backward from the back of the list until you find an entry less than the pivot. 

Having found these two, swap them.  For example, given the above list, we would search forward until 

we find 95 and search back until we find 43: 

3 21 95 84 66 10 79 80 26 87 96 12 43 71  

 

Swapping these two corrects the inversion:  

3 21 43 84 66 10 79 80 26 87 96 12 95 71  

 

Repeating this process, we find 84 and 12 and swap these two: 

3 21 43 84 66 10 79 80 26 87 96 12 95 71  

               

3 21 43 12 66 10 79 80 26 87 96 84 95 71  

 

Again, searching forward and backward, we find 66 and 26 and swap these two: 

3 21 43 12 66 10 79 80 26 87 96 84 95 71  

               

3 21 43 12 26 10 79 80 66 87 96 84 95 71  

 

Notice that at this point, the first five points are all less than the pivot and the last six are all greater than 

the pivot.  So we continue, searching forward and backward finding 79 and 10: 

3 21 43 12 26 10 79 80 66 87 96 84 95 71  

 

At this point, we note that the pair (10, 79) do not form an inversion:  consequently, by our algorithm, all 

entries before 10 must be less than the pivot and all entries after 79 must be greater than the pivot.  All we 

must do now is put the pivot back into the list.  We can do this by copying 79 (being greater than the 

pivot) into the last position and replacing it with 44: 

3 21 43 12 26 10 44 80 66 87 96 84 95 71 79 

 

Thus the list is partitioned between those entries greater than the pivot and those less than the pivot. 
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The next step is to recursively call quicksort on both halves.  Like with merge sort, we will call insertion 

sort as soon as the size of a list is less than N = 8, so we would simply call insertion sort on the left half: 

3 10 12 21 26 43 44 80 66 87 96 84 95 71 79 

 

Focusing on the right half, we choose the median of the entries in positions 7, 14, and (7 + 14)/2 = 10: 

3 10 12 21 26 43 44 80 66 87 96 84 95 71 79 

 

The new pivot = 80, we copy 79 to position 7 and leave 96 in position 10: 

3 10 12 21 26 43 44 79 66 87 96 84 95 71  

 

As before, we search forward finding the first entry greater than the pivot and backward from the last 

entry until we find an entry less than the pivot, 87 and 71, and swap them: 

3 10 12 21 26 43 44 79 66 87 96 84 95 71  

               

3 10 12 21 26 43 44 79 66 71 96 84 95 87  

 

Again, searching forward and backward, we find 96 and 71: 

3 10 12 21 26 43 44 79 66 71 96 84 95 87  

 

As before, (71, 96) forms a sorted pair, so we are finished:  copy 96 to the last position and replace it with 

the pivot 80: 

3 10 12 21 26 43 44 79 66 71 80 84 95 87 96 

 

Now, we recursively call quicksort on both the left and right halves; however, both have a length less than 

N = 8, so we simply call insertion sort on both: 

3 10 12 21 26 43 44 66 71 79 80 84 87 95 96 

 

You will now note that the entire list is sorted. 

8.6.6 Memory Requirements 

From ECE 222, you know that each function call places a frame on a stack.  Thus, while it may seem that 

we require only local variables, the function-call stack will have as many entries as the number of 

recursions that are required.  In the ideal case (always choosing the median), this will be approximately 

(lg(n)); however, in the worst case, it could be as bad as (n). 
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8.6.7 Comparing Heap, Merge, and Quicksort 

Thus, we have the following table comparing these three algorithms: 

 Run Time Memory Requirements 

 Average Case Worst Case Average Case Worst Case 

Heap Sort (n lg(n)) (n lg(n)) (1) (1) 

Merge Sort (n lg(n)) (n lg(n)) (n) (n) 

Quicksort (n lg(n)) (n
2
) (ln(n)) (n) 

 


